ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Methodology.tex
(Generate patch)

Comparing trunk/tengDissertation/Methodology.tex (file contents):
Revision 2900 by tim, Tue Jun 27 04:04:53 2006 UTC vs.
Revision 2914 by tim, Fri Jun 30 14:35:34 2006 UTC

# Line 16 | Line 16 | the last two decades. Matubayasi developed a time-reve
16  
17   Integration schemes for the rotational motion of the rigid molecules
18   in the microcanonical ensemble have been extensively studied over
19 < the last two decades. Matubayasi developed a time-reversible
20 < integrator for rigid bodies in quaternion representation. Although
21 < it is not symplectic, this integrator still demonstrates a better
22 < long-time energy conservation than Euler angle methods because of
23 < the time-reversible nature. Extending the Trotter-Suzuki
24 < factorization to general system with a flat phase space, Miller and
25 < his colleagues devised a novel symplectic, time-reversible and
26 < volume-preserving integrator in the quaternion representation, which
27 < was shown to be superior to the Matubayasi's time-reversible
28 < integrator. However, all of the integrators in the quaternion
29 < representation suffer from the computational penalty of constructing
30 < a rotation matrix from quaternions to evolve coordinates and
31 < velocities at every time step. An alternative integration scheme
32 < utilizing the rotation matrix directly proposed by Dullweber,
33 < Leimkuhler and McLachlan (DLM) also preserved the same structural
34 < properties of the Hamiltonian flow. In this section, the integration
19 > the last two decades. Matubayasi developed a
20 > time-reversible integrator for rigid bodies in quaternion
21 > representation\cite{Matubayasi1999}. Although it is not symplectic, this integrator still
22 > demonstrates a better long-time energy conservation than Euler angle
23 > methods because of the time-reversible nature. Extending the
24 > Trotter-Suzuki factorization to general system with a flat phase
25 > space, Miller\cite{Miller2002} and his colleagues devised a novel
26 > symplectic, time-reversible and volume-preserving integrator in the
27 > quaternion representation, which was shown to be superior to the
28 > Matubayasi's time-reversible integrator. However, all of the
29 > integrators in the quaternion representation suffer from the
30 > computational penalty of constructing a rotation matrix from
31 > quaternions to evolve coordinates and velocities at every time step.
32 > An alternative integration scheme utilizing the rotation matrix
33 > directly proposed by Dullweber, Leimkuhler and McLachlan (DLM) also
34 > preserved the same structural properties of the Hamiltonian
35 > propagator\cite{Dullweber1997}. In this section, the integration
36   scheme of DLM method will be reviewed and extended to other
37   ensembles.
38  
# Line 45 | Line 46 | Monte Carlo applications, and
46   {\it symplectic}),
47   \item the integrator is time-{\it reversible}, making it suitable for Hybrid
48   Monte Carlo applications, and
49 < \item the error for a single time step is of order $\mathcal{O}\left(h^4\right)$
49 > \item the error for a single time step is of order $\mathcal{O}\left(h^3\right)$
50   for timesteps of length $h$.
51   \end{enumerate}
51
52   The integration of the equations of motion is carried out in a
53   velocity-Verlet style 2-part algorithm, where $h= \delta t$:
54  
# Line 63 | Line 63 | velocity-Verlet style 2-part algorithm, where $h= \del
63   {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
64      + \frac{h}{2} {\bf \tau}^b(t), \\
65   %
66 < \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
66 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
67      (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
68   \end{align*}
69
69   In this context, the $\mathrm{rotate}$ function is the reversible
70   product of the three body-fixed rotations,
71   \begin{equation}
# Line 75 | Line 74 | rotates both the rotation matrix ($\mathsf{A}$) and th
74   / 2) \cdot \mathsf{G}_x(a_x /2),
75   \end{equation}
76   where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
77 < rotates both the rotation matrix ($\mathsf{A}$) and the body-fixed
78 < angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
77 > rotates both the rotation matrix $\mathsf{Q}$ and the body-fixed
78 > angular momentum ${\bf j}$ by an angle $\theta$ around body-fixed
79   axis $\alpha$,
80   \begin{equation}
81   \mathsf{G}_\alpha( \theta ) = \left\{
82   \begin{array}{lcl}
83 < \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
83 > \mathsf{Q}(t) & \leftarrow & \mathsf{Q}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
84   {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
85   j}(0).
86   \end{array}
# Line 101 | Line 100 | All other rotations follow in a straightforward manner
100   \end{array}
101   \right).
102   \end{equation}
103 < All other rotations follow in a straightforward manner.
103 > All other rotations follow in a straightforward manner. After the
104 > first part of the propagation, the forces and body-fixed torques are
105 > calculated at the new positions and orientations
106  
106 After the first part of the propagation, the forces and body-fixed
107 torques are calculated at the new positions and orientations
108
107   {\tt doForces:}
108   \begin{align*}
109   {\bf f}(t + h) &\leftarrow
# Line 114 | Line 112 | torques are calculated at the new positions and orient
112   {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
113      \times (\frac{\partial V}{\partial {\bf u}})_{u(t+h)}, \\
114   %
115 < {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
115 > {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{Q}(t + h)
116      \cdot {\bf \tau}^s(t + h).
117   \end{align*}
120
118   ${\bf u}$ is automatically updated when the rotation matrix
119 < $\mathsf{A}$ is calculated in {\tt moveA}.  Once the forces and
119 > $\mathsf{Q}$ is calculated in {\tt moveA}.  Once the forces and
120   torques have been obtained at the new time step, the velocities can
121   be advanced to the same time value.
122  
# Line 133 | Line 130 | be advanced to the same time value.
130   \right)
131      + \frac{h}{2} {\bf \tau}^b(t + h) .
132   \end{align*}
136
133   The matrix rotations used in the DLM method end up being more costly
134   computationally than the simpler arithmetic quaternion propagation.
135   With the same time step, a 1000-molecule water simulation shows an
136   average 7\% increase in computation time using the DLM method in
137   place of quaternions. This cost is more than justified when
138   comparing the energy conservation of the two methods as illustrated
139 < in Fig.~\ref{methodFig:timestep}.
139 > in Fig.~\ref{methodFig:timestep} where the resulting energy drifts at
140 > various time steps for both the DLM and quaternion integration
141 > schemes are compared. All of the 1000 molecule water simulations
142 > started with the same configuration, and the only difference was the
143 > method for handling rotational motion. At time steps of 0.1 and 0.5
144 > fs, both methods for propagating molecule rotation conserve energy
145 > fairly well, with the quaternion method showing a slight energy
146 > drift over time in the 0.5 fs time step simulation. At time steps of
147 > 1 and 2 fs, the energy conservation benefits of the DLM method are
148 > clearly demonstrated. Thus, while maintaining the same degree of
149 > energy conservation, one can take considerably longer time steps,
150 > leading to an overall reduction in computation time.
151  
152   \begin{figure}
153   \centering
# Line 155 | Line 162 | In Fig.~\ref{methodFig:timestep}, the resulting energy
162   \label{methodFig:timestep}
163   \end{figure}
164  
158 In Fig.~\ref{methodFig:timestep}, the resulting energy drift at
159 various time steps for both the DLM and quaternion integration
160 schemes is compared. All of the 1000 molecule water simulations
161 started with the same configuration, and the only difference was the
162 method for handling rotational motion. At time steps of 0.1 and 0.5
163 fs, both methods for propagating molecule rotation conserve energy
164 fairly well, with the quaternion method showing a slight energy
165 drift over time in the 0.5 fs time step simulation. At time steps of
166 1 and 2 fs, the energy conservation benefits of the DLM method are
167 clearly demonstrated. Thus, while maintaining the same degree of
168 energy conservation, one can take considerably longer time steps,
169 leading to an overall reduction in computation time.
170
165   \subsection{\label{methodSection:NVT}Nos\'{e}-Hoover Thermostatting}
166  
167   The Nos\'e-Hoover equations of motion are given by\cite{Hoover1985}
168   \begin{eqnarray}
169   \dot{{\bf r}} & = & {\bf v}, \\
170   \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
171 < \dot{\mathsf{A}} & = & \mathsf{A} \cdot
171 > \dot{\mathsf{Q}} & = & \mathsf{Q} \cdot
172   \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\
173   \dot{{\bf j}} & = & {\bf j} \times \left(
174   \overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j} \right) - \mbox{
175 < rot}\left(\mathsf{A}^{T} \cdot \frac{\partial V}{\partial
176 < \mathsf{A}} \right) - \chi {\bf j}. \label{eq:nosehoovereom}
175 > rot}\left(\mathsf{Q}^{T} \cdot \frac{\partial V}{\partial
176 > \mathsf{Q}} \right) - \chi {\bf j}. \label{eq:nosehoovereom}
177   \end{eqnarray}
184
178   $\chi$ is an ``extra'' variable included in the extended system, and
179   it is propagated using the first order equation of motion
180   \begin{equation}
181   \dot{\chi} = \frac{1}{\tau_{T}^2} \left(
182   \frac{T}{T_{\mathrm{target}}} - 1 \right). \label{eq:nosehooverext}
183   \end{equation}
184 <
185 < The instantaneous temperature $T$ is proportional to the total
186 < kinetic energy (both translational and orientational) and is given
194 < by
184 > where $\tau_T$ is the time constant for relaxation of the
185 > temperature to the target value, and the instantaneous temperature
186 > $T$ is given by
187   \begin{equation}
188 < T = \frac{2 K}{f k_B}
188 > T = \frac{2 K}{f k_B}.
189   \end{equation}
190   Here, $f$ is the total number of degrees of freedom in the system,
191   \begin{equation}
192   f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}},
193   \end{equation}
194   where $N_{\mathrm{orient}}$ is the number of molecules with
195 < orientational degrees of freedom, and $K$ is the total kinetic
196 < energy,
205 < \begin{equation}
206 < K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
207 < \sum_{i=1}^{N_{\mathrm{orient}}}  \frac{1}{2} {\bf j}_i^T \cdot
208 < \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i.
209 < \end{equation}
195 > orientational degrees of freedom. The integration of the equations of motion
196 > is carried out in a velocity-Verlet style 2 part algorithm:
197  
211 In eq.(\ref{eq:nosehooverext}), $\tau_T$ is the time constant for
212 relaxation of the temperature to the target value. The integration
213 of the equations of motion is carried out in a velocity-Verlet style
214 2 part algorithm:
215
198   {\tt moveA:}
199   \begin{align*}
200   T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
# Line 228 | Line 210 | T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\b
210      + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
211      \chi(t) \right) ,\\
212   %
213 < \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}
214 <    \left(h * {\bf j}(t + h / 2)
213 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}
214 >    \left(h {\bf j}(t + h / 2)
215      \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\
216   %
217   \chi\left(t + h / 2 \right) &\leftarrow \chi(t)
218      + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}
219      {T_{\mathrm{target}}} - 1 \right) .
220   \end{align*}
239
221   Here $\mathrm{rotate}(h * {\bf j}
222 < \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic
223 < Trotter factorization of the three rotation operations that was
224 < discussed in the section on the DLM integrator.  Note that this
225 < operation modifies both the rotation matrix $\mathsf{A}$ and the
226 < angular momentum ${\bf j}$.  {\tt moveA} propagates velocities by a
227 < half time step, and positional degrees of freedom by a full time
228 < step.  The new positions (and orientations) are then used to
229 < calculate a new set of forces and torques in exactly the same way
230 < they are calculated in the {\tt doForces} portion of the DLM
231 < integrator.
232 <
252 < Once the forces and torques have been obtained at the new time step,
253 < the temperature, velocities, and the extended system variable can be
222 > \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic Strang
223 > factorization of the three rotation operations that was discussed in
224 > the section on the DLM integrator.  Note that this operation
225 > modifies both the rotation matrix $\mathsf{Q}$ and the angular
226 > momentum ${\bf j}$.  {\tt moveA} propagates velocities by a half
227 > time step, and positional degrees of freedom by a full time step.
228 > The new positions (and orientations) are then used to calculate a
229 > new set of forces and torques in exactly the same way they are
230 > calculated in the {\tt doForces} portion of the DLM integrator. Once
231 > the forces and torques have been obtained at the new time step, the
232 > temperature, velocities, and the extended system variable can be
233   advanced to the same time value.
234  
235   {\tt moveB:}
# Line 272 | Line 251 | T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
251      \left( {\bf \tau}^b(t + h) - {\bf j}(t + h)
252      \chi(t + h) \right) .
253   \end{align*}
275
254   Since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required to
255   caclculate $T(t + h)$ as well as $\chi(t + h)$, they indirectly
256   depend on their own values at time $t + h$.  {\tt moveB} is
257   therefore done in an iterative fashion until $\chi(t + h)$ becomes
258 < self-consistent.
259 <
260 < The Nos\'e-Hoover algorithm is known to conserve a Hamiltonian for
283 < the extended system that is, to within a constant, identical to the
284 < Helmholtz free energy,\cite{Melchionna1993}
258 > self-consistent. The Nos\'e-Hoover algorithm is known to conserve a
259 > Hamiltonian for the extended system that is, to within a constant,
260 > identical to the Helmholtz free energy,\cite{Melchionna1993}
261   \begin{equation}
262   H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
263   \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
264   dt^\prime \right).
265   \end{equation}
266   Poor choices of $h$ or $\tau_T$ can result in non-conservation of
267 < $H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the
268 < last column of the {\tt .stat} file to allow checks on the quality
293 < of the integration.
267 > $H_{\mathrm{NVT}}$, so the conserved quantity should be checked
268 > periodically to verify the quality of the integration.
269  
270   \subsection{\label{methodSection:NPTi}Constant-pressure integration with
271   isotropic box (NPTi)}
272  
273   We can used an isobaric-isothermal ensemble integrator which is
274   implemented using the Melchionna modifications to the
275 < Nos\'e-Hoover-Andersen equations of motion,\cite{Melchionna1993}
301 <
275 > Nos\'e-Hoover-Andersen equations of motion\cite{Melchionna1993}
276   \begin{eqnarray}
277   \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
278   \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
279 < \dot{\mathsf{A}} & = & \mathsf{A} \cdot
279 > \dot{\mathsf{Q}} & = & \mathsf{Q} \cdot
280   \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
281   \dot{{\bf j}} & = & {\bf j} \times \left(
282   \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
283 < rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
284 < V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\
283 > rot}\left(\mathsf{Q}^{T} \cdot \frac{\partial
284 > V}{\partial \mathsf{Q}} \right) - \chi {\bf j}, \\
285   \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
286   \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
287   \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V
# Line 315 | Line 289 | P_{\mathrm{target}} \right), \\
289   P_{\mathrm{target}} \right), \\
290   \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta . \label{eq:melchionna1}
291   \end{eqnarray}
318
292   $\chi$ and $\eta$ are the ``extra'' degrees of freedom in the
293   extended system.  $\chi$ is a thermostat, and it has the same
294   function as it does in the Nos\'e-Hoover NVT integrator.  $\eta$ is
# Line 348 | Line 321 | P(t) = \frac{1}{3} \mathrm{Tr} \left(
321   the Pressure tensor,
322   \begin{equation}
323   P(t) = \frac{1}{3} \mathrm{Tr} \left(
324 < \overleftrightarrow{\mathsf{P}}(t). \right)
324 > \overleftrightarrow{\mathsf{P}}(t) \right) .
325   \end{equation}
326 <
354 < In eq.(\ref{eq:melchionna1}), $\tau_B$ is the time constant for
326 > In Eq.~\ref{eq:melchionna1}, $\tau_B$ is the time constant for
327   relaxation of the pressure to the target value. Like in the NVT
328   integrator, the integration of the equations of motion is carried
329   out in a velocity-Verlet style 2 part algorithm:
# Line 370 | Line 342 | P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\b
342      + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
343      \chi(t) \right), \\
344   %
345 < \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
345 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left(h *
346      {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
347      \right) ,\\
348   %
# Line 390 | Line 362 | P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\b
362   \mathsf{H}(t + h) &\leftarrow e^{-h \eta(t + h / 2)}
363      \mathsf{H}(t).
364   \end{align*}
393
365   Most of these equations are identical to their counterparts in the
366   NVT integrator, but the propagation of positions to time $t + h$
367   depends on the positions at the same time. The simulation box
# Line 402 | Line 373 | box by
373   \mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}.
374   \mathcal{V}(t)
375   \end{equation}
405
376   The {\tt doForces} step for the NPTi integrator is exactly the same
377   as in both the DLM and NVT integrators.  Once the forces and torques
378   have been obtained at the new time step, the velocities can be
# Line 434 | Line 404 | P(t + h) &\leftarrow  \left\{{\bf r}(t + h)\right\},
404      \tau}^b(t + h) - {\bf j}(t + h)
405      \chi(t + h) \right) .
406   \end{align*}
437
407   Once again, since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required
408   to caclculate $T(t + h)$, $P(t + h)$, $\chi(t + h)$, and $\eta(t +
409   h)$, they indirectly depend on their own values at time $t + h$.
# Line 449 | Line 418 | Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can
418   \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
419   dt^\prime \right) + P_{\mathrm{target}} \mathcal{V}(t).
420   \end{equation}
421 < Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can result in
422 < non-conservation of $H_{\mathrm{NPTi}}$, so the conserved quantity
423 < is maintained in the last column of the {\tt .stat} file to allow
455 < checks on the quality of the integration.  It is also known that
456 < this algorithm samples the equilibrium distribution for the enthalpy
457 < (including contributions for the thermostat and barostat),
421 > It is also known that this algorithm samples the equilibrium
422 > distribution for the enthalpy (including contributions for the
423 > thermostat and barostat),
424   \begin{equation}
425   H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2}
426   \left( \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) +
# Line 475 | Line 441 | method are
441   \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
442   \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
443   \chi \cdot \mathsf{1}) {\bf v}, \\
444 < \dot{\mathsf{A}} & = & \mathsf{A} \cdot
444 > \dot{\mathsf{Q}} & = & \mathsf{Q} \cdot
445   \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
446   \dot{{\bf j}} & = & {\bf j} \times \left(
447   \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
448 < rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
449 < V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\
448 > rot}\left(\mathsf{Q}^{T} \cdot \frac{\partial
449 > V}{\partial \mathsf{Q}} \right) - \chi {\bf j} ,\\
450   \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
451   \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
452   \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
# Line 513 | Line 479 | r}(t)\right\},
479      + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
480      \chi(t) \right), \\
481   %
482 < \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
482 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left(h *
483      {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
484      \right), \\
485   %
# Line 535 | Line 501 | exponential operation is used to scale the simulation
501      \overleftrightarrow{\eta}(t + h / 2)} .
502   \end{align*}
503   Here, a power series expansion truncated at second order for the
504 < exponential operation is used to scale the simulation box.
504 > exponential operation is used to scale the simulation box. The {\tt
505 > moveB} portion of the algorithm is largely unchanged from the NPTi
506 > integrator:
507  
540 The {\tt moveB} portion of the algorithm is largely unchanged from
541 the NPTi integrator:
542
508   {\tt moveB:}
509   \begin{align*}
510   T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
# Line 569 | Line 534 | T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
534      + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t
535      + h) - {\bf j}(t + h) \chi(t + h) \right) .
536   \end{align*}
572
537   The iterative schemes for both {\tt moveA} and {\tt moveB} are
538 < identical to those described for the NPTi integrator.
539 <
576 < The NPTf integrator is known to conserve the following Hamiltonian:
538 > identical to those described for the NPTi integrator. The NPTf
539 > integrator is known to conserve the following Hamiltonian:
540   \begin{eqnarray*}
541   H_{\mathrm{NPTf}} & = & V + K + f k_B T_{\mathrm{target}} \left(
542   \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
# Line 582 | Line 545 | T_{\mathrm{target}}}{2}
545   T_{\mathrm{target}}}{2}
546   \mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2.
547   \end{eqnarray*}
585
548   This integrator must be used with care, particularly in liquid
549   simulations.  Liquids have very small restoring forces in the
550   off-diagonal directions, and the simulation box can very quickly
# Line 597 | Line 559 | surrounding media. One quantity to describe the interf
559   functions in biological membrane system ultimately relies on
560   structure and dynamics of lipid bilayers, which are strongly
561   affected by the interfacial interaction between lipid molecules and
562 < surrounding media. One quantity to describe the interfacial
563 < interaction is so called the average surface area per lipid.
562 > surrounding media. One quantity used to describe the interfacial
563 > interaction is the average surface area per lipid.
564   Constant area and constant lateral pressure simulations can be
565   achieved by extending the standard NPT ensemble with a different
566   pressure control strategy
# Line 611 | Line 573 | pressure control strategy
573             \end{array}
574      \right.
575   \end{equation}
614
576   Note that the iterative schemes for NPAT are identical to those
577   described for the NPTi integrator.
578  
# Line 620 | Line 581 | minimum with respect to surface area $A$
581  
582   Theoretically, the surface tension $\gamma$ of a stress free
583   membrane system should be zero since its surface free energy $G$ is
584 < minimum with respect to surface area $A$
585 < \[
584 > minimum with respect to surface area $A$,
585 > \begin{equation}
586   \gamma  = \frac{{\partial G}}{{\partial A}}.
587 < \]
588 < However, a surface tension of zero is not appropriate for relatively
589 < small patches of membrane. In order to eliminate the edge effect of
590 < the membrane simulation, a special ensemble, NP$\gamma$T, has been
591 < proposed to maintain the lateral surface tension and normal
592 < pressure. The equation of motion for the cell size control tensor,
593 < $\eta$, in $NP\gamma T$ is
587 > \end{equation}0
588 > However, a surface tension of zero is not
589 > appropriate for relatively small patches of membrane. In order to
590 > eliminate the edge effect of membrane simulations, a special
591 > ensemble, NP$\gamma$T, has been proposed to maintain the lateral
592 > surface tension and normal pressure. The equation of motion for the
593 > cell size control tensor, $\eta$, in $NP\gamma T$ is
594   \begin{equation}
595   \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
596      - A_{xy} (\gamma _\alpha   - \gamma _{{\rm{target}}} ) & \mbox{$\alpha  = \beta  = x$ or $\alpha  = \beta  = y$}\\
# Line 645 | Line 606 | - P_{{\rm{target}}} )
606   - P_{{\rm{target}}} )
607   \label{methodEquation:instantaneousSurfaceTensor}
608   \end{equation}
648
609   There is one additional extended system integrator (NPTxyz), in
610   which each attempt to preserve the target pressure along the box
611   walls perpendicular to that particular axis.  The lengths of the box
# Line 668 | Line 628 | where%
628   \begin{equation}
629   \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle.
630   \end{equation}
671
631   If the time-dependent friction decays rapidly, the static friction
632   coefficient can be approximated by
633   \begin{equation}
# Line 681 | Line 640 | D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B
640   D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
641   }\langle\delta F(z,t)\delta F(z,0)\rangle dt}.%
642   \end{equation}
684
643   The Z-Constraint method, which fixes the z coordinates of the
644   molecules with respect to the center of the mass of the system, has
645   been a method suggested to obtain the forces required for the force
# Line 690 | Line 648 | each time step instead of resetting the coordinate.
648   whole system. To avoid this problem, we reset the forces of
649   z-constrained molecules as well as subtract the total constraint
650   forces from the rest of the system after the force calculation at
651 < each time step instead of resetting the coordinate.
652 <
695 < After the force calculation, we define $G_\alpha$ as
651 > each time step instead of resetting the coordinate. After the force
652 > calculation, we define $G_\alpha$ as
653   \begin{equation}
654   G_{\alpha} = \sum_i F_{\alpha i}, \label{oopseEq:zc1}
655   \end{equation}
# Line 727 | Line 684 | v_{\beta i} = v_{\beta i} + \sum_{\alpha}
684   v_{\beta i} = v_{\beta i} + \sum_{\alpha}
685      \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}.
686   \end{equation}
730
687   At the very beginning of the simulation, the molecules may not be at
688   their constrained positions. To move a z-constrained molecule to its
689   specified position, a simple harmonic potential is used

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines