ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Methodology.tex
(Generate patch)

Comparing trunk/tengDissertation/Methodology.tex (file contents):
Revision 2685 by tim, Mon Apr 3 18:07:54 2006 UTC vs.
Revision 2914 by tim, Fri Jun 30 14:35:34 2006 UTC

# Line 2 | Line 2
2  
3   \section{\label{methodSection:rigidBodyIntegrators}Integrators for Rigid Body Motion in Molecular Dynamics}
4  
5 < \section{\label{methodSection:conservedQuantities}Integrators to Conserve Properties in Special Ensembles}
5 > In order to mimic experiments which are usually performed under
6 > constant temperature and/or pressure, extended Hamiltonian system
7 > methods have been developed to generate statistical ensembles, such
8 > as the canonical and isobaric-isothermal ensembles. In addition to
9 > the standard ensemble, specific ensembles have been developed to
10 > account for the anisotropy between the lateral and normal directions
11 > of membranes. The $NPAT$ ensemble, in which the normal pressure and
12 > the lateral surface area of the membrane are kept constant, and the
13 > $NP\gamma T$ ensemble, in which the normal pressure and the lateral
14 > surface tension are kept constant were proposed to address the
15 > issues.
16  
17 < \section{\label{methodSection:hydrodynamics}Hydrodynamics}
17 > Integration schemes for the rotational motion of the rigid molecules
18 > in the microcanonical ensemble have been extensively studied over
19 > the last two decades. Matubayasi developed a
20 > time-reversible integrator for rigid bodies in quaternion
21 > representation\cite{Matubayasi1999}. Although it is not symplectic, this integrator still
22 > demonstrates a better long-time energy conservation than Euler angle
23 > methods because of the time-reversible nature. Extending the
24 > Trotter-Suzuki factorization to general system with a flat phase
25 > space, Miller\cite{Miller2002} and his colleagues devised a novel
26 > symplectic, time-reversible and volume-preserving integrator in the
27 > quaternion representation, which was shown to be superior to the
28 > Matubayasi's time-reversible integrator. However, all of the
29 > integrators in the quaternion representation suffer from the
30 > computational penalty of constructing a rotation matrix from
31 > quaternions to evolve coordinates and velocities at every time step.
32 > An alternative integration scheme utilizing the rotation matrix
33 > directly proposed by Dullweber, Leimkuhler and McLachlan (DLM) also
34 > preserved the same structural properties of the Hamiltonian
35 > propagator\cite{Dullweber1997}. In this section, the integration
36 > scheme of DLM method will be reviewed and extended to other
37 > ensembles.
38  
39 < \section{\label{methodSection:langevin}Integrators for Langevin Dynamics of Rigid Bodies}
39 > \subsection{\label{methodSection:DLM}Integrating the Equations of Motion: the
40 > DLM method}
41  
42 < \section{\label{methodSection:coarseGrained}Coarse-Grained Modeling}
42 > The DLM method uses a Trotter factorization of the orientational
43 > propagator.  This has three effects:
44 > \begin{enumerate}
45 > \item the integrator is area-preserving in phase space (i.e. it is
46 > {\it symplectic}),
47 > \item the integrator is time-{\it reversible}, making it suitable for Hybrid
48 > Monte Carlo applications, and
49 > \item the error for a single time step is of order $\mathcal{O}\left(h^3\right)$
50 > for timesteps of length $h$.
51 > \end{enumerate}
52 > The integration of the equations of motion is carried out in a
53 > velocity-Verlet style 2-part algorithm, where $h= \delta t$:
54  
55 < \section{\label{methodSection:moleculeScale}Molecular-Scale Modeling}
55 > {\tt moveA:}
56 > \begin{align*}
57 > {\bf v}\left(t + h / 2\right)  &\leftarrow  {\bf v}(t)
58 >    + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
59 > %
60 > {\bf r}(t + h) &\leftarrow {\bf r}(t)
61 >    + h  {\bf v}\left(t + h / 2 \right), \\
62 > %
63 > {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
64 >    + \frac{h}{2} {\bf \tau}^b(t), \\
65 > %
66 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
67 >    (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
68 > \end{align*}
69 > In this context, the $\mathrm{rotate}$ function is the reversible
70 > product of the three body-fixed rotations,
71 > \begin{equation}
72 > \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
73 > \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
74 > / 2) \cdot \mathsf{G}_x(a_x /2),
75 > \end{equation}
76 > where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
77 > rotates both the rotation matrix $\mathsf{Q}$ and the body-fixed
78 > angular momentum ${\bf j}$ by an angle $\theta$ around body-fixed
79 > axis $\alpha$,
80 > \begin{equation}
81 > \mathsf{G}_\alpha( \theta ) = \left\{
82 > \begin{array}{lcl}
83 > \mathsf{Q}(t) & \leftarrow & \mathsf{Q}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
84 > {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
85 > j}(0).
86 > \end{array}
87 > \right.
88 > \end{equation}
89 > $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
90 > rotation matrix.  For example, in the small-angle limit, the
91 > rotation matrix around the body-fixed x-axis can be approximated as
92 > \begin{equation}
93 > \mathsf{R}_x(\theta) \approx \left(
94 > \begin{array}{ccc}
95 > 1 & 0 & 0 \\
96 > 0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4}  & -\frac{\theta}{1+
97 > \theta^2 / 4} \\
98 > 0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
99 > \theta^2 / 4}
100 > \end{array}
101 > \right).
102 > \end{equation}
103 > All other rotations follow in a straightforward manner. After the
104 > first part of the propagation, the forces and body-fixed torques are
105 > calculated at the new positions and orientations
106 >
107 > {\tt doForces:}
108 > \begin{align*}
109 > {\bf f}(t + h) &\leftarrow
110 >    - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
111 > %
112 > {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
113 >    \times (\frac{\partial V}{\partial {\bf u}})_{u(t+h)}, \\
114 > %
115 > {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{Q}(t + h)
116 >    \cdot {\bf \tau}^s(t + h).
117 > \end{align*}
118 > ${\bf u}$ is automatically updated when the rotation matrix
119 > $\mathsf{Q}$ is calculated in {\tt moveA}.  Once the forces and
120 > torques have been obtained at the new time step, the velocities can
121 > be advanced to the same time value.
122 >
123 > {\tt moveB:}
124 > \begin{align*}
125 > {\bf v}\left(t + h \right)  &\leftarrow  {\bf v}\left(t + h / 2
126 > \right)
127 >    + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
128 > %
129 > {\bf j}\left(t + h \right)  &\leftarrow {\bf j}\left(t + h / 2
130 > \right)
131 >    + \frac{h}{2} {\bf \tau}^b(t + h) .
132 > \end{align*}
133 > The matrix rotations used in the DLM method end up being more costly
134 > computationally than the simpler arithmetic quaternion propagation.
135 > With the same time step, a 1000-molecule water simulation shows an
136 > average 7\% increase in computation time using the DLM method in
137 > place of quaternions. This cost is more than justified when
138 > comparing the energy conservation of the two methods as illustrated
139 > in Fig.~\ref{methodFig:timestep} where the resulting energy drifts at
140 > various time steps for both the DLM and quaternion integration
141 > schemes are compared. All of the 1000 molecule water simulations
142 > started with the same configuration, and the only difference was the
143 > method for handling rotational motion. At time steps of 0.1 and 0.5
144 > fs, both methods for propagating molecule rotation conserve energy
145 > fairly well, with the quaternion method showing a slight energy
146 > drift over time in the 0.5 fs time step simulation. At time steps of
147 > 1 and 2 fs, the energy conservation benefits of the DLM method are
148 > clearly demonstrated. Thus, while maintaining the same degree of
149 > energy conservation, one can take considerably longer time steps,
150 > leading to an overall reduction in computation time.
151 >
152 > \begin{figure}
153 > \centering
154 > \includegraphics[width=\linewidth]{timeStep.eps}
155 > \caption[Energy conservation for quaternion versus DLM
156 > dynamics]{Energy conservation using quaternion based integration
157 > versus the method proposed by Dullweber \emph{et al.} with
158 > increasing time step. For each time step, the dotted line is total
159 > energy using the DLM integrator, and the solid line comes from the
160 > quaternion integrator. The larger time step plots are shifted up
161 > from the true energy baseline for clarity.}
162 > \label{methodFig:timestep}
163 > \end{figure}
164 >
165 > \subsection{\label{methodSection:NVT}Nos\'{e}-Hoover Thermostatting}
166 >
167 > The Nos\'e-Hoover equations of motion are given by\cite{Hoover1985}
168 > \begin{eqnarray}
169 > \dot{{\bf r}} & = & {\bf v}, \\
170 > \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
171 > \dot{\mathsf{Q}} & = & \mathsf{Q} \cdot
172 > \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\
173 > \dot{{\bf j}} & = & {\bf j} \times \left(
174 > \overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j} \right) - \mbox{
175 > rot}\left(\mathsf{Q}^{T} \cdot \frac{\partial V}{\partial
176 > \mathsf{Q}} \right) - \chi {\bf j}. \label{eq:nosehoovereom}
177 > \end{eqnarray}
178 > $\chi$ is an ``extra'' variable included in the extended system, and
179 > it is propagated using the first order equation of motion
180 > \begin{equation}
181 > \dot{\chi} = \frac{1}{\tau_{T}^2} \left(
182 > \frac{T}{T_{\mathrm{target}}} - 1 \right). \label{eq:nosehooverext}
183 > \end{equation}
184 > where $\tau_T$ is the time constant for relaxation of the
185 > temperature to the target value, and the instantaneous temperature
186 > $T$ is given by
187 > \begin{equation}
188 > T = \frac{2 K}{f k_B}.
189 > \end{equation}
190 > Here, $f$ is the total number of degrees of freedom in the system,
191 > \begin{equation}
192 > f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}},
193 > \end{equation}
194 > where $N_{\mathrm{orient}}$ is the number of molecules with
195 > orientational degrees of freedom. The integration of the equations of motion
196 > is carried out in a velocity-Verlet style 2 part algorithm:
197 >
198 > {\tt moveA:}
199 > \begin{align*}
200 > T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
201 > %
202 > {\bf v}\left(t + h / 2\right)  &\leftarrow {\bf v}(t)
203 >    + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
204 >    \chi(t)\right), \\
205 > %
206 > {\bf r}(t + h) &\leftarrow {\bf r}(t)
207 >    + h {\bf v}\left(t + h / 2 \right) ,\\
208 > %
209 > {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
210 >    + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
211 >    \chi(t) \right) ,\\
212 > %
213 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}
214 >    \left(h {\bf j}(t + h / 2)
215 >    \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\
216 > %
217 > \chi\left(t + h / 2 \right) &\leftarrow \chi(t)
218 >    + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}
219 >    {T_{\mathrm{target}}} - 1 \right) .
220 > \end{align*}
221 > Here $\mathrm{rotate}(h * {\bf j}
222 > \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic Strang
223 > factorization of the three rotation operations that was discussed in
224 > the section on the DLM integrator.  Note that this operation
225 > modifies both the rotation matrix $\mathsf{Q}$ and the angular
226 > momentum ${\bf j}$.  {\tt moveA} propagates velocities by a half
227 > time step, and positional degrees of freedom by a full time step.
228 > The new positions (and orientations) are then used to calculate a
229 > new set of forces and torques in exactly the same way they are
230 > calculated in the {\tt doForces} portion of the DLM integrator. Once
231 > the forces and torques have been obtained at the new time step, the
232 > temperature, velocities, and the extended system variable can be
233 > advanced to the same time value.
234 >
235 > {\tt moveB:}
236 > \begin{align*}
237 > T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
238 >    \left\{{\bf j}(t + h)\right\}, \\
239 > %
240 > \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
241 >    2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
242 >    {T_{\mathrm{target}}} - 1 \right), \\
243 > %
244 > {\bf v}\left(t + h \right)  &\leftarrow {\bf v}\left(t
245 >    + h / 2 \right) + \frac{h}{2} \left(
246 >    \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
247 >    \chi(t h)\right) ,\\
248 > %
249 > {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
250 >    + h / 2 \right) + \frac{h}{2}
251 >    \left( {\bf \tau}^b(t + h) - {\bf j}(t + h)
252 >    \chi(t + h) \right) .
253 > \end{align*}
254 > Since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required to
255 > caclculate $T(t + h)$ as well as $\chi(t + h)$, they indirectly
256 > depend on their own values at time $t + h$.  {\tt moveB} is
257 > therefore done in an iterative fashion until $\chi(t + h)$ becomes
258 > self-consistent. The Nos\'e-Hoover algorithm is known to conserve a
259 > Hamiltonian for the extended system that is, to within a constant,
260 > identical to the Helmholtz free energy,\cite{Melchionna1993}
261 > \begin{equation}
262 > H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
263 > \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
264 > dt^\prime \right).
265 > \end{equation}
266 > Poor choices of $h$ or $\tau_T$ can result in non-conservation of
267 > $H_{\mathrm{NVT}}$, so the conserved quantity should be checked
268 > periodically to verify the quality of the integration.
269 >
270 > \subsection{\label{methodSection:NPTi}Constant-pressure integration with
271 > isotropic box (NPTi)}
272 >
273 > We can used an isobaric-isothermal ensemble integrator which is
274 > implemented using the Melchionna modifications to the
275 > Nos\'e-Hoover-Andersen equations of motion\cite{Melchionna1993}
276 > \begin{eqnarray}
277 > \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
278 > \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
279 > \dot{\mathsf{Q}} & = & \mathsf{Q} \cdot
280 > \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
281 > \dot{{\bf j}} & = & {\bf j} \times \left(
282 > \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
283 > rot}\left(\mathsf{Q}^{T} \cdot \frac{\partial
284 > V}{\partial \mathsf{Q}} \right) - \chi {\bf j}, \\
285 > \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
286 > \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
287 > \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V
288 > \left( P -
289 > P_{\mathrm{target}} \right), \\
290 > \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta . \label{eq:melchionna1}
291 > \end{eqnarray}
292 > $\chi$ and $\eta$ are the ``extra'' degrees of freedom in the
293 > extended system.  $\chi$ is a thermostat, and it has the same
294 > function as it does in the Nos\'e-Hoover NVT integrator.  $\eta$ is
295 > a barostat which controls changes to the volume of the simulation
296 > box.  ${\bf R}_0$ is the location of the center of mass for the
297 > entire system, and $\mathcal{V}$ is the volume of the simulation
298 > box.  At any time, the volume can be calculated from the determinant
299 > of the matrix which describes the box shape:
300 > \begin{equation}
301 > \mathcal{V} = \det(\mathsf{H}).
302 > \end{equation}
303 >
304 > The NPTi integrator requires an instantaneous pressure. This
305 > quantity is calculated via the pressure tensor,
306 > \begin{equation}
307 > \overleftrightarrow{\mathsf{P}}(t) = \frac{1}{\mathcal{V}(t)} \left(
308 > \sum_{i=1}^{N} m_i {\bf v}_i(t) \otimes {\bf v}_i(t) \right) +
309 > \overleftrightarrow{\mathsf{W}}(t).
310 > \end{equation}
311 > The kinetic contribution to the pressure tensor utilizes the {\it
312 > outer} product of the velocities denoted by the $\otimes$ symbol.
313 > The stress tensor is calculated from another outer product of the
314 > inter-atomic separation vectors (${\bf r}_{ij} = {\bf r}_j - {\bf
315 > r}_i$) with the forces between the same two atoms,
316 > \begin{equation}
317 > \overleftrightarrow{\mathsf{W}}(t) = \sum_{i} \sum_{j>i} {\bf
318 > r}_{ij}(t) \otimes {\bf f}_{ij}(t).
319 > \end{equation}
320 > The instantaneous pressure is then simply obtained from the trace of
321 > the Pressure tensor,
322 > \begin{equation}
323 > P(t) = \frac{1}{3} \mathrm{Tr} \left(
324 > \overleftrightarrow{\mathsf{P}}(t) \right) .
325 > \end{equation}
326 > In Eq.~\ref{eq:melchionna1}, $\tau_B$ is the time constant for
327 > relaxation of the pressure to the target value. Like in the NVT
328 > integrator, the integration of the equations of motion is carried
329 > out in a velocity-Verlet style 2 part algorithm:
330 >
331 > {\tt moveA:}
332 > \begin{align*}
333 > T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
334 > %
335 > P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\} ,\\
336 > %
337 > {\bf v}\left(t + h / 2\right)  &\leftarrow {\bf v}(t)
338 >    + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
339 >    \left(\chi(t) + \eta(t) \right) \right), \\
340 > %
341 > {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
342 >    + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
343 >    \chi(t) \right), \\
344 > %
345 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left(h *
346 >    {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
347 >    \right) ,\\
348 > %
349 > \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
350 >    \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
351 >    \right) ,\\
352 > %
353 > \eta(t + h / 2) &\leftarrow \eta(t) + \frac{h
354 >    \mathcal{V}(t)}{2 N k_B T(t) \tau_B^2} \left( P(t)
355 >    - P_{\mathrm{target}} \right), \\
356 > %
357 > {\bf r}(t + h) &\leftarrow {\bf r}(t) + h
358 >    \left\{ {\bf v}\left(t + h / 2 \right)
359 >    + \eta(t + h / 2)\left[ {\bf r}(t + h)
360 >    - {\bf R}_0 \right] \right\} ,\\
361 > %
362 > \mathsf{H}(t + h) &\leftarrow e^{-h \eta(t + h / 2)}
363 >    \mathsf{H}(t).
364 > \end{align*}
365 > Most of these equations are identical to their counterparts in the
366 > NVT integrator, but the propagation of positions to time $t + h$
367 > depends on the positions at the same time. The simulation box
368 > $\mathsf{H}$ is scaled uniformly for one full time step by an
369 > exponential factor that depends on the value of $\eta$ at time $t +
370 > h / 2$.  Reshaping the box uniformly also scales the volume of the
371 > box by
372 > \begin{equation}
373 > \mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}.
374 > \mathcal{V}(t)
375 > \end{equation}
376 > The {\tt doForces} step for the NPTi integrator is exactly the same
377 > as in both the DLM and NVT integrators.  Once the forces and torques
378 > have been obtained at the new time step, the velocities can be
379 > advanced to the same time value.
380 >
381 > {\tt moveB:}
382 > \begin{align*}
383 > T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
384 >    \left\{{\bf j}(t + h)\right\} ,\\
385 > %
386 > P(t + h) &\leftarrow  \left\{{\bf r}(t + h)\right\},
387 >    \left\{{\bf v}(t + h)\right\}, \\
388 > %
389 > \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
390 >    2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
391 >    {T_{\mathrm{target}}} - 1 \right), \\
392 > %
393 > \eta(t + h) &\leftarrow \eta(t + h / 2) +
394 >    \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
395 >    \tau_B^2} \left( P(t + h) - P_{\mathrm{target}} \right), \\
396 > %
397 > {\bf v}\left(t + h \right)  &\leftarrow {\bf v}\left(t
398 >    + h / 2 \right) + \frac{h}{2} \left(
399 >    \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
400 >    (\chi(t + h) + \eta(t + h)) \right) ,\\
401 > %
402 > {\bf j}\left(t + h \right)  &\leftarrow {\bf j}\left(t
403 >    + h / 2 \right) + \frac{h}{2} \left( {\bf
404 >    \tau}^b(t + h) - {\bf j}(t + h)
405 >    \chi(t + h) \right) .
406 > \end{align*}
407 > Once again, since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required
408 > to caclculate $T(t + h)$, $P(t + h)$, $\chi(t + h)$, and $\eta(t +
409 > h)$, they indirectly depend on their own values at time $t + h$.
410 > {\tt moveB} is therefore done in an iterative fashion until $\chi(t
411 > + h)$ and $\eta(t + h)$ become self-consistent.
412 >
413 > The Melchionna modification of the Nos\'e-Hoover-Andersen algorithm
414 > is known to conserve a Hamiltonian for the extended system that is,
415 > to within a constant, identical to the Gibbs free energy,
416 > \begin{equation}
417 > H_{\mathrm{NPTi}} = V + K + f k_B T_{\mathrm{target}} \left(
418 > \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
419 > dt^\prime \right) + P_{\mathrm{target}} \mathcal{V}(t).
420 > \end{equation}
421 > It is also known that this algorithm samples the equilibrium
422 > distribution for the enthalpy (including contributions for the
423 > thermostat and barostat),
424 > \begin{equation}
425 > H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2}
426 > \left( \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) +
427 > P_{\mathrm{target}} \mathcal{V}(t).
428 > \end{equation}
429 >
430 > \subsection{\label{methodSection:NPTf}Constant-pressure integration with a
431 > flexible box (NPTf)}
432 >
433 > There is a relatively simple generalization of the
434 > Nos\'e-Hoover-Andersen method to include changes in the simulation
435 > box {\it shape} as well as in the volume of the box.  This method
436 > utilizes the full $3 \times 3$ pressure tensor and introduces a
437 > tensor of extended variables ($\overleftrightarrow{\eta}$) to
438 > control changes to the box shape.  The equations of motion for this
439 > method are
440 > \begin{eqnarray}
441 > \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
442 > \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
443 > \chi \cdot \mathsf{1}) {\bf v}, \\
444 > \dot{\mathsf{Q}} & = & \mathsf{Q} \cdot
445 > \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
446 > \dot{{\bf j}} & = & {\bf j} \times \left(
447 > \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
448 > rot}\left(\mathsf{Q}^{T} \cdot \frac{\partial
449 > V}{\partial \mathsf{Q}} \right) - \chi {\bf j} ,\\
450 > \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
451 > \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
452 > \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
453 > T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) ,\\
454 > \dot{\mathsf{H}} & = &  \overleftrightarrow{\eta} \cdot \mathsf{H} .
455 > \label{eq:melchionna2}
456 > \end{eqnarray}
457 >
458 > Here, $\mathsf{1}$ is the unit matrix and
459 > $\overleftrightarrow{\mathsf{P}}$ is the pressure tensor.  Again,
460 > the volume, $\mathcal{V} = \det \mathsf{H}$.
461 >
462 > The propagation of the equations of motion is nearly identical to
463 > the NPTi integration:
464 >
465 > {\tt moveA:}
466 > \begin{align*}
467 > T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
468 > %
469 > \overleftrightarrow{\mathsf{P}}(t) &\leftarrow \left\{{\bf
470 > r}(t)\right\},
471 >    \left\{{\bf v}(t)\right\} ,\\
472 > %
473 > {\bf v}\left(t + h / 2\right)  &\leftarrow {\bf v}(t)
474 >    + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} -
475 >    \left(\chi(t)\mathsf{1} + \overleftrightarrow{\eta}(t) \right) \cdot
476 >    {\bf v}(t) \right), \\
477 > %
478 > {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
479 >    + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
480 >    \chi(t) \right), \\
481 > %
482 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left(h *
483 >    {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
484 >    \right), \\
485 > %
486 > \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
487 >    \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}}
488 >    - 1 \right), \\
489 > %
490 > \overleftrightarrow{\eta}(t + h / 2) &\leftarrow
491 >    \overleftrightarrow{\eta}(t) + \frac{h \mathcal{V}(t)}{2 N k_B
492 >    T(t) \tau_B^2} \left( \overleftrightarrow{\mathsf{P}}(t)
493 >    - P_{\mathrm{target}}\mathsf{1} \right), \\
494 > %
495 > {\bf r}(t + h) &\leftarrow {\bf r}(t) + h \left\{ {\bf v}
496 >    \left(t + h / 2 \right) + \overleftrightarrow{\eta}(t +
497 >    h / 2) \cdot \left[ {\bf r}(t + h)
498 >    - {\bf R}_0 \right] \right\}, \\
499 > %
500 > \mathsf{H}(t + h) &\leftarrow \mathsf{H}(t) \cdot e^{-h
501 >    \overleftrightarrow{\eta}(t + h / 2)} .
502 > \end{align*}
503 > Here, a power series expansion truncated at second order for the
504 > exponential operation is used to scale the simulation box. The {\tt
505 > moveB} portion of the algorithm is largely unchanged from the NPTi
506 > integrator:
507 >
508 > {\tt moveB:}
509 > \begin{align*}
510 > T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
511 >    \left\{{\bf j}(t + h)\right\}, \\
512 > %
513 > \overleftrightarrow{\mathsf{P}}(t + h) &\leftarrow \left\{{\bf r}
514 >    (t + h)\right\}, \left\{{\bf v}(t
515 >    + h)\right\}, \left\{{\bf f}(t + h)\right\} ,\\
516 > %
517 > \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
518 >    2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+
519 >    h)}{T_{\mathrm{target}}} - 1 \right), \\
520 > %
521 > \overleftrightarrow{\eta}(t + h) &\leftarrow
522 >    \overleftrightarrow{\eta}(t + h / 2) +
523 >    \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
524 >    \tau_B^2} \left( \overleftrightarrow{P}(t + h)
525 >    - P_{\mathrm{target}}\mathsf{1} \right) ,\\
526 > %
527 > {\bf v}\left(t + h \right)  &\leftarrow {\bf v}\left(t
528 >    + h / 2 \right) + \frac{h}{2} \left(
529 >    \frac{{\bf f}(t + h)}{m} -
530 >    (\chi(t + h)\mathsf{1} + \overleftrightarrow{\eta}(t
531 >    + h)) \right) \cdot {\bf v}(t + h), \\
532 > %
533 > {\bf j}\left(t + h \right)  &\leftarrow {\bf j}\left(t
534 >    + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t
535 >    + h) - {\bf j}(t + h) \chi(t + h) \right) .
536 > \end{align*}
537 > The iterative schemes for both {\tt moveA} and {\tt moveB} are
538 > identical to those described for the NPTi integrator. The NPTf
539 > integrator is known to conserve the following Hamiltonian:
540 > \begin{eqnarray*}
541 > H_{\mathrm{NPTf}} & = & V + K + f k_B T_{\mathrm{target}} \left(
542 > \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
543 > dt^\prime \right) \\
544 > & & + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f k_B
545 > T_{\mathrm{target}}}{2}
546 > \mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2.
547 > \end{eqnarray*}
548 > This integrator must be used with care, particularly in liquid
549 > simulations.  Liquids have very small restoring forces in the
550 > off-diagonal directions, and the simulation box can very quickly
551 > form elongated and sheared geometries which become smaller than the
552 > electrostatic or Lennard-Jones cutoff radii.  The NPTf integrator
553 > finds most use in simulating crystals or liquid crystals which
554 > assume non-orthorhombic geometries.
555 >
556 > \subsection{\label{methodSection:NPAT}NPAT Ensemble}
557 >
558 > A comprehensive understanding of relations between structures and
559 > functions in biological membrane system ultimately relies on
560 > structure and dynamics of lipid bilayers, which are strongly
561 > affected by the interfacial interaction between lipid molecules and
562 > surrounding media. One quantity used to describe the interfacial
563 > interaction is the average surface area per lipid.
564 > Constant area and constant lateral pressure simulations can be
565 > achieved by extending the standard NPT ensemble with a different
566 > pressure control strategy
567 >
568 > \begin{equation}
569 > \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
570 >                  \frac{{V(P_{\alpha \beta }  - P_{{\rm{target}}} )}}{{\tau_{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}} }}
571 >                  & \mbox{if $ \alpha = \beta  = z$}\\
572 >                  0 & \mbox{otherwise}\\
573 >           \end{array}
574 >    \right.
575 > \end{equation}
576 > Note that the iterative schemes for NPAT are identical to those
577 > described for the NPTi integrator.
578 >
579 > \subsection{\label{methodSection:NPrT}NP$\gamma$T
580 > Ensemble}
581 >
582 > Theoretically, the surface tension $\gamma$ of a stress free
583 > membrane system should be zero since its surface free energy $G$ is
584 > minimum with respect to surface area $A$,
585 > \begin{equation}
586 > \gamma  = \frac{{\partial G}}{{\partial A}}.
587 > \end{equation}0
588 > However, a surface tension of zero is not
589 > appropriate for relatively small patches of membrane. In order to
590 > eliminate the edge effect of membrane simulations, a special
591 > ensemble, NP$\gamma$T, has been proposed to maintain the lateral
592 > surface tension and normal pressure. The equation of motion for the
593 > cell size control tensor, $\eta$, in $NP\gamma T$ is
594 > \begin{equation}
595 > \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
596 >    - A_{xy} (\gamma _\alpha   - \gamma _{{\rm{target}}} ) & \mbox{$\alpha  = \beta  = x$ or $\alpha  = \beta  = y$}\\
597 >    \frac{{V(P_{\alpha \beta }  - P_{{\rm{target}}} )}}{{\tau _{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}}}} & \mbox{$\alpha  = \beta  = z$} \\
598 >    0 & \mbox{$\alpha  \ne \beta$} \\
599 >       \end{array}
600 >    \right.
601 > \end{equation}
602 > where $ \gamma _{{\rm{target}}}$ is the external surface tension and
603 > the instantaneous surface tensor $\gamma _\alpha$ is given by
604 > \begin{equation}
605 > \gamma _\alpha   =  - h_z( \overleftrightarrow{P} _{\alpha \alpha }
606 > - P_{{\rm{target}}} )
607 > \label{methodEquation:instantaneousSurfaceTensor}
608 > \end{equation}
609 > There is one additional extended system integrator (NPTxyz), in
610 > which each attempt to preserve the target pressure along the box
611 > walls perpendicular to that particular axis.  The lengths of the box
612 > axes are allowed to fluctuate independently, but the angle between
613 > the box axes does not change. It should be noted that the NPTxyz
614 > integrator is a special case of $NP\gamma T$ if the surface tension
615 > $\gamma$ is set to zero, and if $x$ and $y$ can move independently.
616 >
617 > \section{\label{methodSection:zcons}The Z-Constraint Method}
618 >
619 > Based on the fluctuation-dissipation theorem, a force
620 > auto-correlation method was developed by Roux and Karplus to
621 > investigate the dynamics of ions inside ion channels\cite{Roux1991}.
622 > The time-dependent friction coefficient can be calculated from the
623 > deviation of the instantaneous force from its mean force.
624 > \begin{equation}
625 > \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T,
626 > \end{equation}
627 > where%
628 > \begin{equation}
629 > \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle.
630 > \end{equation}
631 > If the time-dependent friction decays rapidly, the static friction
632 > coefficient can be approximated by
633 > \begin{equation}
634 > \xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta
635 > F(z,0)\rangle dt.
636 > \end{equation}
637 > Allowing diffusion constant to then be calculated through the
638 > Einstein relation:\cite{Marrink1994}
639 > \begin{equation}
640 > D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
641 > }\langle\delta F(z,t)\delta F(z,0)\rangle dt}.%
642 > \end{equation}
643 > The Z-Constraint method, which fixes the z coordinates of the
644 > molecules with respect to the center of the mass of the system, has
645 > been a method suggested to obtain the forces required for the force
646 > auto-correlation calculation.\cite{Marrink1994} However, simply
647 > resetting the coordinate will move the center of the mass of the
648 > whole system. To avoid this problem, we reset the forces of
649 > z-constrained molecules as well as subtract the total constraint
650 > forces from the rest of the system after the force calculation at
651 > each time step instead of resetting the coordinate. After the force
652 > calculation, we define $G_\alpha$ as
653 > \begin{equation}
654 > G_{\alpha} = \sum_i F_{\alpha i}, \label{oopseEq:zc1}
655 > \end{equation}
656 > where $F_{\alpha i}$ is the force in the z direction of atom $i$ in
657 > z-constrained molecule $\alpha$. The forces of the z constrained
658 > molecule are then set to:
659 > \begin{equation}
660 > F_{\alpha i} = F_{\alpha i} -
661 >    \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}.
662 > \end{equation}
663 > Here, $m_{\alpha i}$ is the mass of atom $i$ in the z-constrained
664 > molecule. Having rescaled the forces, the velocities must also be
665 > rescaled to subtract out any center of mass velocity in the z
666 > direction.
667 > \begin{equation}
668 > v_{\alpha i} = v_{\alpha i} -
669 >    \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}},
670 > \end{equation}
671 > where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction.
672 > Lastly, all of the accumulated z constrained forces must be
673 > subtracted from the system to keep the system center of mass from
674 > drifting.
675 > \begin{equation}
676 > F_{\beta i} = F_{\beta i} - \frac{m_{\beta i} \sum_{\alpha}
677 > G_{\alpha}}
678 >    {\sum_{\beta}\sum_i m_{\beta i}},
679 > \end{equation}
680 > where $\beta$ are all of the unconstrained molecules in the system.
681 > Similarly, the velocities of the unconstrained molecules must also
682 > be scaled.
683 > \begin{equation}
684 > v_{\beta i} = v_{\beta i} + \sum_{\alpha}
685 >    \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}.
686 > \end{equation}
687 > At the very beginning of the simulation, the molecules may not be at
688 > their constrained positions. To move a z-constrained molecule to its
689 > specified position, a simple harmonic potential is used
690 > \begin{equation}
691 > U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2},%
692 > \end{equation}
693 > where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$
694 > is the current $z$ coordinate of the center of mass of the
695 > constrained molecule, and $z_{\text{cons}}$ is the constrained
696 > position. The harmonic force operating on the z-constrained molecule
697 > at time $t$ can be calculated by
698 > \begin{equation}
699 > F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
700 >    -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}).
701 > \end{equation}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines