ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Methodology.tex
(Generate patch)

Comparing trunk/tengDissertation/Methodology.tex (file contents):
Revision 2905 by tim, Wed Jun 28 19:09:25 2006 UTC vs.
Revision 2909 by tim, Thu Jun 29 23:00:35 2006 UTC

# Line 16 | Line 16 | the last two decades. Matubayasi developed a time-reve
16  
17   Integration schemes for the rotational motion of the rigid molecules
18   in the microcanonical ensemble have been extensively studied over
19 < the last two decades. Matubayasi developed a time-reversible
20 < integrator for rigid bodies in quaternion representation. Although
21 < it is not symplectic, this integrator still demonstrates a better
22 < long-time energy conservation than Euler angle methods because of
23 < the time-reversible nature. Extending the Trotter-Suzuki
24 < factorization to general system with a flat phase space, Miller and
25 < his colleagues devised a novel symplectic, time-reversible and
26 < volume-preserving integrator in the quaternion representation, which
27 < was shown to be superior to the Matubayasi's time-reversible
28 < integrator. However, all of the integrators in the quaternion
29 < representation suffer from the computational penalty of constructing
30 < a rotation matrix from quaternions to evolve coordinates and
31 < velocities at every time step. An alternative integration scheme
32 < utilizing the rotation matrix directly proposed by Dullweber,
33 < Leimkuhler and McLachlan (DLM) also preserved the same structural
34 < properties of the Hamiltonian flow. In this section, the integration
19 > the last two decades. Matubayasi\cite{Matubayasi1999} developed a
20 > time-reversible integrator for rigid bodies in quaternion
21 > representation. Although it is not symplectic, this integrator still
22 > demonstrates a better long-time energy conservation than Euler angle
23 > methods because of the time-reversible nature. Extending the
24 > Trotter-Suzuki factorization to general system with a flat phase
25 > space, Miller\cite{Miller2002} and his colleagues devised a novel
26 > symplectic, time-reversible and volume-preserving integrator in the
27 > quaternion representation, which was shown to be superior to the
28 > Matubayasi's time-reversible integrator. However, all of the
29 > integrators in the quaternion representation suffer from the
30 > computational penalty of constructing a rotation matrix from
31 > quaternions to evolve coordinates and velocities at every time step.
32 > An alternative integration scheme utilizing the rotation matrix
33 > directly proposed by Dullweber, Leimkuhler and McLachlan (DLM) also
34 > preserved the same structural properties of the Hamiltonian
35 > propagator\cite{Dullweber1997}. In this section, the integration
36   scheme of DLM method will be reviewed and extended to other
37   ensembles.
38  
# Line 62 | Line 63 | velocity-Verlet style 2-part algorithm, where $h= \del
63   {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
64      + \frac{h}{2} {\bf \tau}^b(t), \\
65   %
66 < \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
66 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
67      (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
68   \end{align*}
69   In this context, the $\mathrm{rotate}$ function is the reversible
# Line 73 | Line 74 | rotates both the rotation matrix ($\mathsf{A}$) and th
74   / 2) \cdot \mathsf{G}_x(a_x /2),
75   \end{equation}
76   where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
77 < rotates both the rotation matrix ($\mathsf{A}$) and the body-fixed
77 > rotates both the rotation matrix ($\mathsf{Q}$) and the body-fixed
78   angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
79   axis $\alpha$,
80   \begin{equation}
81   \mathsf{G}_\alpha( \theta ) = \left\{
82   \begin{array}{lcl}
83 < \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
83 > \mathsf{Q}(t) & \leftarrow & \mathsf{Q}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
84   {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
85   j}(0).
86   \end{array}
# Line 111 | Line 112 | calculated at the new positions and orientations
112   {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
113      \times (\frac{\partial V}{\partial {\bf u}})_{u(t+h)}, \\
114   %
115 < {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
115 > {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{Q}(t + h)
116      \cdot {\bf \tau}^s(t + h).
117   \end{align*}
118   ${\bf u}$ is automatically updated when the rotation matrix
119 < $\mathsf{A}$ is calculated in {\tt moveA}.  Once the forces and
119 > $\mathsf{Q}$ is calculated in {\tt moveA}.  Once the forces and
120   torques have been obtained at the new time step, the velocities can
121   be advanced to the same time value.
122  
# Line 167 | Line 168 | The Nos\'e-Hoover equations of motion are given by\cit
168   \begin{eqnarray}
169   \dot{{\bf r}} & = & {\bf v}, \\
170   \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
171 < \dot{\mathsf{A}} & = & \mathsf{A} \cdot
171 > \dot{\mathsf{Q}} & = & \mathsf{Q} \cdot
172   \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\
173   \dot{{\bf j}} & = & {\bf j} \times \left(
174   \overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j} \right) - \mbox{
175 < rot}\left(\mathsf{A}^{T} \cdot \frac{\partial V}{\partial
176 < \mathsf{A}} \right) - \chi {\bf j}. \label{eq:nosehoovereom}
175 > rot}\left(\mathsf{Q}^{T} \cdot \frac{\partial V}{\partial
176 > \mathsf{Q}} \right) - \chi {\bf j}. \label{eq:nosehoovereom}
177   \end{eqnarray}
178   $\chi$ is an ``extra'' variable included in the extended system, and
179   it is propagated using the first order equation of motion
# Line 180 | Line 181 | The instantaneous temperature $T$ is proportional to t
181   \dot{\chi} = \frac{1}{\tau_{T}^2} \left(
182   \frac{T}{T_{\mathrm{target}}} - 1 \right). \label{eq:nosehooverext}
183   \end{equation}
184 < The instantaneous temperature $T$ is proportional to the total
185 < kinetic energy (both translational and orientational) and is given
186 < by
184 > where $\tau_T$ is the time constant for relaxation of the
185 > temperature to the target value, and the instantaneous temperature
186 > $T$ is given by
187   \begin{equation}
188   T = \frac{2 K}{f k_B}.
189   \end{equation}
# Line 191 | Line 192 | orientational degrees of freedom, and $K$ is the total
192   f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}},
193   \end{equation}
194   where $N_{\mathrm{orient}}$ is the number of molecules with
195 < orientational degrees of freedom, and $K$ is the total kinetic
196 < energy,
196 < \begin{equation}
197 < K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
198 < \sum_{i=1}^{N_{\mathrm{orient}}}  \frac{1}{2} {\bf j}_i^T \cdot
199 < \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i.
200 < \end{equation}
201 < In Eq.~\ref{eq:nosehooverext}, $\tau_T$ is the time constant for
202 < relaxation of the temperature to the target value. The integration
203 < of the equations of motion is carried out in a velocity-Verlet style
204 < 2 part algorithm:
195 > orientational degrees of freedom. The integration of the equations of motion
196 > is carried out in a velocity-Verlet style 2 part algorithm:
197  
198   {\tt moveA:}
199   \begin{align*}
# Line 218 | Line 210 | T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\b
210      + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
211      \chi(t) \right) ,\\
212   %
213 < \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}
213 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}
214      \left(h * {\bf j}(t + h / 2)
215      \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\
216   %
# Line 227 | Line 219 | Here $\mathrm{rotate}(h * {\bf j}
219      {T_{\mathrm{target}}} - 1 \right) .
220   \end{align*}
221   Here $\mathrm{rotate}(h * {\bf j}
222 < \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic
223 < Trotter factorization of the three rotation operations that was
224 < discussed in the section on the DLM integrator.  Note that this
225 < operation modifies both the rotation matrix $\mathsf{A}$ and the
226 < angular momentum ${\bf j}$.  {\tt moveA} propagates velocities by a
227 < half time step, and positional degrees of freedom by a full time
228 < step.  The new positions (and orientations) are then used to
229 < calculate a new set of forces and torques in exactly the same way
230 < they are calculated in the {\tt doForces} portion of the DLM
231 < integrator. Once the forces and torques have been obtained at the
232 < new time step, the temperature, velocities, and the extended system
233 < variable can be advanced to the same time value.
222 > \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic Strang
223 > factorization of the three rotation operations that was discussed in
224 > the section on the DLM integrator.  Note that this operation
225 > modifies both the rotation matrix $\mathsf{Q}$ and the angular
226 > momentum ${\bf j}$.  {\tt moveA} propagates velocities by a half
227 > time step, and positional degrees of freedom by a full time step.
228 > The new positions (and orientations) are then used to calculate a
229 > new set of forces and torques in exactly the same way they are
230 > calculated in the {\tt doForces} portion of the DLM integrator. Once
231 > the forces and torques have been obtained at the new time step, the
232 > temperature, velocities, and the extended system variable can be
233 > advanced to the same time value.
234  
235   {\tt moveB:}
236   \begin{align*}
# Line 272 | Line 264 | $H_{\mathrm{NVT}}$, so the conserved quantity is maint
264   dt^\prime \right).
265   \end{equation}
266   Poor choices of $h$ or $\tau_T$ can result in non-conservation of
267 < $H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the
268 < last column of the {\tt .stat} file to allow checks on the quality
277 < of the integration.
267 > $H_{\mathrm{NVT}}$, so the conserved quantity should be checked
268 > periodically to verify the quality of the integration.
269  
270   \subsection{\label{methodSection:NPTi}Constant-pressure integration with
271   isotropic box (NPTi)}
# Line 285 | Line 276 | Nos\'e-Hoover-Andersen equations of motion\cite{Melchi
276   \begin{eqnarray}
277   \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
278   \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
279 < \dot{\mathsf{A}} & = & \mathsf{A} \cdot
279 > \dot{\mathsf{Q}} & = & \mathsf{Q} \cdot
280   \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
281   \dot{{\bf j}} & = & {\bf j} \times \left(
282   \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
283 < rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
284 < V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\
283 > rot}\left(\mathsf{Q}^{T} \cdot \frac{\partial
284 > V}{\partial \mathsf{Q}} \right) - \chi {\bf j}, \\
285   \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
286   \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
287   \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V
# Line 351 | Line 342 | P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\b
342      + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
343      \chi(t) \right), \\
344   %
345 < \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
345 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left(h *
346      {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
347      \right) ,\\
348   %
# Line 427 | Line 418 | Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can
418   \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
419   dt^\prime \right) + P_{\mathrm{target}} \mathcal{V}(t).
420   \end{equation}
421 < Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can result in
422 < non-conservation of $H_{\mathrm{NPTi}}$, so the conserved quantity
423 < is maintained in the last column of the {\tt .stat} file to allow
433 < checks on the quality of the integration.  It is also known that
434 < this algorithm samples the equilibrium distribution for the enthalpy
435 < (including contributions for the thermostat and barostat),
421 > It is also known that this algorithm samples the equilibrium
422 > distribution for the enthalpy (including contributions for the
423 > thermostat and barostat),
424   \begin{equation}
425   H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2}
426   \left( \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) +
# Line 453 | Line 441 | method are
441   \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
442   \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
443   \chi \cdot \mathsf{1}) {\bf v}, \\
444 < \dot{\mathsf{A}} & = & \mathsf{A} \cdot
444 > \dot{\mathsf{Q}} & = & \mathsf{Q} \cdot
445   \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
446   \dot{{\bf j}} & = & {\bf j} \times \left(
447   \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
448 < rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
449 < V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\
448 > rot}\left(\mathsf{Q}^{T} \cdot \frac{\partial
449 > V}{\partial \mathsf{Q}} \right) - \chi {\bf j} ,\\
450   \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
451   \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
452   \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
# Line 491 | Line 479 | r}(t)\right\},
479      + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
480      \chi(t) \right), \\
481   %
482 < \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
482 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left(h *
483      {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
484      \right), \\
485   %
# Line 571 | Line 559 | surrounding media. One quantity to describe the interf
559   functions in biological membrane system ultimately relies on
560   structure and dynamics of lipid bilayers, which are strongly
561   affected by the interfacial interaction between lipid molecules and
562 < surrounding media. One quantity to describe the interfacial
563 < interaction is so called the average surface area per lipid.
562 > surrounding media. One quantity used to describe the interfacial
563 > interaction is the average surface area per lipid.
564   Constant area and constant lateral pressure simulations can be
565   achieved by extending the standard NPT ensemble with a different
566   pressure control strategy
# Line 597 | Line 585 | eliminate the edge effect of the membrane simulation,
585   minimum with respect to surface area $A$, $\gamma  = \frac{{\partial
586   G}}{{\partial A}}.$ However, a surface tension of zero is not
587   appropriate for relatively small patches of membrane. In order to
588 < eliminate the edge effect of the membrane simulation, a special
588 > eliminate the edge effect of membrane simulations, a special
589   ensemble, NP$\gamma$T, has been proposed to maintain the lateral
590   surface tension and normal pressure. The equation of motion for the
591   cell size control tensor, $\eta$, in $NP\gamma T$ is

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines