--- trunk/tengDissertation/Methodology.tex 2006/04/03 18:07:54 2685 +++ trunk/tengDissertation/Methodology.tex 2006/06/11 02:53:15 2854 @@ -2,12 +2,744 @@ \section{\label{methodSection:rigidBodyIntegrators}Integrators for Rigid Body Motion in Molecular Dynamics} -\section{\label{methodSection:conservedQuantities}Integrators to Conserve Properties in Special Ensembles} +In order to mimic the experiments, which are usually performed under +constant temperature and/or pressure, extended Hamiltonian system +methods have been developed to generate statistical ensembles, such +as canonical ensemble and isobaric-isothermal ensemble \textit{etc}. +In addition to the standard ensemble, specific ensembles have been +developed to account for the anisotropy between the lateral and +normal directions of membranes. The $NPAT$ ensemble, in which the +normal pressure and the lateral surface area of the membrane are +kept constant, and the $NP\gamma T$ ensemble, in which the normal +pressure and the lateral surface tension are kept constant were +proposed to address this issue. -\section{\label{methodSection:hydrodynamics}Hydrodynamics} +Integration schemes for rotational motion of the rigid molecules in +microcanonical ensemble have been extensively studied in the last +two decades. Matubayasi developed a time-reversible integrator for +rigid bodies in quaternion representation. Although it is not +symplectic, this integrator still demonstrates a better long-time +energy conservation than traditional methods because of the +time-reversible nature. Extending Trotter-Suzuki to general system +with a flat phase space, Miller and his colleagues devised an novel +symplectic, time-reversible and volume-preserving integrator in +quaternion representation, which was shown to be superior to the +Matubayasi's time-reversible integrator. However, all of the +integrators in quaternion representation suffer from the +computational penalty of constructing a rotation matrix from +quaternions to evolve coordinates and velocities at every time step. +An alternative integration scheme utilizing rotation matrix directly +proposed by Dullweber, Leimkuhler and McLachlan (DLM) also preserved +the same structural properties of the Hamiltonian flow. In this +section, the integration scheme of DLM method will be reviewed and +extended to other ensembles. -\section{\label{methodSection:langevin}Integrators for Langevin Dynamics of Rigid Bodies} +\subsection{\label{methodSection:DLM}Integrating the Equations of Motion: the +DLM method} -\section{\label{methodSection:coarseGrained}Coarse-Grained Modeling} +The DLM method uses a Trotter factorization of the orientational +propagator. This has three effects: +\begin{enumerate} +\item the integrator is area-preserving in phase space (i.e. it is +{\it symplectic}), +\item the integrator is time-{\it reversible}, making it suitable for Hybrid +Monte Carlo applications, and +\item the error for a single time step is of order $\mathcal{O}\left(h^4\right)$ +for timesteps of length $h$. +\end{enumerate} -\section{\label{methodSection:moleculeScale}Molecular-Scale Modeling} +The integration of the equations of motion is carried out in a +velocity-Verlet style 2-part algorithm, where $h= \delta t$: + +{\tt moveA:} +\begin{align*} +{\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t) + + \frac{h}{2} \left( {\bf f}(t) / m \right), \\ +% +{\bf r}(t + h) &\leftarrow {\bf r}(t) + + h {\bf v}\left(t + h / 2 \right), \\ +% +{\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t) + + \frac{h}{2} {\bf \tau}^b(t), \\ +% +\mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j} + (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right). +\end{align*} + +In this context, the $\mathrm{rotate}$ function is the reversible +product of the three body-fixed rotations, +\begin{equation} +\mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot +\mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y +/ 2) \cdot \mathsf{G}_x(a_x /2), +\end{equation} +where each rotational propagator, $\mathsf{G}_\alpha(\theta)$, +rotates both the rotation matrix ($\mathsf{A}$) and the body-fixed +angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed +axis $\alpha$, +\begin{equation} +\mathsf{G}_\alpha( \theta ) = \left\{ +\begin{array}{lcl} +\mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\ +{\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf +j}(0). +\end{array} +\right. +\end{equation} +$\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis +rotation matrix. For example, in the small-angle limit, the +rotation matrix around the body-fixed x-axis can be approximated as +\begin{equation} +\mathsf{R}_x(\theta) \approx \left( +\begin{array}{ccc} +1 & 0 & 0 \\ +0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+ +\theta^2 / 4} \\ +0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 + +\theta^2 / 4} +\end{array} +\right). +\end{equation} +All other rotations follow in a straightforward manner. + +After the first part of the propagation, the forces and body-fixed +torques are calculated at the new positions and orientations + +{\tt doForces:} +\begin{align*} +{\bf f}(t + h) &\leftarrow + - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\ +% +{\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h) + \times \frac{\partial V}{\partial {\bf u}}, \\ +% +{\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h) + \cdot {\bf \tau}^s(t + h). +\end{align*} + +${\bf u}$ will be automatically updated when the rotation matrix +$\mathsf{A}$ is calculated in {\tt moveA}. Once the forces and +torques have been obtained at the new time step, the velocities can +be advanced to the same time value. + +{\tt moveB:} +\begin{align*} +{\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2 +\right) + + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\ +% +{\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2 +\right) + + \frac{h}{2} {\bf \tau}^b(t + h) . +\end{align*} + +The matrix rotations used in the DLM method end up being more costly +computationally than the simpler arithmetic quaternion propagation. +With the same time step, a 1000-molecule water simulation shows an +average 7\% increase in computation time using the DLM method in +place of quaternions. This cost is more than justified when +comparing the energy conservation of the two methods as illustrated +in Fig.~\ref{methodFig:timestep}. + +\begin{figure} +\centering +\includegraphics[width=\linewidth]{timeStep.eps} +\caption[Energy conservation for quaternion versus DLM +dynamics]{Energy conservation using quaternion based integration +versus the method proposed by Dullweber \emph{et al.} with +increasing time step. For each time step, the dotted line is total +energy using the DLM integrator, and the solid line comes from the +quaternion integrator. The larger time step plots are shifted up +from the true energy baseline for clarity.} +\label{methodFig:timestep} +\end{figure} + +In Fig.~\ref{methodFig:timestep}, the resulting energy drift at +various time steps for both the DLM and quaternion integration +schemes is compared. All of the 1000 molecule water simulations +started with the same configuration, and the only difference was the +method for handling rotational motion. At time steps of 0.1 and 0.5 +fs, both methods for propagating molecule rotation conserve energy +fairly well, with the quaternion method showing a slight energy +drift over time in the 0.5 fs time step simulation. At time steps of +1 and 2 fs, the energy conservation benefits of the DLM method are +clearly demonstrated. Thus, while maintaining the same degree of +energy conservation, one can take considerably longer time steps, +leading to an overall reduction in computation time. + +\subsection{\label{methodSection:NVT}Nos\'{e}-Hoover Thermostatting} + +The Nos\'e-Hoover equations of motion are given by\cite{Hoover1985} +\begin{eqnarray} +\dot{{\bf r}} & = & {\bf v}, \\ +\dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\ +\dot{\mathsf{A}} & = & \mathsf{A} \cdot +\mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\ +\dot{{\bf j}} & = & {\bf j} \times \left( +\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j} \right) - \mbox{ +rot}\left(\mathsf{A}^{T} \cdot \frac{\partial V}{\partial +\mathsf{A}} \right) - \chi {\bf j}. \label{eq:nosehoovereom} +\end{eqnarray} + +$\chi$ is an ``extra'' variable included in the extended system, and +it is propagated using the first order equation of motion +\begin{equation} +\dot{\chi} = \frac{1}{\tau_{T}^2} \left( +\frac{T}{T_{\mathrm{target}}} - 1 \right). \label{eq:nosehooverext} +\end{equation} + +The instantaneous temperature $T$ is proportional to the total +kinetic energy (both translational and orientational) and is given +by +\begin{equation} +T = \frac{2 K}{f k_B} +\end{equation} +Here, $f$ is the total number of degrees of freedom in the system, +\begin{equation} +f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}}, +\end{equation} +and $K$ is the total kinetic energy, +\begin{equation} +K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i + +\sum_{i=1}^{N_{\mathrm{orient}}} \frac{1}{2} {\bf j}_i^T \cdot +\overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i. +\end{equation} + +In eq.(\ref{eq:nosehooverext}), $\tau_T$ is the time constant for +relaxation of the temperature to the target value. To set values +for $\tau_T$ or $T_{\mathrm{target}}$ in a simulation, one would use +the {\tt tauThermostat} and {\tt targetTemperature} keywords in the +{\tt .bass} file. The units for {\tt tauThermostat} are fs, and the +units for the {\tt targetTemperature} are degrees K. The +integration of the equations of motion is carried out in a +velocity-Verlet style 2 part algorithm: + +{\tt moveA:} +\begin{align*} +T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\ +% +{\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t) + + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t) + \chi(t)\right), \\ +% +{\bf r}(t + h) &\leftarrow {\bf r}(t) + + h {\bf v}\left(t + h / 2 \right) ,\\ +% +{\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t) + + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t) + \chi(t) \right) ,\\ +% +\mathsf{A}(t + h) &\leftarrow \mathrm{rotate} + \left(h * {\bf j}(t + h / 2) + \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\ +% +\chi\left(t + h / 2 \right) &\leftarrow \chi(t) + + \frac{h}{2 \tau_T^2} \left( \frac{T(t)} + {T_{\mathrm{target}}} - 1 \right) . +\end{align*} + +Here $\mathrm{rotate}(h * {\bf j} +\overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic +Trotter factorization of the three rotation operations that was +discussed in the section on the DLM integrator. Note that this +operation modifies both the rotation matrix $\mathsf{A}$ and the +angular momentum ${\bf j}$. {\tt moveA} propagates velocities by a +half time step, and positional degrees of freedom by a full time +step. The new positions (and orientations) are then used to +calculate a new set of forces and torques in exactly the same way +they are calculated in the {\tt doForces} portion of the DLM +integrator. + +Once the forces and torques have been obtained at the new time step, +the temperature, velocities, and the extended system variable can be +advanced to the same time value. + +{\tt moveB:} +\begin{align*} +T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\}, + \left\{{\bf j}(t + h)\right\}, \\ +% +\chi\left(t + h \right) &\leftarrow \chi\left(t + h / + 2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)} + {T_{\mathrm{target}}} - 1 \right), \\ +% +{\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + + h / 2 \right) + \frac{h}{2} \left( + \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h) + \chi(t h)\right) ,\\ +% +{\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + + h / 2 \right) + \frac{h}{2} + \left( {\bf \tau}^b(t + h) - {\bf j}(t + h) + \chi(t + h) \right) . +\end{align*} + +Since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required to +caclculate $T(t + h)$ as well as $\chi(t + h)$, they indirectly +depend on their own values at time $t + h$. {\tt moveB} is +therefore done in an iterative fashion until $\chi(t + h)$ becomes +self-consistent. + +The Nos\'e-Hoover algorithm is known to conserve a Hamiltonian for +the extended system that is, to within a constant, identical to the +Helmholtz free energy,\cite{Melchionna1993} +\begin{equation} +H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left( +\frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) +dt^\prime \right). +\end{equation} +Poor choices of $h$ or $\tau_T$ can result in non-conservation of +$H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the +last column of the {\tt .stat} file to allow checks on the quality +of the integration. + +\subsection{\label{methodSection:NPTi}Constant-pressure integration with +isotropic box deformations (NPTi)} + +Isobaric-isothermal ensemble integrator is implemented using the +Melchionna modifications to the Nos\'e-Hoover-Andersen equations of +motion,\cite{Melchionna1993} + +\begin{eqnarray} +\dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\ +\dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\ +\dot{\mathsf{A}} & = & \mathsf{A} \cdot +\mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\ +\dot{{\bf j}} & = & {\bf j} \times \left( +\overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{ +rot}\left(\mathsf{A}^{T} \cdot \frac{\partial +V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\ +\dot{\chi} & = & \frac{1}{\tau_{T}^2} \left( +\frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\ +\dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V +\left( P - +P_{\mathrm{target}} \right), \\ +\dot{\mathcal{V}} & = & 3 \mathcal{V} \eta . \label{eq:melchionna1} +\end{eqnarray} + +$\chi$ and $\eta$ are the ``extra'' degrees of freedom in the +extended system. $\chi$ is a thermostat, and it has the same +function as it does in the Nos\'e-Hoover NVT integrator. $\eta$ is +a barostat which controls changes to the volume of the simulation +box. ${\bf R}_0$ is the location of the center of mass for the +entire system, and $\mathcal{V}$ is the volume of the simulation +box. At any time, the volume can be calculated from the determinant +of the matrix which describes the box shape: +\begin{equation} +\mathcal{V} = \det(\mathsf{H}). +\end{equation} + +The NPTi integrator requires an instantaneous pressure. This +quantity is calculated via the pressure tensor, +\begin{equation} +\overleftrightarrow{\mathsf{P}}(t) = \frac{1}{\mathcal{V}(t)} \left( +\sum_{i=1}^{N} m_i {\bf v}_i(t) \otimes {\bf v}_i(t) \right) + +\overleftrightarrow{\mathsf{W}}(t). +\end{equation} +The kinetic contribution to the pressure tensor utilizes the {\it +outer} product of the velocities denoted by the $\otimes$ symbol. +The stress tensor is calculated from another outer product of the +inter-atomic separation vectors (${\bf r}_{ij} = {\bf r}_j - {\bf +r}_i$) with the forces between the same two atoms, +\begin{equation} +\overleftrightarrow{\mathsf{W}}(t) = \sum_{i} \sum_{j>i} {\bf +r}_{ij}(t) \otimes {\bf f}_{ij}(t). +\end{equation} +The instantaneous pressure is then simply obtained from the trace of +the Pressure tensor, +\begin{equation} +P(t) = \frac{1}{3} \mathrm{Tr} \left( +\overleftrightarrow{\mathsf{P}}(t). \right) +\end{equation} + +In eq.(\ref{eq:melchionna1}), $\tau_B$ is the time constant for +relaxation of the pressure to the target value. Like in the NVT +integrator, the integration of the equations of motion is carried +out in a velocity-Verlet style 2 part algorithm: + +{\tt moveA:} +\begin{align*} +T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\ +% +P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\} ,\\ +% +{\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t) + + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t) + \left(\chi(t) + \eta(t) \right) \right), \\ +% +{\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t) + + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t) + \chi(t) \right), \\ +% +\mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h * + {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1} + \right) ,\\ +% +\chi\left(t + h / 2 \right) &\leftarrow \chi(t) + + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1 + \right) ,\\ +% +\eta(t + h / 2) &\leftarrow \eta(t) + \frac{h + \mathcal{V}(t)}{2 N k_B T(t) \tau_B^2} \left( P(t) + - P_{\mathrm{target}} \right), \\ +% +{\bf r}(t + h) &\leftarrow {\bf r}(t) + h + \left\{ {\bf v}\left(t + h / 2 \right) + + \eta(t + h / 2)\left[ {\bf r}(t + h) + - {\bf R}_0 \right] \right\} ,\\ +% +\mathsf{H}(t + h) &\leftarrow e^{-h \eta(t + h / 2)} + \mathsf{H}(t). +\end{align*} + +Most of these equations are identical to their counterparts in the +NVT integrator, but the propagation of positions to time $t + h$ +depends on the positions at the same time. The simulation box +$\mathsf{H}$ is scaled uniformly for one full time step by an +exponential factor that depends on the value of $\eta$ at time $t + +h / 2$. Reshaping the box uniformly also scales the volume of the +box by +\begin{equation} +\mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}. +\mathcal{V}(t) +\end{equation} + +The {\tt doForces} step for the NPTi integrator is exactly the same +as in both the DLM and NVT integrators. Once the forces and torques +have been obtained at the new time step, the velocities can be +advanced to the same time value. + +{\tt moveB:} +\begin{align*} +T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\}, + \left\{{\bf j}(t + h)\right\} ,\\ +% +P(t + h) &\leftarrow \left\{{\bf r}(t + h)\right\}, + \left\{{\bf v}(t + h)\right\}, \\ +% +\chi\left(t + h \right) &\leftarrow \chi\left(t + h / + 2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)} + {T_{\mathrm{target}}} - 1 \right), \\ +% +\eta(t + h) &\leftarrow \eta(t + h / 2) + + \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h) + \tau_B^2} \left( P(t + h) - P_{\mathrm{target}} \right), \\ +% +{\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + + h / 2 \right) + \frac{h}{2} \left( + \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h) + (\chi(t + h) + \eta(t + h)) \right) ,\\ +% +{\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + + h / 2 \right) + \frac{h}{2} \left( {\bf + \tau}^b(t + h) - {\bf j}(t + h) + \chi(t + h) \right) . +\end{align*} + +Once again, since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required +to caclculate $T(t + h)$, $P(t + h)$, $\chi(t + h)$, and $\eta(t + +h)$, they indirectly depend on their own values at time $t + h$. +{\tt moveB} is therefore done in an iterative fashion until $\chi(t ++ h)$ and $\eta(t + h)$ become self-consistent. + +The Melchionna modification of the Nos\'e-Hoover-Andersen algorithm +is known to conserve a Hamiltonian for the extended system that is, +to within a constant, identical to the Gibbs free energy, +\begin{equation} +H_{\mathrm{NPTi}} = V + K + f k_B T_{\mathrm{target}} \left( +\frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) +dt^\prime \right) + P_{\mathrm{target}} \mathcal{V}(t). +\end{equation} +Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can result in +non-conservation of $H_{\mathrm{NPTi}}$, so the conserved quantity +is maintained in the last column of the {\tt .stat} file to allow +checks on the quality of the integration. It is also known that +this algorithm samples the equilibrium distribution for the enthalpy +(including contributions for the thermostat and barostat), +\begin{equation} +H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2} +\left( \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) + +P_{\mathrm{target}} \mathcal{V}(t). +\end{equation} + +\subsection{\label{methodSection:NPTf}Constant-pressure integration with a +flexible box (NPTf)} + +There is a relatively simple generalization of the +Nos\'e-Hoover-Andersen method to include changes in the simulation +box {\it shape} as well as in the volume of the box. This method +utilizes the full $3 \times 3$ pressure tensor and introduces a +tensor of extended variables ($\overleftrightarrow{\eta}$) to +control changes to the box shape. The equations of motion for this +method are +\begin{eqnarray} +\dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\ +\dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} + +\chi \cdot \mathsf{1}) {\bf v}, \\ +\dot{\mathsf{A}} & = & \mathsf{A} \cdot +\mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\ +\dot{{\bf j}} & = & {\bf j} \times \left( +\overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{ +rot}\left(\mathsf{A}^{T} \cdot \frac{\partial +V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\ +\dot{\chi} & = & \frac{1}{\tau_{T}^2} \left( +\frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\ +\dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B +T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) ,\\ +\dot{\mathsf{H}} & = & \overleftrightarrow{\eta} \cdot \mathsf{H} . +\label{eq:melchionna2} +\end{eqnarray} + +Here, $\mathsf{1}$ is the unit matrix and +$\overleftrightarrow{\mathsf{P}}$ is the pressure tensor. Again, +the volume, $\mathcal{V} = \det \mathsf{H}$. + +The propagation of the equations of motion is nearly identical to +the NPTi integration: + +{\tt moveA:} +\begin{align*} +T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\ +% +\overleftrightarrow{\mathsf{P}}(t) &\leftarrow \left\{{\bf +r}(t)\right\}, + \left\{{\bf v}(t)\right\} ,\\ +% +{\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t) + + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - + \left(\chi(t)\mathsf{1} + \overleftrightarrow{\eta}(t) \right) \cdot + {\bf v}(t) \right), \\ +% +{\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t) + + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t) + \chi(t) \right), \\ +% +\mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h * + {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1} + \right), \\ +% +\chi\left(t + h / 2 \right) &\leftarrow \chi(t) + + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} + - 1 \right), \\ +% +\overleftrightarrow{\eta}(t + h / 2) &\leftarrow + \overleftrightarrow{\eta}(t) + \frac{h \mathcal{V}(t)}{2 N k_B + T(t) \tau_B^2} \left( \overleftrightarrow{\mathsf{P}}(t) + - P_{\mathrm{target}}\mathsf{1} \right), \\ +% +{\bf r}(t + h) &\leftarrow {\bf r}(t) + h \left\{ {\bf v} + \left(t + h / 2 \right) + \overleftrightarrow{\eta}(t + + h / 2) \cdot \left[ {\bf r}(t + h) + - {\bf R}_0 \right] \right\}, \\ +% +\mathsf{H}(t + h) &\leftarrow \mathsf{H}(t) \cdot e^{-h + \overleftrightarrow{\eta}(t + h / 2)} . +\end{align*} +Here, a power series expansion truncated at second order for the +exponential operation is used to scale the simulation box. + +The {\tt moveB} portion of the algorithm is largely unchanged from +the NPTi integrator: + +{\tt moveB:} +\begin{align*} +T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\}, + \left\{{\bf j}(t + h)\right\}, \\ +% +\overleftrightarrow{\mathsf{P}}(t + h) &\leftarrow \left\{{\bf r} + (t + h)\right\}, \left\{{\bf v}(t + + h)\right\}, \left\{{\bf f}(t + h)\right\} ,\\ +% +\chi\left(t + h \right) &\leftarrow \chi\left(t + h / + 2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+ + h)}{T_{\mathrm{target}}} - 1 \right), \\ +% +\overleftrightarrow{\eta}(t + h) &\leftarrow + \overleftrightarrow{\eta}(t + h / 2) + + \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h) + \tau_B^2} \left( \overleftrightarrow{P}(t + h) + - P_{\mathrm{target}}\mathsf{1} \right) ,\\ +% +{\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + + h / 2 \right) + \frac{h}{2} \left( + \frac{{\bf f}(t + h)}{m} - + (\chi(t + h)\mathsf{1} + \overleftrightarrow{\eta}(t + + h)) \right) \cdot {\bf v}(t + h), \\ +% +{\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t + + h) - {\bf j}(t + h) \chi(t + h) \right) . +\end{align*} + +The iterative schemes for both {\tt moveA} and {\tt moveB} are +identical to those described for the NPTi integrator. + +The NPTf integrator is known to conserve the following Hamiltonian: +\begin{eqnarray*} +H_{\mathrm{NPTf}} & = & V + K + f k_B T_{\mathrm{target}} \left( +\frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) +dt^\prime \right) \\ ++ P_{\mathrm{target}} \mathcal{V}(t) + \frac{f +k_B T_{\mathrm{target}}}{2} +\mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2. +\end{eqnarray*} + +This integrator must be used with care, particularly in liquid +simulations. Liquids have very small restoring forces in the +off-diagonal directions, and the simulation box can very quickly +form elongated and sheared geometries which become smaller than the +electrostatic or Lennard-Jones cutoff radii. The NPTf integrator +finds most use in simulating crystals or liquid crystals which +assume non-orthorhombic geometries. + +\subsubsection{\label{methodSection:NPAT}NPAT Ensemble} + +A comprehensive understanding of structure¨Cfunction relations of +biological membrane system ultimately relies on structure and +dynamics of lipid bilayer, which are strongly affected by the +interfacial interaction between lipid molecules and surrounding +media. One quantity to describe the interfacial interaction is so +called the average surface area per lipid. Constat area and constant +lateral pressure simulation can be achieved by extending the +standard NPT ensemble with a different pressure control strategy + +\begin{equation} + \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll} + \frac{{V(P_{\alpha \beta } - P_{{\rm{target}}} )}}{{\tau_{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}} }} + & \mbox{if $ \alpha = \beta = z$}\\ + 0 & \mbox{otherwise}\\ + \end{array} + \right. +\end{equation} + +Note that the iterative schemes for NPAT are identical to those +described for the NPTi integrator. + +\subsection{\label{methodSection:NPrT}NP$\gamma$T +Ensemble} + +Theoretically, the surface tension $\gamma$ of a stress free +membrane system should be zero since its surface free energy $G$ is +minimum with respect to surface area $A$ +\[ +\gamma = \frac{{\partial G}}{{\partial A}}. +\] +However, a surface tension of zero is not appropriate for relatively +small patches of membrane. In order to eliminate the edge effect of +the membrane simulation, a special ensemble, NP$\gamma$T, is +proposed to maintain the lateral surface tension and normal +pressure. The equation of motion for cell size control tensor, +$\eta$, in $NP\gamma T$ is +\begin{equation} + \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll} + - A_{xy} (\gamma _\alpha - \gamma _{{\rm{target}}} ) & \mbox{$\alpha = \beta = x$ or $\alpha = \beta = y$}\\ + \frac{{V(P_{\alpha \beta } - P_{{\rm{target}}} )}}{{\tau _{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}}}} & \mbox{$\alpha = \beta = z$} \\ + 0 & \mbox{$\alpha \ne \beta$} \\ + \end{array} + \right. +\end{equation} +where $ \gamma _{{\rm{target}}}$ is the external surface tension and +the instantaneous surface tensor $\gamma _\alpha$ is given by +\begin{equation} +\gamma _\alpha = - h_z( \overleftrightarrow{P} _{\alpha \alpha } +- P_{{\rm{target}}} ) +\label{methodEquation:instantaneousSurfaceTensor} +\end{equation} + +There is one additional extended system integrator (NPTxyz), in +which each attempt to preserve the target pressure along the box +walls perpendicular to that particular axis. The lengths of the box +axes are allowed to fluctuate independently, but the angle between +the box axes does not change. It should be noted that the NPTxyz +integrator is a special case of $NP\gamma T$ if the surface tension +$\gamma$ is set to zero. + +\section{\label{methodSection:zcons}Z-Constraint Method} + +Based on the fluctuation-dissipation theorem, a force +auto-correlation method was developed by Roux and Karplus to +investigate the dynamics of ions inside ion channels\cite{Roux1991}. +The time-dependent friction coefficient can be calculated from the +deviation of the instantaneous force from its mean force. +\begin{equation} +\xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T, +\end{equation} +where% +\begin{equation} +\delta F(z,t)=F(z,t)-\langle F(z,t)\rangle. +\end{equation} + +If the time-dependent friction decays rapidly, the static friction +coefficient can be approximated by +\begin{equation} +\xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta +F(z,0)\rangle dt. +\end{equation} +Allowing diffusion constant to then be calculated through the +Einstein relation:\cite{Marrink1994} +\begin{equation} +D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty +}\langle\delta F(z,t)\delta F(z,0)\rangle dt}.% +\end{equation} + +The Z-Constraint method, which fixes the z coordinates of the +molecules with respect to the center of the mass of the system, has +been a method suggested to obtain the forces required for the force +auto-correlation calculation.\cite{Marrink1994} However, simply +resetting the coordinate will move the center of the mass of the +whole system. To avoid this problem, we reset the forces of +z-constrained molecules as well as subtract the total constraint +forces from the rest of the system after the force calculation at +each time step instead of resetting the coordinate. + +After the force calculation, define $G_\alpha$ as +\begin{equation} +G_{\alpha} = \sum_i F_{\alpha i}, \label{oopseEq:zc1} +\end{equation} +where $F_{\alpha i}$ is the force in the z direction of atom $i$ in +z-constrained molecule $\alpha$. The forces of the z constrained +molecule are then set to: +\begin{equation} +F_{\alpha i} = F_{\alpha i} - + \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}. +\end{equation} +Here, $m_{\alpha i}$ is the mass of atom $i$ in the z-constrained +molecule. Having rescaled the forces, the velocities must also be +rescaled to subtract out any center of mass velocity in the z +direction. +\begin{equation} +v_{\alpha i} = v_{\alpha i} - + \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}, +\end{equation} +where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction. +Lastly, all of the accumulated z constrained forces must be +subtracted from the system to keep the system center of mass from +drifting. +\begin{equation} +F_{\beta i} = F_{\beta i} - \frac{m_{\beta i} \sum_{\alpha} +G_{\alpha}} + {\sum_{\beta}\sum_i m_{\beta i}}, +\end{equation} +where $\beta$ are all of the unconstrained molecules in the system. +Similarly, the velocities of the unconstrained molecules must also +be scaled. +\begin{equation} +v_{\beta i} = v_{\beta i} + \sum_{\alpha} + \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}. +\end{equation} + +At the very beginning of the simulation, the molecules may not be at +their constrained positions. To move a z-constrained molecule to its +specified position, a simple harmonic potential is used +\begin{equation} +U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2},% +\end{equation} +where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$ +is the current $z$ coordinate of the center of mass of the +constrained molecule, and $z_{\text{cons}}$ is the constrained +position. The harmonic force operating on the z-constrained molecule +at time $t$ can be calculated by +\begin{equation} +F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}= + -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}). +\end{equation}