ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/dissertation.bib
(Generate patch)

Comparing trunk/tengDissertation/dissertation.bib (file contents):
Revision 2691 by tim, Tue Apr 4 04:33:23 2006 UTC vs.
Revision 2789 by tim, Mon Jun 5 21:00:46 2006 UTC

# Line 1 | Line 1
1 < @string{jcp = "J. Chem. Phys."}
2 < @string{cpl = "Chem. Phys. Lett."}
3 < @string{jpc = "J. Phys. Chem."}
4 < @string{jpcA = "J. Phys. Chem. A"}
5 < @string{jpcB = "J. Phys. Chem. B"}
6 < @string{cp  = "Chem. Phys."}
7 < @string{acp = "Adv. Chem. Phys."}
8 < @string{pra = "Phys. Rev. A"}
9 < @string{prb = "Phys. Rev. B"}
10 < @string{pre = "Phys. Rev. E"}
11 < @string{prl = "Phys. Rev. Lett."}
12 < @string{rmp = "Rev. Mod. Phys."}
13 < @string{jml = "J. Mol. Liq."}
14 < @string{mp = "Mol. Phys."}
15 < @string{pnas = "Proc. Natl. Acad. Sci. USA"}
16 < @string{jacs = "J. Am. Chem. Soc."}
1 > This file was created with JabRef 2.0.1.
2 > Encoding: GBK
3  
4 < @Book{Berne90,
5 <  author =       {B.~J. Berne and R. Pecora},
6 <  title =        {Dynamic Light Scattering},
7 <  publisher =    {Robert E. Krieger Publishing Company, Inc.},
8 <  year =         1990,
9 <  address =      {Malabar, Florida}
10 < }
11 <
12 < @Article{Evans77,
13 <  author =       {D.~J. Evans},
14 <  title =        {On the representation of orientation space},
15 <  journal =      {Mol. Phys.},
16 <  year =         1977,
17 <  volume =       34,
18 <  pages =        {317-325}
19 < }
20 <
21 < @Article{Tuckerman92,
22 <  author =       {M. Tuckerman and B.~J. Berne and G.~J. Martyna},
23 <  title =        {Reversible multiple time scale molecular dynamics},
24 <  journal =      jcp,
25 <  year =         1992,
26 <  volume =       97,
27 <  pages =        {1990-2001}
28 < }
29 <
30 < @Book{Hansen86,
31 <  author =       {J.~P. Hansen and I.~R. McDonald},
32 <  title =        {Theory of Simple Liquids},
33 <  chapter =      7,
34 <  publisher =    {Academic Press},
35 <  year =         1986,
36 <  address =      {London},
37 <  pages =        {199-206}
38 < }
39 <
54 < @Article{Angelani98,
55 <  author =       {L. Angelani and G. Parisi and G. Ruocco and G. Viliani},
56 <  title =        {Connected Network of Minima as a Model Glass: Long
57 <                  Time Dynamics},
58 <  journal =      prl,
59 <  year =         1998,
60 <  volume =       81,
61 <  number =       21,
62 <  pages =        {4648-4651}
63 < }
64 <
65 < @Article{Stillinger82,
66 <  author =       {F.~H. Stillinger and T.~A. Weber},
67 <  title =        {Hidden structure in liquids},
68 <  journal =      pra,
69 <  year =         1982,
70 <  volume =       25,
71 <  number =       2,
72 <  pages =        {978-989}
73 < }
74 <
75 < @Article{Stillinger83,
76 <  author =       {F.~H. Stillinger and T.~A. Weber},
77 <  title =        {Dynamics of structural transitions in liquids},
78 <  journal =      pra,
79 <  year =         1983,
80 <  volume =       28,
81 <  number =       4,
82 <  pages =        {2408-2416}
83 < }
84 <
85 < @Article{Weber84,
86 <  author =       {T.~A. Weber and F.~H. Stillinger},
87 <  title =        {The effect of density on the inherent structure in
88 <                  liquids},
89 <  journal =      jcp,
90 <  year =         1984,
91 <  volume =       80,
92 <  number =       6,
93 <  pages =        {2742-2746}
94 < }
95 <
96 < @Article{Stillinger85,
97 <  author =       {F.~H. Stillinger and T.~A. Weber},
98 <  title =        {Inherent structure theory of liquids in the
99 <                  hard-sphere limit},
100 <  journal =      jcp,
101 <  year =         1985,
102 <  volume =       83,
103 <  number =       9,
104 <  pages =        {4767-4775}
105 < }
106 <
107 < @Article{Stillinger98,
108 <  author =       {S. Sastry and P.~G. Debenedetti and F.~H. Stillinger},
109 <  title =        {Signatures of distinct dynamical regimes in the
110 <                  energy landscape of a glass-forming liquid},
111 <  journal =      {Nature},
112 <  year =         1998,
113 <  volume =       393,
114 <  pages =        {554-557}
115 < }
116 <
117 <
118 < @Article{Parkhurst75a,
119 <  author =       {H.~J. {Parkhurst, Jr.} and J. Jonas},
120 <  title =        {Dense liquids. I. The effect of density and
121 <                  temperature on viscosity of tetramethylsilane and
122 <                  benzene-$\mbox{D}_6$},
123 <  journal =      jcp,
124 <  year =         1975,
125 <  volume =       63,
126 <  number =       6,
127 <  pages =        {2698-2704}
128 < }
129 <
130 < @Article{Parkhurst75b,
131 <  author =       {H.~J. {Parkhurst, Jr.} and J. Jonas},
132 <  title =        {Dense liquids. II. The effect of density and
133 <                  temperature on viscosity of tetramethylsilane and
134 <                  benzene },
135 <  journal =      jcp,
136 <  year =         1975,
137 <  volume =       63,
138 <  number =       6,
139 <  pages =        {2705-2709}
140 < }
141 <
142 < @Article{Forester97,
143 <  author =       {T.~R. Forester and W. Smith and J.~H.~R. Clarke},
144 <  title =        {Antibiotic activity of valinomycin - Molecular
145 <                  dynamics simulations involving the water/membrane
146 <                  interface},
147 <  journal =      {J. Chem. Soc. - Faraday Transactions},
148 <  year =         1997,
149 <  volume =       93,
150 <  pages =        {613-619}
151 < }
152 <
153 < @Article{Tieleman98,
154 <  author =       {D.~P. Tieleman and H.~J.~C. Berendsen},
155 <  title =        {A molecular dynamics study of the pores formed by
156 <                  Escherichia coli OmpF porin in a fully hydrated
157 <                  palmitoyloleoylphosphatidylcholine bilayer},
158 <  journal =      {Biophys. J.},
159 <  year =         1998,
160 <  volume =       74,
161 <  pages =        {2786-2801}
162 < }
163 <
164 < @Article{Cascales98,
165 <  author =       {J.~J.~L. Cascales and J.~G.~H. Cifre and J.~G. de~la~Torre},
166 <  title =        {Anaesthetic mechanism on a model biological
167 <                  membrane: A molecular dynamics simulation study},
168 <  journal =      {J. Phys. Chem. B},
169 <  year =         1998,
170 <  volume =       102,
171 <  pages =        {625-631}
172 < }
173 <
174 < @Article{Bassolino95,
175 <  author =       {D. Bassolino and H.~E. Alper and T.~R. Stouch},
176 <  title =        {MECHANISM OF SOLUTE DIFFUSION THROUGH LIPID
177 <                  BILAYER-MEMBRANES BY MOLECULAR-DYNAMICS SIMULATION},
178 <  journal =      {J. Am. Chem. Soc.},
179 <  year =         1995,
180 <  volume =       117,
181 <  pages =        {4118-4129}
182 < }
183 <
184 < @Article{Alper95,
185 <  author =       {H.~E. Alper and T.~R. Stouch},
186 <  title =        {ORIENTATION AND DIFFUSION OF A DRUG ANALOG IN
187 <                  BIOMEMBRANES - MOLECULAR-DYNAMICS SIMULATIONS},
188 <  journal =      {J. Phys. Chem.},
189 <  year =         1995,
190 <  volume =       99,
191 <  pages =        {5724-5731}
192 < }
193 <
194 < @Article{Sok92,
195 <  author =       {R.~M. Sok and H.~J.~C. Berendsen and W.~F. van~Gunsteren},
196 <  title =        {MOLECULAR-DYNAMICS SIMULATION OF THE TRANSPORT OF
197 <                  SMALL MOLECULES ACROSS A POLYMER MEMBRANE},
198 <  journal =      {J. Chem. Phys.},
199 <  year =         1992,
200 <  volume =       96,
201 <  pages =        {4699-4704}
202 < }
203 <
204 < @Article{Rabani99,
205 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
206 <  title =        {Direct Observation of Stretched-Exponential
207 <                  Relaxation in Low-Temperature Lennard-Jones Systems
208 <                  Using the Cage Correlation Function},
209 <  journal =      prl,
210 <  year =         {1999},
211 <  volume =       82,
212 <  pages =        {3649}
213 < }
214 <
215 < @Article{Rabani97,
216 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
217 <  title =        {Calculating the hopping rate for self-diffusion on
218 <                  rough potential energy surfaces: Cage correlations},
219 <  journal =      {J. Chem. Phys.},
220 <  year =         1997,
221 <  volume =       107,
222 <  pages =        {6867-6876}
223 < }
224 <
225 < @Article{Gezelter99,
226 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
227 <  title =        {Methods for calculating the hopping rate for
228 <                  orientational and spatial diffusion in a molecular
229 <                  liquid: $\mbox{CS}_{2}$},
230 <  journal =      jcp,
231 <  year =         1999,
232 <  volume =       110,
233 <  pages =        3444
234 < }
235 <
236 < @Article{Gezelter98a,
237 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
238 <  title =        {Response to 'Comment on a Critique of the
239 <                  Instantaneous Normal Mode (INM) Approach to
240 <                  Diffusion'},
241 <  journal =      jcp,
242 <  year =         1998,
243 <  volume =       109,
244 <  pages =        4695
245 < }
246 <
247 < @Article{Gezelter97,
248 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
249 <  title =        {Can imaginary instantaneous normal mode frequencies
250 <                  predict barriers to self-diffusion?},
251 <  journal =      jcp,
252 <  year =         1997,
253 <  volume =       107,
254 <  pages =        4618
255 < }
256 <
257 < @Article{Zwanzig83,
258 <  author =       {R. Zwanzig},
259 <  title =        {On the relation between self-diffusion and viscosity
260 <                  of liquids},
261 <  journal =      jcp,
262 <  year =         1983,
263 <  volume =       79,
264 <  pages =        {4507-4508}
265 < }
266 <
267 < @Article{Zwanzig88,
268 <  author =       {R. Zwanzig},
269 <  title =        {Diffusion in rough potential},
270 <  journal =      {Proc. Natl. Acad. Sci. USA},
271 <  year =         1988,
272 <  volume =       85,
273 <  pages =        2029
274 < }
275 <
276 < @Article{Stillinger95,
277 <  author =       {F.~H. Stillinger},
278 <  title =        {A Topographic View of Supercooled Liquids and Glass
279 <                  Formation},
280 <  journal =      {Science},
281 <  year =         1995,
282 <  volume =       267,
283 <  pages =        {1935-1939}
284 < }
285 <
286 < @InCollection{Angell85,
287 <  author =       {C.~A. Angell},
288 <  title =        {unknown},
289 <  booktitle =    {Relaxations in Complex Systems},
290 <  publisher =    {National Technical Information Service,
291 <                  U.S. Department of Commerce},
292 <  year =         1985,
293 <  editor =       {K.~Ngai and G.~B. Wright},
294 <  address =      {Springfield, VA},
295 <  pages =        1
296 < }
297 <
298 < @Article{Bembenek96,
299 <  author =       {S.~D. Bembenek and B.~B. Laird},
300 <  title =        {The role of localization in glasses and supercooled liquids},
301 <  journal =      jcp,
302 <  year =         1996,
303 <  volume =       104,
304 <  pages =        5199
305 < }
306 <
307 < @Article{Sun97,
308 <  author =       {X. Sun and W.~H. Miller},
309 <  title =        {Semiclassical initial value representation for
310 <                  electronically nonadiabatic molecular dynamics},
311 <  journal =      jcp,
312 <  year =         1997,
313 <  volume =       106,
314 <  pages =        6346
315 < }
316 <
317 < @Article{Spath96,
318 <  author =       {B.~W. Spath and W.~H. Miller},
319 <  title =        {SEMICLASSICAL CALCULATION OF CUMULATIVE REACTION
320 <                  PROBABILITIES},
321 <  journal =      jcp,
322 <  year =         1996,
323 <  volume =       104,
324 <  pages =        95
325 < }
326 <
327 < @Book{Warshel91,
328 <  author =       {Arieh Warshel},
329 <  title =        {Computer modeling of chemical reactions in enzymes
330 <                  and solutions},
331 <  publisher =    {Wiley},
332 <  year =         1991,
333 <  address =      {New York}
334 < }
335 <
336 < @Article{Vuilleumier97,
337 <  author =       {Rodolphe Vuilleumier and Daniel Borgis},
338 <  title =        {Molecular Dynamics of an excess proton in water
339 <                  using a non-additive valence bond force field},
340 <  journal =      jpc,
341 <  year =         1997,
342 <  volume =       {in press}
343 < }
344 <
345 < @Article{Kob95a,
346 <  author =       {W. Kob and H.~C. Andersen},
347 <  title =        {Testing mode-coupling theory for a supercooled
348 <                  binary Lennard-Jones mixtures: The van Hove
349 <                  corraltion function},
350 <  journal =      pre,
351 <  year =         1995,
352 <  volume =       51,
353 <  pages =        {4626-4641}
354 < }
355 <
356 < @Article{Kob95b,
357 <  author =       {W. Kob and H.~C. Andersen},
358 <  title =        {Testing mode-coupling theory for a supercooled
359 <                  binary Lennard-Jones mixtures. II. Intermediate
360 <                  scattering function and dynamic susceptibility},
361 <  journal =      pre,
362 <  year =         1995,
363 <  volume =       52,
364 <  pages =        {4134-4153}
365 < }
366 <
367 < @InProceedings{Gotze89,
368 <  author =       "W. G{\"{o}}tze",
369 <  title =        "Aspects of Structural Glass Transitions",
370 <  editor =       "J.~P. Hansen and D. Levesque and J. Zinn-Justin",
371 <  volume =       "I",
372 <  pages =        "287-503",
373 <  booktitle =    "Liquids, Freezing and Glass Transitions",
374 <  year =         1989,
375 <  publisher =    "North-Holland",
376 <  address =      "Amsterdam"
377 < }
378 <
379 < @Article{Sun97a,
380 <  author =       "X. Sun and W.~H. Miller",
381 <  title =        {Mixed semiclassical-classical approaches to the
382 <                  dynamics of complex molecular systems},
383 <  journal =      jcp,
384 <  year =         1997,
385 <  pages =        916
386 < }
387 <
388 < @Article{Keshavamurthy94,
389 <  author =       "S. Keshavamurthy and W.~H. Miller",
390 <  title =        "ivr",
391 <  journal =      cpl,
392 <  year =         1994,
393 <  volume =       218,
394 <  pages =        189
395 < }
396 <
397 < @Article{Billing75,
398 <  author =       "G.~D. Billing",
399 <  title =        "ehrenfest",
400 <  journal =      cpl,
401 <  year =         1975,
402 <  volume =       30,
403 <  pages =        391
404 < }
405 <
406 < @Article{Chang90,
407 <  author =       {Y.-T. Chang and W.~H. Miller},
408 <  title =        {An Empirical Valence Bond Model for Constructing
409 <                  Global Potential Energy Surfaces for Chemical
410 <                  Reactions of Polyatomic Molecular Systems},
411 <  journal =      jpc,
412 <  year =         1990,
413 <  volume =       94,
414 <  pages =        {5884-5888}
415 < }
416 <
417 < @Article{Shor94,
418 <  author =       {P.W. Shor},
419 <  title =        {Algorithms for quantum computation: discrete
420 <                  logarithms and factoring},
421 <  journal =      {Proceedings of the 35th Annual Symposium
422 < on Foundations of Computer Science},
423 <  year =         1994,
424 <  pages =        {124-134}
425 < }
426 <
427 < @Article{Feynman82,
428 <  author =       {R.~P. Feynman},
429 <  title =        {Simulating physics with computers},
430 <  journal =      {Int. J. Theor. Phys.},
431 <  year =         1982,
432 <  volume =       21,
433 <  pages =        {467-488}
434 < }
435 <
436 < @Article{Grover97,
437 <  author =       {L.~K. Grover},
438 <  title =        {Quantum computers can search arbitrarily large
439 <                  databases by a single query},
440 <  journal =      prl,
441 <  year =         1997,
442 <  volume =       79,
443 <  pages =        {4709-4712}
444 < }
445 <
446 < @Article{Chuang98,
447 <  author =       {I. Chuang and N. Gershenfeld and M. Kubinec},
448 <  title =        {Experimental Implementation of Fast Quantum Searching},
449 <  journal =      prl,
450 <  year =         1998,
451 <  volume =       80,
452 <  pages =        {3408-3411}
453 < }
454 <
455 < @Article{Monroe95,
456 <  author =       "C. Monroe and D.~M. Meekhof and B.~E. King and
457 <                  W.~M. Itano and D.~J. Wineland",
458 <  title =        {Demonstration of a fundamental quantum logic gate},
459 <  journal =      prl,
460 <  year =         1995,
461 <  volume =       75,
462 <  pages =        4714
463 < }
464 <
465 < @Article{Lent93,
466 <  author =       "C.~S. Lent and P.~D. Tougaw and W.~Porod and
467 <                  G.~H. Bernstein",
468 <  title =        {Quantum Cellular Automata},
469 <  journal =      {Nanotechnology},
470 <  year =         1993,
471 <  volume =       4,
472 <  pages =        {49-57}
473 < }
474 <
475 < @Article{Barenco95,
476 <  author =       "A. Barenco and C.~H. Bennett and R. Cleve and
477 <                  D.~P. DiVincenzo and N. Margolus and P. Shor and
478 <                  T. Sleator and J.~A. Smolin and H. Weinfurter",
479 <  title =        {elementary gates for quantum computation},
480 <  journal =      {Phys. Rev. A},
481 <  year =         1995,
482 <  volume =       52,
483 <  pages =        {3457-3467}
484 < }
485 <
486 < @Article{Small97,
487 <  author =       {T. Reinot and J.~M. Hayes and G.~J. Small},
488 <  title =        {Electronic dephasing and electron-phonon coupling of
489 <                  aluminum phthalocyanine tetrasulphonate in
490 <                  hyperquenched and annealed glassy films of ethanol
491 <                  and methanol over a broad temperature range},
492 <  journal =      jcp,
493 <  year =         1997,
494 <  volume =       106,
495 <  pages =        {457-466}
496 < }
497 <
498 < @Article{Laflamme96,
499 <  author =       {R. Laflamme and C. Miquel and J.~P. Paz and W.~H. Zurek},
500 <  title =        {A perfect quantum error correcting code: 5 bit code
501 <                  correcting a general 1 qubit error to encode 1 qubit
502 <                  of information},
503 <  journal =      prl,
504 <  year =         1996,
505 <  volume =       98,
506 <  pages =        77
507 < }
508 <
509 < @Article{Shor95,
510 <  author =       {P.~W. Shor},
511 <  title =        {SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY},
512 <  journal =      {Phys. Rev. A},
513 <  year =         1995,
514 <  volume =       52,
515 <  pages =        {2493-2496}
516 < }
517 <
518 < @Article{Calderbank96,
519 <  author =       {A.~R. Calderbank and P.~W. Shor},
520 <  title =        {Good quantum error-correcting codes exist},
521 <  journal =      {Phys. Rev. A},
522 <  year =         1996,
523 <  volume =       54,
524 <  pages =        {1098-1105}
525 < }
526 <
527 < @Article{Steane96,
528 <  author =       {A.~M. Steane},
529 <  title =        {Error correcting codes in quantum theory},
530 <  journal =      prl,
531 <  year =         1996,
532 <  volume =       77,
533 <  pages =        {793-797}
534 < }
535 <
536 < @Article{Gezelter95,
537 <  author =       {J.~D. Gezelter and W.~H. Miller},
538 <  title =        {RESONANT FEATURES IN THE ENERGY-DEPENDENCE OF THE
539 <                  RATE OF KETENE ISOMERIZATION},
540 <  journal =      jcp,
541 <  year =         1995,
542 <  volume =       103,
543 <  pages =        {7868-7876}
544 < }
545 <
546 < @Article{Chakrabarti92,
547 <  author =       {A.~C. Chakrabarti and D.~W. Deamer},
548 <  title =        {PERMEABILITY OF LIPID BILAYERS TO AMINO-ACIDS AND PHOSPHATE},
549 <  journal =      {Biochimica et Biophysica Acta},
550 <  year =         1992,
551 <  volume =       1111,
552 <  pages =        {171-177}
553 < }
554 <
555 < @Article{Paula96,
556 <  author =       {S. Paula and A.~G. Volkov and A.~N. VanHoek and
557 <                  T.~H. Haines and D.~W. Deamer},
558 <  title =        {Permeation of protons, potassium ions, and small
559 <                  polar molecules through phospholipid bilayers as a
560 <                  function of membrane thickness},
561 <  journal =      {Biophys. J.},
562 <  year =         1996,
563 <  volume =       70,
564 <  pages =        {339-348}
565 < }
566 <
567 < @Article{Little96,
568 <  author =       {H.~J. Little},
569 <  title =        {How has molecular pharmacology contributed to our
570 <                  understanding of the mechanism(s) of general
571 <                  anesthesia?},
572 <  journal =      {Pharmacology \& Therapeutics},
573 <  year =         1996,
574 <  volume =       69,
575 <  pages =        {37-58}
576 < }
577 <
578 < @Article{McKinnon92,
579 <  author =       {S.~J. McKinnon and S.~L. Whittenburg and B. Brooks},
580 <  title =        {Nonequilibrium Molecular Dynamics Simulation of
581 <                  Oxygen Diffusion through Hexadecane Monolayers with
582 <                  Varying Concentrations of Cholesterol},
583 <  journal =      jpc,
584 <  year =         1992,
585 <  volume =       96,
586 <  pages =        {10497-10506}
587 < }
588 <
589 < @Article{Venable93,
590 <  author =       {R.~M. Venable and Y. Zhang and B.~J. Hardy and
591 <                  R.~W. Pastor},
592 <  title =        {Molecular Dynamics Simulations of a Lipid Bilayer
593 <                  and of Hexadecane: An Investigation of Membrane Fluidity},
594 <  journal =      {Science},
595 <  year =         1993,
596 <  volume =       262,
597 <  pages =        {223-226}
598 < }
599 <
600 < @Article{Essmann99,
601 <  author =       {U. Essmann and M.~L. Berkowitz},
602 <  title =        {Dynamical properties of phospholipid bilayers from
603 <                  computer simulation},
604 <  journal =      {Biophys. J.},
605 <  year =         1999,
606 <  volume =       76,
607 <  pages =        {2081-2089}
608 < }
609 <
610 < @Article{Tu98,
611 <  author =       {K.~C. Tu and M. Tarek and M.~L. Klein and D. Scharf},
612 <  title =        {Effects of anesthetics on the structure of a
613 <                  phospholipid bilayer: Molecular dynamics
614 <                  investigation of halothane in the hydrated liquid
615 <                  crystal phase of dipalmitoylphosphatidylcholine},
616 <  journal =      {Biophys. J.},
617 <  year =         1998,
618 <  volume =       75,
619 <  pages =        {2123-2134}
620 < }
621 <
622 < @Article{Pomes96,
623 <  author =       {R. Pomes and B. Roux},
624 <  title =        {Structure and dynamics of a proton wire: A
625 <                  theoretical study of H+ translocation along the
626 <                  single-file water chain in the gramicidin a channel},
627 <  journal =      {Biophys. J.},
628 <  year =         1996,
629 <  volume =       71,
630 <  pages =        {19-39}
631 < }
632 <
633 < @Article{Duwez60,
634 <  author =       {P. Duwez and R.~H. Willens and W. {Klement~Jr.}},
635 <  title =        {Continuous Series of Metastable Solid Solutions in
636 <                  Silver-Copper Alloys},
637 <  journal =      {J. Appl. Phys.},
638 <  year =         1960,
639 <  volume =       31,
640 <  pages =        {1136-1137}
641 < }
642 <
643 < @Article{Peker93,
644 <  author =       {A. Peker and W.~L. Johnson},
645 <  title =        {A highly processable metallic-glass -
646 <                  $\mbox{Zr}_{41.2}\mbox{Ti}_{13.8}\mbox{Cu}_{12.5}\mbox{Ni}_{10.0}\mbox{Be}_{22.5}$},
647 <  journal =      {Appl. Phys. Lett.},
648 <  year =         1993,
649 <  volume =       63,
650 <  pages =        {2342-2344}
651 < }
652 <
653 < @Article{ChoiYim97,
654 <  author =       {H. Choi-Yim and W.~L. Johnson},
655 <  title =        {Bulk metallic glass matrix composites},
656 <  journal =      {Appl. Phys. Lett.},
657 <  year =         1997,
658 <  volume =       71,
659 <  pages =        {3808-3810}
660 < }
661 <
662 < @Article{Sun96,
663 <  author =       {X. Sun and S. Schneider and U. Geyer and
664 <                  W.~L. Johnson and M.~A. Nicolet},
665 <  title =        {Oxidation and crystallization of an amorphous
666 <                  $\mbox{Zr}_{60}\mbox{Al}_{15}\mbox{Ni}_{25}$ alloy},
667 <  journal =      {J. Mater. Res.},
668 <  year =         1996,
669 <  volume =       11,
670 <  pages =        {2738-2743}
671 < }
672 <
673 < @Article{Heller93,
674 <  author =       {H. Heller and M. Schaefer and K. Schulten},
675 <  title =        {MOLECULAR DYNAMICS SIMULATION OF A BILAYER OF 200
676 <                  LIPIDS IN THE GEL AND IN THE LIQUID-CRYSTAL PHASES},
677 <  journal =      jpc,
678 <  year =         1993,
679 <  volume =       97,
680 <  pages =        {8343-8360}
681 < }
682 <
683 < @Article{Kushick76,
684 <  author =       {J. Kushick and B.~J. Berne},
685 <  title =        {Computer Simulation of anisotropic molecular fluids},
686 <  journal =      jcp,
687 <  year =         1976,
688 <  volume =       64,
689 <  pages =        {1362-1367}
690 < }
691 <
692 < @Article{Berardi96,
693 <  author =       {R. Berardi and S. Orlandi and C Zannoni},
694 <  title =        {Antiphase structures in polar smectic liquid
695 <                  crystals and their molecular origin},
696 <  journal =      cpl,
697 <  year =         1996,
698 <  volume =       261,
699 <  pages =        {357-362}
700 < }
701 <
702 < @Article{Berardi99,
703 <  author =       {R. Berardi and S. Orlandi and C. Zannoni},
704 <  title =        {Monte Carlo simulations of rod-like Gay-Berne
705 <                  mesogens with transverse dipoles},
706 <  journal =      {Int. J. Mod. Phys. C},
707 <  year =         1999,
708 <  volume =       10,
709 <  pages =        {477-484}
710 < }
711 <
712 < @Article{Pasterny2000,
713 <  author =       {K. Pasterny and E. Gwozdz and A. Brodka},
714 <  title =        {Properties of a model liquid crystal: Polar
715 <                  Gay-Berne particles},
716 <  journal =      {J. Mol. Liq.},
717 <  year =         2000,
718 <  volume =       85,
719 <  pages =        {173-184}
720 < }
721 <
722 < @Article{Jorgensen83,
723 <  author =       {W.~L. Jorgensen and J. Chandrasekhar and
724 <                  J.~D. Madura and R.~W. Impey and M.~L. Klein},
725 <  title =        {COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR
726 <                  SIMULATING LIQUID WATER},
727 <  journal =      jcp,
728 <  year =         1983,
729 <  volume =       79,
730 <  pages =        {926-935}
731 < }
732 <
733 < @Article{Berardi98,
734 <  author =       {R. Berardi and C. Fava and C. Zannoni},
735 <  title =        {A Gay-Berne potential for dissimilar biaxial particles},
736 <  journal =      cpl,
737 <  year =         1998,
738 <  volume =       297,
739 <  pages =        {8-14}
740 < }
741 <
742 < @Article{Luckhurst90,
743 <  author =       {G.~R. Luckhurst and R.~A. Stephens and R.~W. Phippen},
744 <  title =        {Computer simulation studies of anisotropic systems
745 <                  {XIX}. Mesophases formed by the Gay-Berne model mesogen},
746 <  journal =      {Liquid Crystals},
747 <  year =         1990,
748 <  volume =       8,
749 <  pages =        {451-464}
750 < }
751 <
752 < @Article{Gay81,
753 <  author =       {J.~G. Gay and B.~J. Berne},
754 <  title =        {MODIFICATION OF THE OVERLAP POTENTIAL TO MIMIC A
755 <                  LINEAR SITE-SITE POTENTIAL},
756 <  journal =      jcp,
757 <  year =         1981,
758 <  volume =       74,
759 <  pages =        {3316-3319}
4 > @ARTICLE{Torre2003,
5 >  author = {J. G. {de la Torre} and H. E. Sanchez and A. Ortega and J. G. Hernandez
6 >        and M. X. Fernandes and F. G. Diaz and M. C. L. Martinez},
7 >  title = {Calculation of the solution properties of flexible macromolecules:
8 >        methods and applications},
9 >  journal = {European Biophysics Journal with Biophysics Letters},
10 >  year = {2003},
11 >  volume = {32},
12 >  pages = {477-486},
13 >  number = {5},
14 >  month = {Aug},
15 >  abstract = {While the prediction of hydrodynamic properties of rigid particles
16 >        is nowadays feasible using simple and efficient computer programs,
17 >        the calculation of such properties and, in general, the dynamic
18 >        behavior of flexible macromolecules has not reached a similar situation.
19 >        Although the theories are available, usually the computational work
20 >        is done using solutions specific for each problem. We intend to
21 >        develop computer programs that would greatly facilitate the task
22 >        of predicting solution behavior of flexible macromolecules. In this
23 >        paper, we first present an overview of the two approaches that are
24 >        most practical: the Monte Carlo rigid-body treatment, and the Brownian
25 >        dynamics simulation technique. The Monte Carlo procedure is based
26 >        on the calculation of properties for instantaneous conformations
27 >        of the macromolecule that are regarded as if they were instantaneously
28 >        rigid. We describe how a Monte Carlo program can be interfaced to
29 >        the programs in the HYDRO suite for rigid particles, and provide
30 >        an example of such calculation, for a hypothetical particle: a protein
31 >        with two domains connected by a flexible linker. We also describe
32 >        briefly the essentials of Brownian dynamics, and propose a general
33 >        mechanical model that includes several kinds of intramolecular interactions,
34 >        such as bending, internal rotation, excluded volume effects, etc.
35 >        We provide an example of the application of this methodology to
36 >        the dynamics of a semiflexible, wormlike DNA.},
37 >  annote = {724XK Times Cited:6 Cited References Count:64},
38 >  issn = {0175-7571},
39 >  uri = {<Go to ISI>://000185513400011},
40   }
41  
42 < @Article{Berne72,
43 <  author =       {B.~J. Berne and P. Pechukas},
44 <  title =        {Gaussian Model Potentials for Molecular Interactions},
45 <  journal =      jcp,
46 <  year =         1972,
47 <  volume =       56,
48 <  pages =        {4213-4216}
42 > @ARTICLE{Alakent2005,
43 >  author = {B. Alakent and M. C. Camurdan and P. Doruker},
44 >  title = {Hierarchical structure of the energy landscape of proteins revisited
45 >        by time series analysis. II. Investigation of explicit solvent effects},
46 >  journal = {Journal of Chemical Physics},
47 >  year = {2005},
48 >  volume = {123},
49 >  pages = {-},
50 >  number = {14},
51 >  month = {Oct 8},
52 >  abstract = {Time series analysis tools are employed on the principal modes obtained
53 >        from the C-alpha trajectories from two independent molecular-dynamics
54 >        simulations of alpha-amylase inhibitor (tendamistat). Fluctuations
55 >        inside an energy minimum (intraminimum motions), transitions between
56 >        minima (interminimum motions), and relaxations in different hierarchical
57 >        energy levels are investigated and compared with those encountered
58 >        in vacuum by using different sampling window sizes and intervals.
59 >        The low-frequency low-indexed mode relationship, established in
60 >        vacuum, is also encountered in water, which shows the reliability
61 >        of the important dynamics information offered by principal components
62 >        analysis in water. It has been shown that examining a short data
63 >        collection period (100 ps) may result in a high population of overdamped
64 >        modes, while some of the low-frequency oscillations (< 10 cm(-1))
65 >        can be captured in water by using a longer data collection period
66 >        (1200 ps). Simultaneous analysis of short and long sampling window
67 >        sizes gives the following picture of the effect of water on protein
68 >        dynamics. Water makes the protein lose its memory: future conformations
69 >        are less dependent on previous conformations due to the lowering
70 >        of energy barriers in hierarchical levels of the energy landscape.
71 >        In short-time dynamics (< 10 ps), damping factors extracted from
72 >        time series model parameters are lowered. For tendamistat, the friction
73 >        coefficient in the Langevin equation is found to be around 40-60
74 >        cm(-1) for the low-indexed modes, compatible with literature. The
75 >        fact that water has increased the friction and that on the other
76 >        hand has lubrication effect at first sight contradicts. However,
77 >        this comes about because water enhances the transitions between
78 >        minima and forces the protein to reduce its already inherent inability
79 >        to maintain oscillations observed in vacuum. Some of the frequencies
80 >        lower than 10 cm(-1) are found to be overdamped, while those higher
81 >        than 20 cm(-1) are slightly increased. As for the long-time dynamics
82 >        in water, it is found that random-walk motion is maintained for
83 >        approximately 200 ps (about five times of that in vacuum) in the
84 >        low-indexed modes, showing the lowering of energy barriers between
85 >        the higher-level minima.},
86 >  annote = {973OH Times Cited:1 Cited References Count:33},
87 >  issn = {0021-9606},
88 >  uri = {<Go to ISI>://000232532000064},
89   }
90  
91 < @Article{Perram96,
92 <  author =       {J.~W. Perram and J. Rasmussen and E. Praestgaard and
93 <                  J.~L. Lebowitz},
94 <  title =        {Ellipsoid contact potential: Theory and relation to
95 <                  overlap potentials},
96 <  journal =      pre,
777 <  year =         1996,
778 <  volume =       54,
779 <  pages =        {6565-6572}
91 > @BOOK{Allen1987,
92 >  title = {Computer Simulations of Liquids},
93 >  publisher = {Oxford University Press},
94 >  year = {1987},
95 >  author = {M.~P. Allen and D.~J. Tildesley},
96 >  address = {New York},
97   }
98  
99 < @Article{Cornell95,
100 <  author =       {W.~D. Cornell and P. Cieplak and C.~I. Bayly and
101 <                  I.~R. Gould and K.~M. {Merz, Jr.} and D.~M. Ferguson
102 <                  and D.~C. Spellmeyer and T. Fox and J.~W. Caldwell
103 <                  and P.~A. Kollman},
104 <  title =        {A second generation force field for the simulation
105 <                  of proteins and nucleic acids},
106 <  journal =      jacs,
107 <  year =         1995,
108 <  volume =       117,
109 <  pages =        {5179-5197}
99 > @ARTICLE{Allison1991,
100 >  author = {S. A. Allison},
101 >  title = {A Brownian Dynamics Algorithm for Arbitrary Rigid Bodies - Application
102 >        to Polarized Dynamic Light-Scattering},
103 >  journal = {Macromolecules},
104 >  year = {1991},
105 >  volume = {24},
106 >  pages = {530-536},
107 >  number = {2},
108 >  month = {Jan 21},
109 >  abstract = {A Brownian dynamics algorithm is developed to simulate dynamics experiments
110 >        of rigid macromolecules. It is applied to polarized dynamic light
111 >        scattering from rodlike sturctures and from a model of a DNA fragment
112 >        (762 base pairs). A number of rod cases are examined in which the
113 >        translational anisotropy is increased form zero to a large value.
114 >        Simulated first cumulants as well as amplitudes and lifetimes of
115 >        the dynamic form factor are compared with predictions of analytic
116 >        theories and found to be in very good agreement with them. For DNA
117 >        fragments 762 base pairs in length or longer, translational anisotropy
118 >        does not contribute significantly to dynamic light scattering. In
119 >        a comparison of rigid and flexible simulations on semistiff models
120 >        of this fragment, it is shown directly that flexing contributes
121 >        to the faster decay processes probed by light scattering and that
122 >        the flexible model studies are in good agreement with experiment.},
123 >  annote = {Eu814 Times Cited:8 Cited References Count:32},
124 >  issn = {0024-9297},
125 >  uri = {<Go to ISI>://A1991EU81400029},
126   }
127  
128 < @Article{Brooks83,
129 <  author =       {B.~R. Brooks and R.~E. Bruccoleri and B.~D. Olafson
130 <                  and D.~J. States and S. Swaminathan and M. Karplus},
131 <  title =        {{\sc charmm}: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations},
132 <  journal =      {J. Comp. Chem.},
133 <  year =         1983,
134 <  volume =       4,
135 <  pages =        {187-217}
128 > @ARTICLE{Andersen1983,
129 >  author = {H. C. Andersen},
130 >  title = {Rattle - a Velocity Version of the Shake Algorithm for Molecular-Dynamics
131 >        Calculations},
132 >  journal = {Journal of Computational Physics},
133 >  year = {1983},
134 >  volume = {52},
135 >  pages = {24-34},
136 >  number = {1},
137 >  annote = {Rq238 Times Cited:559 Cited References Count:14},
138 >  issn = {0021-9991},
139 >  uri = {<Go to ISI>://A1983RQ23800002},
140   }
141  
142 < @InCollection{MacKerell98,
143 <  author =       {A.~D. {MacKerell, Jr.} and B. Brooks and
144 <                  C.~L. {Brooks III} and L. Nilsson and B. Roux and
145 <                  Y. Won and and M. Karplus},
146 <  title =        {{\sc charmm}: The Energy Function and Its Parameterization
147 <                  with an Overview of the Program},
148 <  booktitle =    {The Encyclopedia of Computational Chemistry},
149 <  pages =        {271-277},
150 <  publisher =    {John Wiley \& Sons},
151 <  year =         1998,
152 <  editor =       {P.~v.~R. {Schleyer, {\it et al.}}},
153 <  volume =       1,
154 <  address =      {New York}
142 > @ARTICLE{Auerbach2005,
143 >  author = {A. Auerbach},
144 >  title = {Gating of acetylcholine receptor channels: Brownian motion across
145 >        a broad transition state},
146 >  journal = {Proceedings of the National Academy of Sciences of the United States
147 >        of America},
148 >  year = {2005},
149 >  volume = {102},
150 >  pages = {1408-1412},
151 >  number = {5},
152 >  month = {Feb 1},
153 >  abstract = {Acetylcholine receptor channels (AChRs) are proteins that switch between
154 >        stable #closed# and #open# conformations. In patch clamp recordings,
155 >        diliganded AChR gating appears to be a simple, two-state reaction.
156 >        However, mutagenesis studies indicate that during gating dozens
157 >        of residues across the protein move asynchronously and are organized
158 >        into rigid body gating domains (#blocks#). Moreover, there is an
159 >        upper limit to the apparent channel opening rate constant. These
160 >        observations suggest that the gating reaction has a broad, corrugated
161 >        transition state region, with the maximum opening rate reflecting,
162 >        in part, the mean first-passage time across this ensemble. Simulations
163 >        reveal that a flat, isotropic energy profile for the transition
164 >        state can account for many of the essential features of AChR gating.
165 >        With this mechanism, concerted, local structural transitions that
166 >        occur on the broad transition state ensemble give rise to fractional
167 >        measures of reaction progress (Phi values) determined by rate-equilibrium
168 >        free energy relationship analysis. The results suggest that the
169 >        coarse-grained AChR gating conformational change propagates through
170 >        the protein with dynamics that are governed by the Brownian motion
171 >        of individual gating blocks.},
172 >  annote = {895QF Times Cited:9 Cited References Count:33},
173 >  issn = {0027-8424},
174 >  uri = {<Go to ISI>://000226877300030},
175   }
176  
177 < @InCollection{Jorgensen98,
178 <  author =       {W.~L. Jorgensen},
179 <  title =        {OPLS Force Fields},
180 <  booktitle =    {The Encyclopedia of Computational Chemistry},
181 <  pages =        {1986-1989},
182 <  publisher =    {John Wiley \& Sons},
183 <  year =         1998,
184 <  editor =       {P.~v.~R. {Schleyer, {\it et al.}}},
185 <  volume =       3,
186 <  address =      {New York}
187 < }
188 <
189 < @Article{Rabani2000,
190 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
191 <  title =        {Reply to `Comment on ``Direct Observation of
192 <                  Stretched-Exponential Relaxation in Low-Temperature
193 <                  Lennard-Jones Systems Using th eCage Correlation
194 <                  Function'' '},
195 <  journal =      prl,
196 <  year =         2000,
197 <  volume =       85,
198 <  pages =        467
199 < }
200 <
201 < @Book{Cevc87,
202 <  author =       {G. Cevc and D. Marsh},
203 <  title =        {Phospholipid Bilayers},
204 <  publisher =    {John Wiley \& Sons},
205 <  year =         1987,
206 <  address =      {New York}
207 < }
208 <
209 < @Article{Janiak79,
210 <  author =       {M.~J. Janiak and D.~M. Small and G.~G. Shipley},
854 <  title =        {Temperature and Compositional Dependence of the
855 <                  Structure of Hydrated Dimyristoyl Lecithin},
856 <  journal =      {J. Biol. Chem.},
857 <  year =         1979,
858 <  volume =       254,
859 <  pages =        {6068-6078}
860 < }
861 <
862 < @Book{Tobias90,
863 <  author =       {Sheila Tobias},
864 <  title =        {They're not Dumb. They're Different: Stalking the
865 <                  Second Tier},
866 <  publisher =    {Research Corp.},
867 <  year =         1990,
868 <  address =      {Tucson}
869 < }
870 <
871 < @Article{Mazur92,
872 <  author =       {E. Mazur},
873 <  title =        {Qualitative vs. Quantititative Thinking: Are we
874 <                  teaching the right thing? },
875 <  journal =      {Optics and Photonics News},
876 <  year =         1992,
877 <  volume =       3,
878 <  pages =        38
879 < }
880 <
881 < @Book{Mazur97,
882 <  author =       {Eric Mazur},
883 <  title =        {Peer Instruction: A User's Manual},
884 <  publisher =    {Prentice Hall},
885 <  year =         1997,
886 <  address =      {New Jersey}
887 < }
888 <
889 < @Article{Wigner55,
890 <  author =       {E.~P. Wigner},
891 <  title =        {Characteristic Vectors of Bordered Matrices with
892 <                  Infinite Dimensions},
893 <  journal =      {Annals of Mathematics},
894 <  year =         1955,
895 <  volume =       62,
896 <  pages =        {548-564}
897 < }
898 <
899 < @Article{Gaukel98,
900 <  author =       {C. Gaukel and H.~R. Schober},
901 <  title =        {Diffusion Mechanisms in under-cooled Binary Metal
902 <                  Liquids of $\mbox{Zr}_{67}\mbox{Cu}_{33}$},
903 <  journal =      {Solid State Comm.},
904 <  year =         1998,
905 <  volume =       107,
906 <  pages =        {1-5}
907 < }
908 <
909 < @Article{Qi99,
910 <  author =       {Y. Qi and T. \c{C}a\v{g}in and Y.
911 <                  Kimura and W.~A. {Goddard III}},
912 <  title =        {Molecular-dynamics simulations of glass formation
913 <                  and crystallization in binary liquid metals: $\mbox{Cu-Ag}$
914 <                  and $\mbox{Cu-Ni}$},
915 <  journal =      prb,
916 <  year =         1999,
917 <  volume =    59,
918 <  number =    5,
919 <  pages =     {3527-3533}
920 < }
921 <
922 < @Article{Khorunzhy97,
923 <  author =       {A. Khorunzhy and G.~J. Rodgers},
924 <  title =        {Eigenvalue distribution of large dilute random matrices},
925 <  journal =      {J. Math. Phys.},
926 <  year =         1997,
927 <  volume =       38,
928 <  pages =        {3300-3320}
929 < }
930 <
931 < @Article{Rodgers88,
932 <  author =       {G.~J. Rodgers and A. Bray},
933 <  title =        {Density of States of a Sparse Random Matrix},
934 <  journal =      {Phys. Rev. B},
935 <  year =         1988,
936 <  volume =       37,
937 <  pages =        355703562
938 < }
939 <
940 < @Article{Rodgers90,
941 <  author =       {G.~J. Rodgers and C. {De Dominicis}},
942 <  title =        {Density of states of sparse random matrices},
943 <  journal =      {J. Phys. A: Math. Gen.},
944 <  year =         1990,
945 <  volume =       23,
946 <  pages =        {1567-1573}
947 < }
948 <
949 < @InProceedings{Barker80,
950 <  author =       {J.~A. Barker},
951 <  title =        {Reaction field method for polar fluids},
952 <  booktitle =    {The problem of long-range forces in the computer
953 <                  simulation of condensed matter},
954 <  pages =        {45-6},
955 <  year =         1980,
956 <  editor =       {D. Ceperley},
957 <  volume =       9,
958 <  series =       {NRCC Workshop Proceedings}
959 < }
960 <
961 < @Article{Smith82,
962 <  author =       {W. Smith},
963 <  title =        {Point multipoles in the Ewald summation},
964 <  journal =      {CCP5 Quarterly},
965 <  year =         1982,
966 <  volume =       4,
967 <  pages =        {13-25}
177 > @ARTICLE{Baber1995,
178 >  author = {J. Baber and J. F. Ellena and D. S. Cafiso},
179 >  title = {Distribution of General-Anesthetics in Phospholipid-Bilayers Determined
180 >        Using H-2 Nmr and H-1-H-1 Noe Spectroscopy},
181 >  journal = {Biochemistry},
182 >  year = {1995},
183 >  volume = {34},
184 >  pages = {6533-6539},
185 >  number = {19},
186 >  month = {May 16},
187 >  abstract = {The effect of the general anesthetics halothane, enflurane, and isoflurane
188 >        on hydrocarbon chain packing in palmitoyl(d(31))oleoylphosphatidylcholine
189 >        membranes in the liquid crystalline phase was investigated using
190 >        H-2 NMR. Upon the addition of the anesthetics, the first five methylene
191 >        units near the interface generally show a very small increase in
192 >        segmental order, while segments deeper within the bilayer show a
193 >        small decrease in segmental order. From the H-2 NMR results, the
194 >        chain length for the perdeuterated palmitoyl chain in the absence
195 >        of anesthetic was found to be 12.35 Angstrom. Upon the addition
196 >        of halothane enflurane, or isoflurane, the acyl chain undergoes
197 >        slight contractions of 0.11, 0.20, or 0.16 Angstrom, respectively,
198 >        at 50 mol % anesthetic. A simple model was used to estimate the
199 >        relative amounts of anesthetic located near the interface and deeper
200 >        in the bilayer hydrocarbon region, and only a slight preference
201 >        for an interfacial location was observed. Intermolecular H-1-H-1
202 >        nuclear Overhauser effects (NOEs) were measured between phospholipid
203 >        and halothane protons. These NOEs are consistent with the intramembrane
204 >        location of the anesthetics suggested by the H-2 NMR data. In addition,
205 >        the NOE data indicate that anesthetics prefer the interfacial and
206 >        hydrocarbon regions of the membrane and are not found in high concentrations
207 >        in the phospholipid headgroup.},
208 >  annote = {Qz716 Times Cited:38 Cited References Count:37},
209 >  issn = {0006-2960},
210 >  uri = {<Go to ISI>://A1995QZ71600035},
211   }
212  
213 < @Article{Daw84,
214 <  author =       {M.~S. Daw and M.~I. Baskes},
215 <  title =        {Embedded-atom method: Derivation and application to
216 <                  impurities, surfaces, and other defects in metals},
217 <  journal =      prb,
218 <  year =         1984,
219 <  volume =    29,
220 <  number =    12,
221 <  pages =     {6443-6453}
213 > @ARTICLE{Banerjee2004,
214 >  author = {D. Banerjee and B. C. Bag and S. K. Banik and D. S. Ray},
215 >  title = {Solution of quantum Langevin equation: Approximations, theoretical
216 >        and numerical aspects},
217 >  journal = {Journal of Chemical Physics},
218 >  year = {2004},
219 >  volume = {120},
220 >  pages = {8960-8972},
221 >  number = {19},
222 >  month = {May 15},
223 >  abstract = {Based on a coherent state representation of noise operator and an
224 >        ensemble averaging procedure using Wigner canonical thermal distribution
225 >        for harmonic oscillators, a generalized quantum Langevin equation
226 >        has been recently developed [Phys. Rev. E 65, 021109 (2002); 66,
227 >        051106 (2002)] to derive the equations of motion for probability
228 >        distribution functions in c-number phase-space. We extend the treatment
229 >        to explore several systematic approximation schemes for the solutions
230 >        of the Langevin equation for nonlinear potentials for a wide range
231 >        of noise correlation, strength and temperature down to the vacuum
232 >        limit. The method is exemplified by an analytic application to harmonic
233 >        oscillator for arbitrary memory kernel and with the help of a numerical
234 >        calculation of barrier crossing, in a cubic potential to demonstrate
235 >        the quantum Kramers' turnover and the quantum Arrhenius plot. (C)
236 >        2004 American Institute of Physics.},
237 >  annote = {816YY Times Cited:8 Cited References Count:35},
238 >  issn = {0021-9606},
239 >  uri = {<Go to ISI>://000221146400009},
240   }
241  
242 <
243 < @Article{Chen90,
244 <  author =       {A.~P. Sutton and J. Chen},
245 <  title =        {Long-Range $\mbox{Finnis Sinclair}$ Potentials},
246 <  journal =      {Phil. Mag. Lett.},
247 <  year =         1990,
248 <  volume =    61,
988 <  pages =     {139-146}
242 > @ARTICLE{Barojas1973,
243 >  author = {J. Barojas and D. Levesque},
244 >  title = {Simulation of Diatomic Homonuclear Liquids},
245 >  journal = {Phys. Rev. A},
246 >  year = {1973},
247 >  volume = {7},
248 >  pages = {1092-1105},
249   }
250  
251 < @Article{Lu97,
252 <  author =       {J. Lu and J.~A. Szpunar},
253 <  title =        {Applications of the embedded-atom method to glass
254 <                  formation and crystallization of liquid and glass
255 <                  transition-metal nickel},
256 <  journal =      {Phil. Mag. A},
257 <  year =         {1997},
258 <  volume =    {75},
259 <  pages =        {1057-1066},
251 > @ARTICLE{Barth1998,
252 >  author = {E. Barth and T. Schlick},
253 >  title = {Overcoming stability limitations in biomolecular dynamics. I. Combining
254 >        force splitting via extrapolation with Langevin dynamics in LN},
255 >  journal = {Journal of Chemical Physics},
256 >  year = {1998},
257 >  volume = {109},
258 >  pages = {1617-1632},
259 >  number = {5},
260 >  month = {Aug 1},
261 >  abstract = {We present an efficient new method termed LN for propagating biomolecular
262 >        dynamics according to the Langevin equation that arose fortuitously
263 >        upon analysis of the range of harmonic validity of our normal-mode
264 >        scheme LIN. LN combines force linearization with force splitting
265 >        techniques and disposes of LIN'S computationally intensive minimization
266 >        (anharmonic correction) component. Unlike the competitive multiple-timestepping
267 >        (MTS) schemes today-formulated to be symplectic and time-reversible-LN
268 >        merges the slow and fast forces via extrapolation rather than impulses;
269 >        the Langevin heat bath prevents systematic energy drifts. This combination
270 >        succeeds in achieving more significant speedups than these MTS methods
271 >        which are Limited by resonance artifacts to an outer timestep less
272 >        than some integer multiple of half the period of the fastest motion
273 >        (around 4-5 fs for biomolecules). We show that LN achieves very
274 >        good agreement with small-timestep solutions of the Langevin equation
275 >        in terms of thermodynamics (energy means and variances), geometry,
276 >        and dynamics (spectral densities) for two proteins in vacuum and
277 >        a large water system. Significantly, the frequency of updating the
278 >        slow forces extends to 48 fs or more, resulting in speedup factors
279 >        exceeding 10. The implementation of LN in any program that employs
280 >        force-splitting computations is straightforward, with only partial
281 >        second-derivative information required, as well as sparse Hessian/vector
282 >        multiplication routines. The linearization part of LN could even
283 >        be replaced by direct evaluation of the fast components. The application
284 >        of LN to biomolecular dynamics is well suited for configurational
285 >        sampling, thermodynamic, and structural questions. (C) 1998 American
286 >        Institute of Physics.},
287 >  annote = {105HH Times Cited:29 Cited References Count:49},
288 >  issn = {0021-9606},
289 >  uri = {<Go to ISI>://000075066300006},
290   }
291  
292 < @Article{Shlesinger99,
293 <  author =       {M.~F. Shlesinger and J. Klafter and G. Zumofen},
294 <  title =        {Above, below, and beyond Brownian motion},
295 <  journal =      {Am. J. Phys.},
296 <  year =         1999,
297 <  volume =       67,
298 <  pages =        {1253-1259}
292 > @ARTICLE{Batcho2001,
293 >  author = {P. F. Batcho and T. Schlick},
294 >  title = {Special stability advantages of position-Verlet over velocity-Verlet
295 >        in multiple-time step integration},
296 >  journal = {Journal of Chemical Physics},
297 >  year = {2001},
298 >  volume = {115},
299 >  pages = {4019-4029},
300 >  number = {9},
301 >  month = {Sep 1},
302 >  abstract = {We present an analysis for a simple two-component harmonic oscillator
303 >        that compares the use of position-Verlet to velocity-Verlet for
304 >        multiple-time step integration. The numerical stability analysis
305 >        based on the impulse-Verlet splitting shows that position-Verlet
306 >        has enhanced stability, in terms of the largest allowable time step,
307 >        for cases where an ample separation of time scales exists. Numerical
308 >        investigations confirm the advantages of the position-Verlet scheme
309 >        when used for the fastest time scales of the system. Applications
310 >        to a biomolecule. a solvated protein, for both Newtonian and Langevin
311 >        dynamics echo these trends over large outer time-step regimes. (C)
312 >        2001 American Institute of Physics.},
313 >  annote = {469KV Times Cited:6 Cited References Count:30},
314 >  issn = {0021-9606},
315 >  uri = {<Go to ISI>://000170813800005},
316   }
317  
318 < @Article{Klafter96,
319 <  author =       {J. Klafter and M. Shlesinger and G. Zumofen},
320 <  title =        {Beyond Brownian Motion},
321 <  journal =      {Physics Today},
322 <  year =         1996,
323 <  volume =       49,
324 <  pages =        {33-39}
318 > @ARTICLE{Bates2005,
319 >  author = {M. A. Bates and G. R. Luckhurst},
320 >  title = {Biaxial nematic phases and V-shaped molecules: A Monte Carlo simulation
321 >        study},
322 >  journal = {Physical Review E},
323 >  year = {2005},
324 >  volume = {72},
325 >  pages = {-},
326 >  number = {5},
327 >  month = {Nov},
328 >  abstract = {Inspired by recent claims that compounds composed of V-shaped molecules
329 >        can exhibit the elusive biaxial nematic phase, we have developed
330 >        a generic simulation model for such systems. This contains the features
331 >        of the molecule that are essential to its liquid crystal behavior,
332 >        namely the anisotropies of the two arms and the angle between them.
333 >        The behavior of the model has been investigated using Monte Carlo
334 >        simulations for a wide range of these structural parameters. This
335 >        allows us to establish the relationship between the V-shaped molecule
336 >        and its ability to form a biaxial nematic phase. Of particular importance
337 >        are the criteria of geometry and the relative anisotropy necessary
338 >        for the system to exhibit a Landau point, at which the biaxial nematic
339 >        is formed directly from the isotropic phase. The simulations have
340 >        also been used to determine the orientational order parameters for
341 >        a selection of molecular axes. These are especially important because
342 >        they reveal the phase symmetry and are connected to the experimental
343 >        determination of this. The simulation results show that, whereas
344 >        some positions are extremely sensitive to the phase biaxiality,
345 >        others are totally blind to this.},
346 >  annote = {Part 1 988LQ Times Cited:0 Cited References Count:38},
347 >  issn = {1539-3755},
348 >  uri = {<Go to ISI>://000233603100030},
349   }
350  
351 < @Article{Blumen83,
352 <  author =       {A. Blumen and J. Klafter and G. Zumofen},
353 <  title =        {Recombination in amorphous materials as a
354 <                  continuous-time random-walk problem},
355 <  journal =      {Phys. Rev. B},
356 <  year =         1983,
357 <  volume =       27,
358 <  pages =        {3429-3435}
351 > @ARTICLE{Beard2003,
352 >  author = {D. A. Beard and T. Schlick},
353 >  title = {Unbiased rotational moves for rigid-body dynamics},
354 >  journal = {Biophysical Journal},
355 >  year = {2003},
356 >  volume = {85},
357 >  pages = {2973-2976},
358 >  number = {5},
359 >  month = {Nov 1},
360 >  abstract = {We introduce an unbiased protocol for performing rotational moves
361 >        in rigid-body dynamics simulations. This approach - based on the
362 >        analytic solution for the rotational equations of motion for an
363 >        orthogonal coordinate system at constant angular velocity - removes
364 >        deficiencies that have been largely ignored in Brownian dynamics
365 >        simulations, namely errors for finite rotations that result from
366 >        applying the noncommuting rotational matrices in an arbitrary order.
367 >        Our algorithm should thus replace standard approaches to rotate
368 >        local coordinate frames in Langevin and Brownian dynamics simulations.},
369 >  annote = {736UA Times Cited:0 Cited References Count:11},
370 >  issn = {0006-3495},
371 >  uri = {<Go to ISI>://000186190500018},
372   }
373  
374 < @Article{Klafter94,
375 <  author =       {J. Klafter and G. Zumofen},
376 <  title =        {Probability Distributions for Continuous-Time Random
377 <                  Walks with Long Tails},
378 <  journal =      jpc,
379 <  year =         1994,
380 <  volume =       98,
381 <  pages =        {7366-7370}
374 > @ARTICLE{Beloborodov1998,
375 >  author = {I. S. Beloborodov and V. Y. Orekhov and A. S. Arseniev},
376 >  title = {Effect of coupling between rotational and translational Brownian
377 >        motions on NMR spin relaxation: Consideration using green function
378 >        of rigid body diffusion},
379 >  journal = {Journal of Magnetic Resonance},
380 >  year = {1998},
381 >  volume = {132},
382 >  pages = {328-329},
383 >  number = {2},
384 >  month = {Jun},
385 >  abstract = {Using the Green function of arbitrary rigid Brownian diffusion (Goldstein,
386 >        Biopolymers 33, 409-436, 1993), it was analytically shown that coupling
387 >        between translation and rotation diffusion degrees of freedom does
388 >        not affect the correlation functions relevant to the NMR intramolecular
389 >        relaxation. It follows that spectral densities usually used for
390 >        the anisotropic rotation diffusion (Woessner, J. Chem. Phys. 37,
391 >        647-654, 1962) can be regarded as exact in respect to the rotation-translation
392 >        coupling for the spin system connected with a rigid body. (C) 1998
393 >        Academic Press.},
394 >  annote = {Zu605 Times Cited:2 Cited References Count:6},
395 >  issn = {1090-7807},
396 >  uri = {<Go to ISI>://000074214800017},
397   }
398  
399 <
400 < @Article{Dzugutov92,
401 <  author =       {M. Dzugutov},
402 <  title =        {Glass formation in a simple monatomic liquid with
403 <                  icosahedral inherent local order},
404 <  journal =      pra,
405 <  year =         1992,
406 <  volume =       46,
407 <  pages =        {R2984-R2987}
399 > @ARTICLE{Berardi1996,
400 >  author = {R. Berardi and S. Orlandi and C. Zannoni},
401 >  title = {Antiphase structures in polar smectic liquid crystals and their molecular
402 >        origin},
403 >  journal = {Chemical Physics Letters},
404 >  year = {1996},
405 >  volume = {261},
406 >  pages = {357-362},
407 >  number = {3},
408 >  month = {Oct 18},
409 >  abstract = {We demonstrate that the overall molecular dipole organization in a
410 >        smectic liquid crystal formed of polar molecules can be strongly
411 >        influenced by the position of the dipole in the molecule. We study
412 >        by large scale Monte Carlo simulations systems of attractive-repulsive
413 >        ''Gay-Berne'' elongated ellipsoids with an axial dipole at the center
414 >        or near the end of the molecule and we show that monolayer smectic
415 >        liquid crystals and modulated antiferroelectric bilayer stripe domains
416 >        similar to the experimentally observed ''antiphase'' structures
417 >        are obtained in the two cases.},
418 >  annote = {Vn637 Times Cited:49 Cited References Count:26},
419 >  issn = {0009-2614},
420 >  uri = {<Go to ISI>://A1996VN63700023},
421   }
422  
423 < @Article{Moore94,
424 <  author =       {P. Moore and T. Keyes},
425 <  title =        {Normal Mode Analysis of Liquid $\mbox{CS}_2$: Velocity
426 <                  Correlation Functions and Self-Diffusion Constants},
427 <  journal =      jcp,
428 <  year =         1994,
429 <  volume =       100,
430 <  pages =        6709
423 > @ARTICLE{Berkov2005,
424 >  author = {D. V. Berkov and N. L. Gorn},
425 >  title = {Magnetization precession due to a spin-polarized current in a thin
426 >        nanoelement: Numerical simulation study},
427 >  journal = {Physical Review B},
428 >  year = {2005},
429 >  volume = {72},
430 >  pages = {-},
431 >  number = {9},
432 >  month = {Sep},
433 >  abstract = {In this paper a detailed numerical study (in frames of the Slonczewski
434 >        formalism) of magnetization oscillations driven by a spin-polarized
435 >        current through a thin elliptical nanoelement is presented. We show
436 >        that a sophisticated micromagnetic model, where a polycrystalline
437 >        structure of a nanoelement is taken into account, can explain qualitatively
438 >        all most important features of the magnetization oscillation spectra
439 >        recently observed experimentally [S. I. Kiselev , Nature 425, 380
440 >        (2003)], namely, existence of several equidistant spectral bands,
441 >        sharp onset and abrupt disappearance of magnetization oscillations
442 >        with increasing current, absence of the out-of-plane regime predicted
443 >        by a macrospin model, and the relation between frequencies of so-called
444 >        small-angle and quasichaotic oscillations. However, a quantitative
445 >        agreement with experimental results (especially concerning the frequency
446 >        of quasichaotic oscillations) could not be achieved in the region
447 >        of reasonable parameter values, indicating that further model refinement
448 >        is necessary for a complete understanding of the spin-driven magnetization
449 >        precession even in this relatively simple experimental situation.},
450 >  annote = {969IT Times Cited:2 Cited References Count:55},
451 >  issn = {1098-0121},
452 >  uri = {<Go to ISI>://000232228500058},
453   }
454  
455 < @Article{Seeley89,
456 <  author =       {G. Seeley and T. Keyes},
457 <  title =        {Normal-mode analysis of liquid-state dynamics},
458 <  journal =      jcp,
459 <  year =         1989,
460 <  volume =       91,
461 <  pages =        {5581-5586}
455 > @ARTICLE{Berkov2005a,
456 >  author = {D. V. Berkov and N. L. Gorn},
457 >  title = {Stochastic dynamic simulations of fast remagnetization processes:
458 >        recent advances and applications},
459 >  journal = {Journal of Magnetism and Magnetic Materials},
460 >  year = {2005},
461 >  volume = {290},
462 >  pages = {442-448},
463 >  month = {Apr},
464 >  abstract = {Numerical simulations of fast remagnetization processes using stochastic
465 >        dynamics are widely used to study various magnetic systems. In this
466 >        paper, we first address several crucial methodological problems
467 >        of such simulations: (i) the influence of finite-element discretization
468 >        on simulated dynamics, (ii) choice between Ito and Stratonovich
469 >        stochastic calculi by the solution of micromagnetic stochastic equations
470 >        of motion and (iii) non-trivial correlation properties of the random
471 >        (thermal) field. Next, we discuss several examples to demonstrate
472 >        the great potential of the Langevin dynamics for studying fast remagnetization
473 >        processes in technically relevant applications: we present numerical
474 >        analysis of equilibrium magnon spectra in patterned structures,
475 >        study thermal noise effects on the magnetization dynamics of nanoelements
476 >        in pulsed fields and show some results for a remagnetization dynamics
477 >        induced by a spin-polarized current. (c) 2004 Elsevier B.V. All
478 >        rights reserved.},
479 >  annote = {Part 1 Sp. Iss. SI 922KU Times Cited:2 Cited References Count:25},
480 >  issn = {0304-8853},
481 >  uri = {<Go to ISI>://000228837600109},
482   }
483  
484 < @Article{Madan90,
485 <  author =       {B. Madan and T. Keyes and G. Seeley},
486 <  title =        {Diffusion in supercooled liquids via normal mode
487 <                  analysis},
488 <  journal =      jcp,
489 <  year =         1990,
490 <  volume =       92,
491 <  pages =        {7565-7569}
484 > @ARTICLE{Berkov2002,
485 >  author = {D. V. Berkov and N. L. Gorn and P. Gornert},
486 >  title = {Magnetization dynamics in nanoparticle systems: Numerical simulation
487 >        using Langevin dynamics},
488 >  journal = {Physica Status Solidi a-Applied Research},
489 >  year = {2002},
490 >  volume = {189},
491 >  pages = {409-421},
492 >  number = {2},
493 >  month = {Feb 16},
494 >  abstract = {We report on recent progress achieved by the development of numerical
495 >        methods based on the stochastic (Langevin) dynamics applied to systems
496 >        of interacting magnetic nanoparticles. The method enables direct
497 >        simulations of the trajectories of magnetic moments taking into
498 >        account (i) all relevant interactions, (ii) precession dynamics,
499 >        and (iii) temperature fluctuations included via the random (thermal)
500 >        field. We present several novel results obtained using new methods
501 >        developed for the solution of the Langevin equations. In particular,
502 >        we have investigated magnetic nanodots and disordered granular systems
503 >        of single-domain magnetic particles. For the first case we have
504 >        calculated the spectrum and the spatial distribution of spin excitations.
505 >        For the second system the complex ac susceptibility chi(omega, T)
506 >        for various particle concentrations and particle anisotropies were
507 >        computed and compared with numerous experimental results.},
508 >  annote = {526TF Times Cited:4 Cited References Count:37},
509 >  issn = {0031-8965},
510 >  uri = {<Go to ISI>://000174145200026},
511   }
512  
513 < @Article{Madan91,
514 <  author =       {B. Madan and T. Keyes and G. Seeley},
515 <  title =        {Normal mode analysis of the velocity correlation
516 <                  function in supercooled liquids},
517 <  journal =      jcp,
518 <  year =         1991,
519 <  volume =       94,
520 <  pages =        {6762-6769}
513 > @ARTICLE{Bernal1980,
514 >  author = {J.M. Bernal and J. G. {de la Torre}},
515 >  title = {Transport Properties and Hydrodynamic Centers of Rigid Macromolecules
516 >        with Arbitrary Shape},
517 >  journal = {Biopolymers},
518 >  year = {1980},
519 >  volume = {19},
520 >  pages = {751-766},
521   }
522  
523 < @Article{Buchner92,
524 <  author =       {M. Buchner, B.~M. Ladanyi and R.~M. Stratt},
525 <  title =        {The short-time dynamics of molecular
526 <                  liquids. Instantaneous-normal-mode theory},
527 <  journal =      jcp,
528 <  year =         1992,
529 <  volume =       97,
530 <  pages =        {8522-8535}
523 > @ARTICLE{Brunger1984,
524 >  author = {A. Brunger and C. L. Brooks and M. Karplus},
525 >  title = {Stochastic Boundary-Conditions for Molecular-Dynamics Simulations
526 >        of St2 Water},
527 >  journal = {Chemical Physics Letters},
528 >  year = {1984},
529 >  volume = {105},
530 >  pages = {495-500},
531 >  number = {5},
532 >  annote = {Sm173 Times Cited:143 Cited References Count:22},
533 >  issn = {0009-2614},
534 >  uri = {<Go to ISI>://A1984SM17300007},
535   }
536  
537 < @Article{Wan94,
538 <  author =       {Yi. Wan and R.~M. Stratt},
539 <  title =        {Liquid theory for the instantaneous normal modes of
540 <                  a liquid},
541 <  journal =      jcp,
542 <  year =         1994,
543 <  volume =       100,
544 <  pages =        {5123-5138}
537 > @ARTICLE{Budd1999,
538 >  author = {C. J. Budd and G. J. Collins and W. Z. Huang and R. D. Russell},
539 >  title = {Self-similar numerical solutions of the porous-medium equation using
540 >        moving mesh methods},
541 >  journal = {Philosophical Transactions of the Royal Society of London Series
542 >        a-Mathematical Physical and Engineering Sciences},
543 >  year = {1999},
544 >  volume = {357},
545 >  pages = {1047-1077},
546 >  number = {1754},
547 >  month = {Apr 15},
548 >  abstract = {This paper examines a synthesis of adaptive mesh methods with the
549 >        use of symmetry to study a partial differential equation. In particular,
550 >        it considers methods which admit discrete self-similar solutions,
551 >        examining the convergence of these to the true self-similar solution
552 >        as well as their stability. Special attention is given to the nonlinear
553 >        diffusion equation describing flow in a porous medium.},
554 >  annote = {199EE Times Cited:4 Cited References Count:14},
555 >  issn = {1364-503X},
556 >  uri = {<Go to ISI>://000080466800005},
557   }
558  
559 < @article{Stratt95,
560 <  author =       {R.~M. Stratt},
561 <  title =        {The instantaneous normal modes of liquids},
562 <  journal =      {Acc. Chem. Res.},
563 <  year =         1995,
564 <  volume =       28,
565 <  pages =        {201-207}
559 > @ARTICLE{Camp1999,
560 >  author = {P. J. Camp and M. P. Allen and A. J. Masters},
561 >  title = {Theory and computer simulation of bent-core molecules},
562 >  journal = {Journal of Chemical Physics},
563 >  year = {1999},
564 >  volume = {111},
565 >  pages = {9871-9881},
566 >  number = {21},
567 >  month = {Dec 1},
568 >  abstract = {Fluids of hard bent-core molecules have been studied using theory
569 >        and computer simulation. The molecules are composed of two hard
570 >        spherocylinders, with length-to-breadth ratio L/D, joined by their
571 >        ends at an angle 180 degrees - gamma. For L/D = 2 and gamma = 0,10,20
572 >        degrees, the simulations show isotropic, nematic, smectic, and solid
573 >        phases. For L/D = 2 and gamma = 30 degrees, only isotropic, nematic,
574 >        and solid phases are in evidence, which suggests that there is a
575 >        nematic-smectic-solid triple point at an angle in the range 20 degrees
576 >        < gamma < 30 degrees. In all of the orientationally ordered fluid
577 >        phases the order is purely uniaxial. For gamma = 10 degrees and
578 >        20 degrees, at the studied densities, the solid is also uniaxially
579 >        ordered, whilst for gamma = 30 degrees the solid layers are biaxially
580 >        ordered. For L/D = 2 and gamma = 60 degrees and 90 degrees we find
581 >        no spontaneous orientational ordering. This is shown to be due to
582 >        the interlocking of dimer pairs which precludes alignment. We find
583 >        similar results for L/D = 9.5 and gamma = 72 degrees, where an isotropic-biaxial
584 >        nematic transition is predicted by Onsager theory. Simulations in
585 >        the biaxial nematic phase show it to be at least mechanically stable
586 >        with respect to the isotropic phase, however. We have compared the
587 >        quasi-exact simulation results in the isotropic phase with the predicted
588 >        equations of state from three theories: the virial expansion containing
589 >        the second and third virial coefficients; the Parsons-Lee equation
590 >        of state; an application of Wertheim's theory of associating fluids
591 >        in the limit of infinite attractive association energy. For all
592 >        of the molecule elongations and geometries we have simulated, the
593 >        Wertheim theory proved to be the most accurate. Interestingly, the
594 >        isotropic equation of state is virtually independent of the dimer
595 >        bond angle-a feature that is also reflected in the lack of variation
596 >        with angle of the calculated second and third virial coefficients.
597 >        (C) 1999 American Institute of Physics. [S0021-9606(99)50445-5].},
598 >  annote = {255TC Times Cited:24 Cited References Count:38},
599 >  issn = {0021-9606},
600 >  uri = {<Go to ISI>://000083685400056},
601   }
602  
603 < @Article{Nitzan95,
604 <  author =       {G.~V. Vijayadamodar and A. Nitzan},
605 <  title =        {On the application of instantaneous normal mode
606 <                  analysis to long time dynamics of liquids},
607 <  journal =      jcp,
608 <  year =         1995,
609 <  volume =       103,
610 <  pages =        {2169-2177}
603 > @ARTICLE{Care2005,
604 >  author = {C. M. Care and D. J. Cleaver},
605 >  title = {Computer simulation of liquid crystals},
606 >  journal = {Reports on Progress in Physics},
607 >  year = {2005},
608 >  volume = {68},
609 >  pages = {2665-2700},
610 >  number = {11},
611 >  month = {Nov},
612 >  abstract = {A review is presented of molecular and mesoscopic computer simulations
613 >        of liquid crystalline systems. Molecular simulation approaches applied
614 >        to such systems are described, and the key findings for bulk phase
615 >        behaviour are reported. Following this, recently developed lattice
616 >        Boltzmann approaches to the mesoscale modelling of nemato-dynanics
617 >        are reviewed. This paper concludes with a discussion of possible
618 >        areas for future development in this field.},
619 >  annote = {989TU Times Cited:2 Cited References Count:258},
620 >  issn = {0034-4885},
621 >  uri = {<Go to ISI>://000233697600004},
622   }
623  
624 < @Article{Ribeiro98,
625 <  author =       "M.~C.~C. Ribeiro and P.~A. Madden",
626 <  title =        "Unstable Modes in Ionic Melts",
627 <  journal =      jcp,
628 <  year =         1998,
629 <  volume =       108,
630 <  pages =        {3256-3263}
624 > @ARTICLE{Carrasco1999,
625 >  author = {B. Carrasco and J. G. {de la Torre}},
626 >  title = {Hydrodynamic properties of rigid particles: Comparison of different
627 >        modeling and computational procedures},
628 >  journal = {Biophysical Journal},
629 >  year = {1999},
630 >  volume = {76},
631 >  pages = {3044-3057},
632 >  number = {6},
633 >  month = {Jun},
634 >  abstract = {The hydrodynamic properties of rigid particles are calculated from
635 >        models composed of spherical elements (beads) using theories developed
636 >        by Kirkwood, Bloomfield, and their coworkers. Bead models have usually
637 >        been built in such a way that the beads fill the volume occupied
638 >        by the particles. Sometimes the beads are few and of varying sizes
639 >        (bead models in the strict sense), and other times there are many
640 >        small beads (filling models). Because hydrodynamic friction takes
641 >        place at the molecular surface, another possibility is to use shell
642 >        models, as originally proposed by Bloomfield. In this work, we have
643 >        developed procedures to build models of the various kinds, and we
644 >        describe the theory and methods for calculating their hydrodynamic
645 >        properties, including approximate methods that may be needed to
646 >        treat models with a very large number of elements. By combining
647 >        the various possibilities of model building and hydrodynamic calculation,
648 >        several strategies can be designed. We have made a quantitative
649 >        comparison of the performance of the various strategies by applying
650 >        them to some test cases, for which the properties are known a priori.
651 >        We provide guidelines and computational tools for bead modeling.},
652 >  annote = {200TT Times Cited:46 Cited References Count:57},
653 >  issn = {0006-3495},
654 >  uri = {<Go to ISI>://000080556700016},
655   }
656  
657 < @Article{Keyes98a,
658 <  author =       {T. Keyes and W.-X. Li and U.~Z{\"{u}}rcher},
659 <  title =        {Comment on a critique of the instantaneous normal
660 <                  mode (INM) approach to diffusion
661 <                  (J. Chem. Phys. {\bf 107}, 4618 (1997))},
662 <  journal =      jcp,
663 <  year =         1998,
664 <  volume =       109,
665 <  pages =        {4693-4694}
657 > @ARTICLE{Chandra1999,
658 >  author = {A. Chandra and T. Ichiye},
659 >  title = {Dynamical properties of the soft sticky dipole model of water: Molecular
660 >        dynamics simulations},
661 >  journal = {Journal of Chemical Physics},
662 >  year = {1999},
663 >  volume = {111},
664 >  pages = {2701-2709},
665 >  number = {6},
666 >  month = {Aug 8},
667 >  abstract = {Dynamical properties of the soft sticky dipole (SSD) model of water
668 >        are calculated by means of molecular dynamics simulations. Since
669 >        this is not a simple point model, the forces and torques arising
670 >        from the SSD potential are derived here. Simulations are carried
671 >        out in the microcanonical ensemble employing the Ewald method for
672 >        the electrostatic interactions. Various time correlation functions
673 >        and dynamical quantities associated with the translational and rotational
674 >        motion of water molecules are evaluated and compared with those
675 >        of two other commonly used models of liquid water, namely the transferable
676 >        intermolecular potential-three points (TIP3P) and simple point charge/extended
677 >        (SPC/E) models, and also with experiments. The dynamical properties
678 >        of the SSD water model are found to be in good agreement with the
679 >        experimental results and appear to be better than the TIP3P and
680 >        SPC/E models in most cases, as has been previously shown for its
681 >        thermodynamic, structural, and dielectric properties. Also, molecular
682 >        dynamics simulations of the SSD model are found to run much faster
683 >        than TIP3P, SPC/E, and other multisite models. (C) 1999 American
684 >        Institute of Physics. [S0021-9606(99)51430-X].},
685 >  annote = {221EN Times Cited:14 Cited References Count:66},
686 >  issn = {0021-9606},
687 >  uri = {<Go to ISI>://000081711200038},
688   }
689  
690 < @Article{Alemany98,
691 <  author =       {M.~M.~G. Alemany and C. Rey and L.~J. Gallego},
692 <  title =        {Transport coefficients of liquid transition metals:
693 <                  A computer simulation study using the embedded atom
694 <                  model},
695 <  journal =      jcp,
696 <  year =         1998,
697 <  volume =       109,
698 <  pages =        {5175-5176}
699 < }
700 <
701 < @Article{Belonoshko00,
1161 <  author =       {A.~B. Belonoshko and R. Ahuja and O. Eriksson and
1162 <                  B. Johansson},
1163 <  title =        {Quasi ab initio molecular dynamic study of Cu melting},
1164 <  journal =      prb,
1165 <  year =         2000,
1166 <  volume =       61,
1167 <  pages =        {3838-3844}
1168 < }
1169 <
1170 < @Article{Banhart92,
1171 <  author =       {J. Banhart and H. Ebert and R. Kuentzler and
1172 <                  J. Voitl\"{a}nder},
1173 <  title =        {Electronic properties of single-phased metastable
1174 <                  Ag-Cu alloys},
1175 <  journal =      prb,
1176 <  year =         1992,
1177 <  volume =       46,
1178 <  pages =        {9968-9975}
1179 < }
1180 <
1181 < @Article{Wendt78,
1182 <  author =       {H. Wendt and F.~F. Abraham},
1183 <  title =        {},
1184 <  journal =      prl,
1185 <  year =         1978,
1186 <  volume =       41,
1187 <  pages =        1244
690 > @ARTICLE{Channell1990,
691 >  author = {P. J. Channell and C. Scovel},
692 >  title = {Symplectic Integration of Hamiltonian-Systems},
693 >  journal = {Nonlinearity},
694 >  year = {1990},
695 >  volume = {3},
696 >  pages = {231-259},
697 >  number = {2},
698 >  month = {may},
699 >  annote = {Dk631 Times Cited:152 Cited References Count:34},
700 >  issn = {0951-7715},
701 >  uri = {<Go to ISI>://A1990DK63100001},
702   }
703  
704 < @Article{Lewis91,
705 <  author =       {L.~J. Lewis},
706 <  title =        {Atomic dynamics through the glass transition},
707 <  journal =      prb,
708 <  year =         1991,
709 <  volume =       44,
710 <  pages =        {4245-4254}
704 > @ARTICLE{Chen2003,
705 >  author = {B. Chen and F. Solis},
706 >  title = {Explicit mixed finite order Runge-Kutta methods},
707 >  journal = {Applied Numerical Mathematics},
708 >  year = {2003},
709 >  volume = {44},
710 >  pages = {21-30},
711 >  number = {1-2},
712 >  month = {Jan},
713 >  abstract = {We investigate the asymptotic behavior of systems of nonlinear differential
714 >        equations and introduce a family of mixed methods from combinations
715 >        of explicit Runge-Kutta methods. These methods have better stability
716 >        behavior than traditional Runge-Kutta methods and generally extend
717 >        the range of validity of the calculated solutions. These methods
718 >        also give a way of determining if the numerical solutions are real
719 >        or spurious. Emphasis is put on examples coming from mathematical
720 >        models in ecology. (C) 2002 IMACS. Published by Elsevier Science
721 >        B.V. All rights reserved.},
722 >  annote = {633ZD Times Cited:0 Cited References Count:9},
723 >  issn = {0168-9274},
724 >  uri = {<Go to ISI>://000180314200002},
725   }
726  
727 < @Article{Liu92,
728 <  author =       {R.~S. Liu and D.~W. Qi and S. Wang},
729 <  title =        {Subpeaks of structure factors for rapidly quenched metals},
730 <  journal =      prb,
731 <  year =         1992,
732 <  volume =       45,
733 <  pages =        {451-453}
727 > @ARTICLE{Cheung2004,
728 >  author = {D. L. Cheung and S. J. Clark and M. R. Wilson},
729 >  title = {Calculation of flexoelectric coefficients for a nematic liquid crystal
730 >        by atomistic simulation},
731 >  journal = {Journal of Chemical Physics},
732 >  year = {2004},
733 >  volume = {121},
734 >  pages = {9131-9139},
735 >  number = {18},
736 >  month = {Nov 8},
737 >  abstract = {Equilibrium molecular dynamics calculations have been performed for
738 >        the liquid crystal molecule n-4-(trans-4-n-pentylcyclohexyl)benzonitrile
739 >        (PCH5) using a fully atomistic model. Simulation data have been
740 >        obtained for a series of temperatures in the nematic phase. The
741 >        simulation data have been used to calculate the flexoelectric coefficients
742 >        e(s) and e(b) using the linear response formalism of Osipov and
743 >        Nemtsov [M. A. Osipov and V. B. Nemtsov, Sov. Phys. Crstallogr.
744 >        31, 125 (1986)]. The temperature and order parameter dependence
745 >        of e(s) and e(b) are examined, as are separate contributions from
746 >        different intermolecular interactions. Values of e(s) and e(b) calculated
747 >        from simulation are consistent with those found from experiment.
748 >        (C) 2004 American Institute of Physics.},
749 >  annote = {866UM Times Cited:4 Cited References Count:61},
750 >  issn = {0021-9606},
751 >  uri = {<Go to ISI>://000224798900053},
752   }
753  
754 < @Book{pliny,
755 <  author =       {Pliny},
756 <  title =        {Hist. Nat.},
757 <  publisher =    { },
758 <  year =         { },
759 <  volume =       {XXXVI}
754 > @ARTICLE{Cheung2002,
755 >  author = {D. L. Cheung and S. J. Clark and M. R. Wilson},
756 >  title = {Calculation of the rotational viscosity of a nematic liquid crystal},
757 >  journal = {Chemical Physics Letters},
758 >  year = {2002},
759 >  volume = {356},
760 >  pages = {140-146},
761 >  number = {1-2},
762 >  month = {Apr 15},
763 >  abstract = {Equilibrium molecular dynamics calculations have been performed for
764 >        the liquid crystal molecule n-4-(trans-4-npentylcyclohexyl)benzonitrile
765 >        (PCH5) using a fully atomistic model. Simulation data has been obtained
766 >        for a series of temperatures in the nematic phase. The rotational
767 >        viscosity co-efficient gamma(1), has been calculated using the angular
768 >        velocity correlation function of the nematic director, n, the mean
769 >        squared diffusion of n and statistical mechanical methods based
770 >        on the rotational diffusion co-efficient. We find good agreement
771 >        between the first two methods and experimental values. (C) 2002
772 >        Published by Elsevier Science B.V.},
773 >  annote = {547KF Times Cited:8 Cited References Count:31},
774 >  issn = {0009-2614},
775 >  uri = {<Go to ISI>://000175331000020},
776   }
777  
778 < @Article{Anheuser94,
779 <  author =       {K. Anheuser and J.P. Northover},
780 <  title =        {Silver plating of Roman and Celtic coins from Britan - a technical study},
781 <  journal =      {Brit. Num. J.},
782 <  year =         1994,
783 <  volume =       64,
784 <  pages =        22
778 > @ARTICLE{Chin2004,
779 >  author = {S. A. Chin},
780 >  title = {Dynamical multiple-time stepping methods for overcoming resonance
781 >        instabilities},
782 >  journal = {Journal of Chemical Physics},
783 >  year = {2004},
784 >  volume = {120},
785 >  pages = {8-13},
786 >  number = {1},
787 >  month = {Jan 1},
788 >  abstract = {Current molecular dynamics simulations of biomolecules using multiple
789 >        time steps to update the slowly changing force are hampered by instabilities
790 >        beginning at time steps near the half period of the fastest vibrating
791 >        mode. These #resonance# instabilities have became a critical barrier
792 >        preventing the long time simulation of biomolecular dynamics. Attempts
793 >        to tame these instabilities by altering the slowly changing force
794 >        and efforts to damp them out by Langevin dynamics do not address
795 >        the fundamental cause of these instabilities. In this work, we trace
796 >        the instability to the nonanalytic character of the underlying spectrum
797 >        and show that a correct splitting of the Hamiltonian, which renders
798 >        the spectrum analytic, restores stability. The resulting Hamiltonian
799 >        dictates that in addition to updating the momentum due to the slowly
800 >        changing force, one must also update the position with a modified
801 >        mass. Thus multiple-time stepping must be done dynamically. (C)
802 >        2004 American Institute of Physics.},
803 >  annote = {757TK Times Cited:1 Cited References Count:22},
804 >  issn = {0021-9606},
805 >  uri = {<Go to ISI>://000187577400003},
806   }
807  
808 < @Article{Pense92,
809 <  author =       {A. W. Pense},
810 <  title =        {The Decline and Fall of the Roman Denarius},
811 <  journal =      {Mat. Char.},
812 <  year =         1992,
813 <  volume =       29,
814 <  pages =        213
808 > @ARTICLE{Cook2000,
809 >  author = {M. J. Cook and M. R. Wilson},
810 >  title = {Simulation studies of dipole correlation in the isotropic liquid
811 >        phase},
812 >  journal = {Liquid Crystals},
813 >  year = {2000},
814 >  volume = {27},
815 >  pages = {1573-1583},
816 >  number = {12},
817 >  month = {Dec},
818 >  abstract = {The Kirkwood correlation factor g(1) determines the preference for
819 >        local parallel or antiparallel dipole association in the isotropic
820 >        phase. Calamitic mesogens with longitudinal dipole moments and Kirkwood
821 >        factors greater than 1 have an enhanced effective dipole moment
822 >        along the molecular long axis. This leads to higher values of Delta
823 >        epsilon in the nematic phase. This paper describes state-of-the-art
824 >        molecular dynamics simulations of two calamitic mesogens 4-(trans-4-n-pentylcyclohexyl)benzonitrile
825 >        (PCH5) and 4-(trans-4-n-pentylcyclohexyl) chlorobenzene (PCH5-Cl)
826 >        in the isotropic liquid phase using an all-atom force field and
827 >        taking long range electrostatics into account using an Ewald summation.
828 >        Using this methodology, PCH5 is seen to prefer antiparallel dipole
829 >        alignment with a negative g(1) and PCH5-Cl is seen to prefer parallel
830 >        dipole alignment with a positive g(1); this is in accordance with
831 >        experimental dielectric measurements. Analysis of the molecular
832 >        dynamics trajectories allows an assessment of why these molecules
833 >        behave differently.},
834 >  annote = {376BF Times Cited:10 Cited References Count:16},
835 >  issn = {0267-8292},
836 >  uri = {<Go to ISI>://000165437800002},
837   }
838  
839 < @Article{Ngai81,
840 <  author =       {K.~L. Ngai and F.-S. Liu},
841 <  title =        {Dispersive diffusion transport and noise,
842 <                  time-dependent diffusion coefficient, generalized
843 <                  Einstein-Nernst relation, and dispersive
844 <                  diffusion-controlled unimolecular and bimolecular
845 <                  reactions},
846 <  journal =      prb,
847 <  year =         1981,
848 <  volume =       24,
849 <  pages =        {1049-1065}
839 > @ARTICLE{Cui2003,
840 >  author = {B. X. Cui and M. Y. Shen and K. F. Freed},
841 >  title = {Folding and misfolding of the papillomavirus E6 interacting peptide
842 >        E6ap},
843 >  journal = {Proceedings of the National Academy of Sciences of the United States
844 >        of America},
845 >  year = {2003},
846 >  volume = {100},
847 >  pages = {7087-7092},
848 >  number = {12},
849 >  month = {Jun 10},
850 >  abstract = {All-atom Langevin dynamics simulations have been performed to study
851 >        the folding pathways of the 18-residue binding domain fragment E6ap
852 >        of the human papillomavirus E6 interacting peptide. Six independent
853 >        folding trajectories, with a total duration of nearly 2 mus, all
854 >        lead to the same native state in which the E6ap adopts a fluctuating
855 >        a-helix structure in the central portion (Ser-4-Leu-13) but with
856 >        very flexible N and C termini. Simulations starting from different
857 >        core configurations exhibit the E6ap folding dynamics as either
858 >        a two- or three-state folder with an intermediate misfolded state.
859 >        The essential leucine hydrophobic core (Leu-9, Leu-12, and Leu-13)
860 >        is well conserved in the native-state structure but absent in the
861 >        intermediate structure, suggesting that the leucine core is not
862 >        only essential for the binding activity of E6ap but also important
863 >        for the stability of the native structure. The free energy landscape
864 >        reveals a significant barrier between the basins separating the
865 >        native and misfolded states. We also discuss the various underlying
866 >        forces that drive the peptide into its native state.},
867 >  annote = {689LC Times Cited:3 Cited References Count:48},
868 >  issn = {0027-8424},
869 >  uri = {<Go to ISI>://000183493500037},
870   }
871  
872 < @Unpublished{Truhlar00,
873 <  author =       {D.~G. Truhlar and A. Kohen},
874 <  note =         {private correspondence}
872 > @ARTICLE{Denisov2003,
873 >  author = {S. I. Denisov and T. V. Lyutyy and K. N. Trohidou},
874 >  title = {Magnetic relaxation in finite two-dimensional nanoparticle ensembles},
875 >  journal = {Physical Review B},
876 >  year = {2003},
877 >  volume = {67},
878 >  pages = {-},
879 >  number = {1},
880 >  month = {Jan 1},
881 >  abstract = {We study the slow phase of thermally activated magnetic relaxation
882 >        in finite two-dimensional ensembles of dipolar interacting ferromagnetic
883 >        nanoparticles whose easy axes of magnetization are perpendicular
884 >        to the distribution plane. We develop a method to numerically simulate
885 >        the magnetic relaxation for the case that the smallest heights of
886 >        the potential barriers between the equilibrium directions of the
887 >        nanoparticle magnetic moments are much larger than the thermal energy.
888 >        Within this framework, we analyze in detail the role that the correlations
889 >        of the nanoparticle magnetic moments and the finite size of the
890 >        nanoparticle ensemble play in magnetic relaxation.},
891 >  annote = {642XH Times Cited:11 Cited References Count:31},
892 >  issn = {1098-0121},
893 >  uri = {<Go to ISI>://000180830400056},
894   }
895  
896 < @Article{Truhlar78,
897 <  author =       {Donald G. Truhlar},
898 <  title =        {Interpretation of the Activation Energy},
899 <  journal =      {J. Chem. Ed.},
900 <  year =         1978,
901 <  volume =       55,
902 <  pages =        309
896 > @ARTICLE{Derreumaux1998,
897 >  author = {P. Derreumaux and T. Schlick},
898 >  title = {The loop opening/closing motion of the enzyme triosephosphate isomerase},
899 >  journal = {Biophysical Journal},
900 >  year = {1998},
901 >  volume = {74},
902 >  pages = {72-81},
903 >  number = {1},
904 >  month = {Jan},
905 >  abstract = {To explore the origin of the large-scale motion of triosephosphate
906 >        isomerase's flexible loop (residues 166 to 176) at the active site,
907 >        several simulation protocols are employed both for the free enzyme
908 >        in vacuo and for the free enzyme with some solvent modeling: high-temperature
909 >        Langevin dynamics simulations, sampling by a #dynamics##driver#
910 >        approach, and potential-energy surface calculations. Our focus is
911 >        on obtaining the energy barrier to the enzyme's motion and establishing
912 >        the nature of the loop movement. Previous calculations did not determine
913 >        this energy barrier and the effect of solvent on the barrier. High-temperature
914 >        molecular dynamics simulations and crystallographic studies have
915 >        suggested a rigid-body motion with two hinges located at both ends
916 >        of the loop; Brownian dynamics simulations at room temperature pointed
917 >        to a very flexible behavior. The present simulations and analyses
918 >        reveal that although solute/solvent hydrogen bonds play a crucial
919 >        role in lowering the energy along the pathway, there still remains
920 >        a high activation barrier, This finding clearly indicates that,
921 >        if the loop opens and closes in the absence of a substrate at standard
922 >        conditions (e.g., room temperature, appropriate concentration of
923 >        isomerase), the time scale for transition is not in the nanosecond
924 >        but rather the microsecond range. Our results also indicate that
925 >        in the context of spontaneous opening in the free enzyme, the motion
926 >        is of rigid-body type and that the specific interaction between
927 >        residues Ala(176) and Tyr(208) plays a crucial role in the loop
928 >        opening/closing mechanism.},
929 >  annote = {Zl046 Times Cited:30 Cited References Count:29},
930 >  issn = {0006-3495},
931 >  uri = {<Go to ISI>://000073393400009},
932   }
933  
934 < @Book{Tolman27,
935 <  author =       {R. C. Tolman},
936 <  title =        {Statistical Mechanics with Applications to Physics and Chemistry},
937 <  chapter =      {},
938 <  publisher =    {Chemical Catalog Co.},
939 <  address =      {New York},
940 <  year =         1927,
941 <  pages =        {260-270}
934 > @ARTICLE{Dullweber1997,
935 >  author = {A. Dullweber and B. Leimkuhler and R. McLachlan},
936 >  title = {Symplectic splitting methods for rigid body molecular dynamics},
937 >  journal = {Journal of Chemical Physics},
938 >  year = {1997},
939 >  volume = {107},
940 >  pages = {5840-5851},
941 >  number = {15},
942 >  month = {Oct 15},
943 >  abstract = {Rigid body molecular models possess symplectic structure and time-reversal
944 >        symmetry. Standard numerical integration methods destroy both properties,
945 >        introducing nonphysical dynamical behavior such as numerically induced
946 >        dissipative states and drift in the energy during long term simulations.
947 >        This article describes the construction, implementation, and practical
948 >        application of fast explicit symplectic-reversible integrators for
949 >        multiple rigid body molecular simulations, These methods use a reduction
950 >        to Euler equations for the free rigid body, together with a symplectic
951 >        splitting technique. In every time step, the orientational dynamics
952 >        of each rigid body is integrated by a sequence of planar rotations.
953 >        Besides preserving the symplectic and reversible structures of the
954 >        flow, this scheme accurately conserves the total angular momentum
955 >        of a system of interacting rigid bodies. Excellent energy conservation
956 >        fan be obtained relative to traditional methods, especially in long-time
957 >        simulations. The method is implemented in a research code, ORIENT
958 >        and compared with a quaternion/extrapolation scheme for the TIP4P
959 >        model of water. Our experiments show that the symplectic-reversible
960 >        scheme is far superior to the more traditional quaternion method.
961 >        (C) 1997 American Institute of Physics.},
962 >  annote = {Ya587 Times Cited:35 Cited References Count:32},
963 >  issn = {0021-9606},
964 >  uri = {<Go to ISI>://A1997YA58700024},
965   }
966  
967 < @Article{Tolman20,
968 <  author =       {R. C. Tolman},
969 <  title =        {Statistical Mechanics Applied to Chemical Kinetics},
970 <  journal =      jacs,
971 <  year =         1920,
972 <  volume =       42,
973 <  pages =        2506
967 > @ARTICLE{Edwards2005,
968 >  author = {S. A. Edwards and D. R. M. Williams},
969 >  title = {Stretching a single diblock copolymer in a selective solvent: Langevin
970 >        dynamics simulations},
971 >  journal = {Macromolecules},
972 >  year = {2005},
973 >  volume = {38},
974 >  pages = {10590-10595},
975 >  number = {25},
976 >  month = {Dec 13},
977 >  abstract = {Using the Langevin dynamics technique, we have carried out simulations
978 >        of a single-chain flexible diblock copolymer. The polymer consists
979 >        of two blocks of equal length, one very poorly solvated and the
980 >        other close to theta-conditions. We study what happens when such
981 >        a polymer is stretched, for a range of different stretching speeds,
982 >        and correlate our observations with features in the plot of force
983 >        vs extension. We find that at slow speeds this force profile does
984 >        not increase monotonically, in disagreement with earlier predictions,
985 >        and that at high speeds there is a strong dependence on which end
986 >        of the polymer is pulled, as well as a high level of hysteresis.},
987 >  annote = {992EC Times Cited:0 Cited References Count:13},
988 >  issn = {0024-9297},
989 >  uri = {<Go to ISI>://000233866200035},
990   }
991  
992 < @Article{Nagel96,
993 <  author =       {M.D. Ediger and  C.A. Angell and Sidney R. Nagel},
994 <  title =        {Supercooled Liquids and Glasses},
995 <  journal =      jpc,
996 <  year =         1996,
997 <  volume =       100,
998 <  pages =        13200
992 > @ARTICLE{Egberts1988,
993 >  author = {E. Egberts and H. J. C. Berendsen},
994 >  title = {Molecular-Dynamics Simulation of a Smectic Liquid-Crystal with Atomic
995 >        Detail},
996 >  journal = {Journal of Chemical Physics},
997 >  year = {1988},
998 >  volume = {89},
999 >  pages = {3718-3732},
1000 >  number = {6},
1001 >  month = {Sep 15},
1002 >  annote = {Q0188 Times Cited:219 Cited References Count:43},
1003 >  issn = {0021-9606},
1004 >  uri = {<Go to ISI>://A1988Q018800036},
1005   }
1006  
1007 < @InBook{Blumen86,
1008 <  author =       {A. Blumen and J. Klafter and G. Zumofen},
1009 <  editor =       {Luciano Peitronero and E. Tosatti},
1010 <  title =        {Fractals in Physics},
1011 <  chapter =      {Reactions in Disordered Media Modelled by Fractals},
1012 <  publisher =    {North-Holland},
1013 <  year =         1986,
1014 <  series =       {International Symposium on Fractals in Physics},
1015 <  address =      {Amsterdam},
1016 <  pages =        399
1007 > @ARTICLE{Ermak1978,
1008 >  author = {D. L. Ermak and J. A. Mccammon},
1009 >  title = {Brownian Dynamics with Hydrodynamic Interactions},
1010 >  journal = {Journal of Chemical Physics},
1011 >  year = {1978},
1012 >  volume = {69},
1013 >  pages = {1352-1360},
1014 >  number = {4},
1015 >  annote = {Fp216 Times Cited:785 Cited References Count:42},
1016 >  issn = {0021-9606},
1017 >  uri = {<Go to ISI>://A1978FP21600004},
1018   }
1019  
1020 < @Article{Shlesinger84,
1021 <  author =       {M.~F. Shlesinger and E.~W. Montroll},
1022 <  title =        {On the Williams-Watts function of dielectric relaxation},
1023 <  journal =      {Proc. Natl. Acad. Sci. USA},
1024 <  year =         1984,
1025 <  volume =       81,
1026 <  pages =        {1280-1283}
1020 > @ARTICLE{Fennell2004,
1021 >  author = {C. J. Fennell and J. D. Gezelter},
1022 >  title = {On the structural and transport properties of the soft sticky dipole
1023 >        and related single-point water models},
1024 >  journal = {Journal of Chemical Physics},
1025 >  year = {2004},
1026 >  volume = {120},
1027 >  pages = {9175-9184},
1028 >  number = {19},
1029 >  month = {May 15},
1030 >  abstract = {The density maximum and temperature dependence of the self-diffusion
1031 >        constant were investigated for the soft sticky dipole (SSD) water
1032 >        model and two related reparametrizations of this single-point model.
1033 >        A combination of microcanonical and isobaric-isothermal molecular
1034 >        dynamics simulations was used to calculate these properties, both
1035 >        with and without the use of reaction field to handle long-range
1036 >        electrostatics. The isobaric-isothermal simulations of the melting
1037 >        of both ice-I-h and ice-I-c showed a density maximum near 260 K.
1038 >        In most cases, the use of the reaction field resulted in calculated
1039 >        densities which were significantly lower than experimental densities.
1040 >        Analysis of self-diffusion constants shows that the original SSD
1041 >        model captures the transport properties of experimental water very
1042 >        well in both the normal and supercooled liquid regimes. We also
1043 >        present our reparametrized versions of SSD for use both with the
1044 >        reaction field or without any long-range electrostatic corrections.
1045 >        These are called the SSD/RF and SSD/E models, respectively. These
1046 >        modified models were shown to maintain or improve upon the experimental
1047 >        agreement with the structural and transport properties that can
1048 >        be obtained with either the original SSD or the density-corrected
1049 >        version of the original model (SSD1). Additionally, a novel low-density
1050 >        ice structure is presented which appears to be the most stable ice
1051 >        structure for the entire SSD family. (C) 2004 American Institute
1052 >        of Physics.},
1053 >  annote = {816YY Times Cited:5 Cited References Count:39},
1054 >  issn = {0021-9606},
1055 >  uri = {<Go to ISI>://000221146400032},
1056   }
1057  
1058 < @Article{Klafter86,
1059 <  author =       {J. Klafter and M.~F. Shlesinger},
1060 <  title =        {On the relationship among three theories of
1061 <                  relaxation in disordered systems},
1062 <  journal =      {Proc. Natl. Acad. Sci. USA},
1063 <  year =         1986,
1064 <  volume =       83,
1065 <  pages =        {848-851}
1058 > @ARTICLE{Fernandes2002,
1059 >  author = {M. X. Fernandes and J. G. {de la Torre}},
1060 >  title = {Brownian dynamics simulation of rigid particles of arbitrary shape
1061 >        in external fields},
1062 >  journal = {Biophysical Journal},
1063 >  year = {2002},
1064 >  volume = {83},
1065 >  pages = {3039-3048},
1066 >  number = {6},
1067 >  month = {Dec},
1068 >  abstract = {We have developed a Brownian dynamics simulation algorithm to generate
1069 >        Brownian trajectories of an isolated, rigid particle of arbitrary
1070 >        shape in the presence of electric fields or any other external agents.
1071 >        Starting from the generalized diffusion tensor, which can be calculated
1072 >        with the existing HYDRO software, the new program BROWNRIG (including
1073 >        a case-specific subprogram for the external agent) carries out a
1074 >        simulation that is analyzed later to extract the observable dynamic
1075 >        properties. We provide a variety of examples of utilization of this
1076 >        method, which serve as tests of its performance, and also illustrate
1077 >        its applicability. Examples include free diffusion, transport in
1078 >        an electric field, and diffusion in a restricting environment.},
1079 >  annote = {633AD Times Cited:2 Cited References Count:43},
1080 >  issn = {0006-3495},
1081 >  uri = {<Go to ISI>://000180256300012},
1082   }
1083  
1084 < @Article{Li2001,
1085 <  author =   {Z. Li and M. Lieberman and W. Hill},
1086 <  title =    {{\sc xps} and {\sc sers} Study of Silicon Phthalocyanine
1087 <                  Monolayers: umbrella vs. octopus design strategies
1088 <                  for formation of oriented {\sc sam}s},
1089 <  journal =      {Langmuir},
1090 <  year =     2001,
1091 <  volume =       17,
1092 <  pages =        {4887-4894}
1084 > @ARTICLE{Gay1981,
1085 >  author = {J. G. Gay and B. J. Berne},
1086 >  title = {Modification of the Overlap Potential to Mimic a Linear Site-Site
1087 >        Potential},
1088 >  journal = {Journal of Chemical Physics},
1089 >  year = {1981},
1090 >  volume = {74},
1091 >  pages = {3316-3319},
1092 >  number = {6},
1093 >  annote = {Lj347 Times Cited:482 Cited References Count:13},
1094 >  issn = {0021-9606},
1095 >  uri = {<Go to ISI>://A1981LJ34700029},
1096   }
1097  
1098 < @Article{Evans1993,
1099 <  author =       {J.~W. Evans},
1100 <  title =        {Random and Cooperative Sequential Adsorption},
1101 <  journal =      rmp,
1102 <  year =         1993,
1103 <  volume =       65,
1104 <  pages =        {1281-1329}
1098 > @ARTICLE{Gelin1999,
1099 >  author = {M. F. Gelin},
1100 >  title = {Inertial effects in the Brownian dynamics with rigid constraints},
1101 >  journal = {Macromolecular Theory and Simulations},
1102 >  year = {1999},
1103 >  volume = {8},
1104 >  pages = {529-543},
1105 >  number = {6},
1106 >  month = {Nov},
1107 >  abstract = {To investigate the influence of inertial effects on the dynamics of
1108 >        an assembly of beads subjected to rigid constraints and placed in
1109 >        a buffer medium, a convenient method to introduce suitable generalized
1110 >        coordinates is presented. Without any restriction on the nature
1111 >        of the soft forces involved (both stochastic and deterministic),
1112 >        pertinent Langevin equations are derived. Provided that the Brownian
1113 >        forces are Gaussian and Markovian, the corresponding Fokker-Planck
1114 >        equation (FPE) is obtained in the complete phase space of generalized
1115 >        coordinates and momenta. The correct short time behavior for correlation
1116 >        functions (CFs) of generalized coordinates is established, and the
1117 >        diffusion equation with memory (DEM) is deduced from the FPE in
1118 >        the high friction Limit. The DEM is invoked to perform illustrative
1119 >        calculations in two dimensions of the orientational CFs for once
1120 >        broken nonrigid rods immobilized on a surface. These calculations
1121 >        reveal that the CFs under certain conditions exhibit an oscillatory
1122 >        behavior, which is irreproducible within the standard diffusion
1123 >        equation. Several methods are considered for the approximate solution
1124 >        of the DEM, and their application to three dimensional DEMs is discussed.},
1125 >  annote = {257MM Times Cited:2 Cited References Count:82},
1126 >  issn = {1022-1344},
1127 >  uri = {<Go to ISI>://000083785700002},
1128   }
1129  
1130 <
1131 < @Article{Dwyer1977,
1132 <  author =   {D.~J. Dwyer and G.~W. Simmons and R.~P. Wei},
1133 <  title =    {},
1134 <  journal =      {Surf. Sci.},
1135 <  year =     1977,
1136 <  volume =   64,
1347 <  pages =    617
1130 > @BOOK{Goldstein2001,
1131 >  title = {Classical Mechanics},
1132 >  publisher = {Addison Wesley},
1133 >  year = {2001},
1134 >  author = {H. Goldstein and C. Poole and J. Safko},
1135 >  address = {San Francisco},
1136 >  edition = {3rd},
1137   }
1138  
1139 < @Article{Macritche1978,
1140 <  author =   {F. MacRitche},
1141 <  title =    {},
1142 <  journal =      {Adv. Protein Chem.},
1143 <  year =     1978,
1144 <  volume =   32,
1145 <  pages =    283
1139 > @ARTICLE{Gray2003,
1140 >  author = {J. J. Gray and S. Moughon and C. Wang and O. Schueler-Furman and
1141 >        B. Kuhlman and C. A. Rohl and D. Baker},
1142 >  title = {Protein-protein docking with simultaneous optimization of rigid-body
1143 >        displacement and side-chain conformations},
1144 >  journal = {Journal of Molecular Biology},
1145 >  year = {2003},
1146 >  volume = {331},
1147 >  pages = {281-299},
1148 >  number = {1},
1149 >  month = {Aug 1},
1150 >  abstract = {Protein-protein docking algorithms provide a means to elucidate structural
1151 >        details for presently unknown complexes. Here, we present and evaluate
1152 >        a new method to predict protein-protein complexes from the coordinates
1153 >        of the unbound monomer components. The method employs a low-resolution,
1154 >        rigid-body, Monte Carlo search followed by simultaneous optimization
1155 >        of backbone displacement and side-chain conformations using Monte
1156 >        Carlo minimization. Up to 10(5) independent simulations are carried
1157 >        out, and the resulting #decoys# are ranked using an energy function
1158 >        dominated by van der Waals interactions, an implicit solvation model,
1159 >        and an orientation-dependent hydrogen bonding potential. Top-ranking
1160 >        decoys are clustered to select the final predictions. Small-perturbation
1161 >        studies reveal the formation of binding funnels in 42 of 54 cases
1162 >        using coordinates derived from the bound complexes and in 32 of
1163 >        54 cases using independently determined coordinates of one or both
1164 >        monomers. Experimental binding affinities correlate with the calculated
1165 >        score function and explain the predictive success or failure of
1166 >        many targets. Global searches using one or both unbound components
1167 >        predict at least 25% of the native residue-residue contacts in 28
1168 >        of the 32 cases where binding funnels exist. The results suggest
1169 >        that the method may soon be useful for generating models of biologically
1170 >        important complexes from the structures of the isolated components,
1171 >        but they also highlight the challenges that must be met to achieve
1172 >        consistent and accurate prediction of protein-protein interactions.
1173 >        (C) 2003 Elsevier Ltd. All rights reserved.},
1174 >  annote = {704QL Times Cited:48 Cited References Count:60},
1175 >  issn = {0022-2836},
1176 >  uri = {<Go to ISI>://000184351300022},
1177   }
1178  
1179 < @Article{Feder1980,
1180 <  author =   {J. Feder},
1181 <  title =    {},
1182 <  journal =      {J. Theor. Biol.},
1183 <  year =     1980,
1184 <  volume =   87,
1185 <  pages =    237
1179 > @ARTICLE{Greengard1994,
1180 >  author = {L. Greengard},
1181 >  title = {Fast Algorithms for Classical Physics},
1182 >  journal = {Science},
1183 >  year = {1994},
1184 >  volume = {265},
1185 >  pages = {909-914},
1186 >  number = {5174},
1187 >  month = {Aug 12},
1188 >  abstract = {Some of the recently developed fast summation methods that have arisen
1189 >        in scientific computing are described. These methods require an
1190 >        amount of work proportional to N or N log N to evaluate all pairwise
1191 >        interactions in an ensemble of N particles. Traditional methods,
1192 >        by contrast, require an amount of work proportional to N-2. AS a
1193 >        result, large-scale simulations can be carried out using only modest
1194 >        computer resources. In combination with supercomputers, it is possible
1195 >        to address questions that were previously out of reach. Problems
1196 >        from diffusion, gravitation, and wave propagation are considered.},
1197 >  annote = {Pb499 Times Cited:99 Cited References Count:44},
1198 >  issn = {0036-8075},
1199 >  uri = {<Go to ISI>://A1994PB49900031},
1200   }
1201  
1202 < @Article{Ramsden1993,
1203 <  author =   {J.~J. Ramsden},
1204 <  title =    {},
1205 <  journal =      prl,
1206 <  year =     1993,
1207 <  volume =   71,
1208 <  pages =    295
1202 > @ARTICLE{Greengard1987,
1203 >  author = {L. Greengard and V. Rokhlin},
1204 >  title = {A Fast Algorithm for Particle Simulations},
1205 >  journal = {Journal of Computational Physics},
1206 >  year = {1987},
1207 >  volume = {73},
1208 >  pages = {325-348},
1209 >  number = {2},
1210 >  month = {Dec},
1211 >  annote = {L0498 Times Cited:899 Cited References Count:7},
1212 >  issn = {0021-9991},
1213 >  uri = {<Go to ISI>://A1987L049800006},
1214   }
1215  
1216 <
1217 < @Article{Egelhoff1989,
1218 <  author =   {W.~F. Egelhoff and I. Jacob},
1219 <  title =    {},
1220 <  journal =      prl,
1221 <  year =     1989,
1222 <  volume =   62,
1223 <  pages =    921
1216 > @ARTICLE{Hairer1997,
1217 >  author = {E. Hairer and C. Lubich},
1218 >  title = {The life-span of backward error analysis for numerical integrators},
1219 >  journal = {Numerische Mathematik},
1220 >  year = {1997},
1221 >  volume = {76},
1222 >  pages = {441-462},
1223 >  number = {4},
1224 >  month = {Jun},
1225 >  abstract = {Backward error analysis is a useful tool for the study of numerical
1226 >        approximations to ordinary differential equations. The numerical
1227 >        solution is formally interpreted as the exact solution of a perturbed
1228 >        differential equation, given as a formal and usually divergent series
1229 >        in powers of the step size. For a rigorous analysis, this series
1230 >        has to be truncated. In this article we study the influence of this
1231 >        truncation to the difference between the numerical solution and
1232 >        the exact solution of the perturbed differential equation. Results
1233 >        on the long-time behaviour of numerical solutions are obtained in
1234 >        this way. We present applications to the numerical phase portrait
1235 >        near hyperbolic equilibrium points, to asymptotically stable periodic
1236 >        orbits and Hopf bifurcation, and to energy conservation and approximation
1237 >        of invariant tori in Hamiltonian systems.},
1238 >  annote = {Xj488 Times Cited:50 Cited References Count:19},
1239 >  issn = {0029-599X},
1240 >  uri = {<Go to ISI>://A1997XJ48800002},
1241   }
1242  
1243 <
1244 < @Article{Viot1992a,
1245 <  author =   {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1246 <  title =    {RANDOM SEQUENTIAL ADSORPTION OF ANISOTROPIC
1247 <                  PARTICLES 1. JAMMING LIMIT AND ASYMPTOTIC-BEHAVIOR},
1248 <  journal =      jpc,
1249 <  year =     1992,
1250 <  volume =   97,
1251 <  pages =    {5212-5218}
1243 > @ARTICLE{Hao1993,
1244 >  author = {M. H. Hao and M. R. Pincus and S. Rackovsky and H. A. Scheraga},
1245 >  title = {Unfolding and Refolding of the Native Structure of Bovine Pancreatic
1246 >        Trypsin-Inhibitor Studied by Computer-Simulations},
1247 >  journal = {Biochemistry},
1248 >  year = {1993},
1249 >  volume = {32},
1250 >  pages = {9614-9631},
1251 >  number = {37},
1252 >  month = {Sep 21},
1253 >  abstract = {A new procedure for studying the folding and unfolding of proteins,
1254 >        with an application to bovine pancreatic trypsin inhibitor (BPTI),
1255 >        is reported. The unfolding and refolding of the native structure
1256 >        of the protein are characterized by the dimensions of the protein,
1257 >        expressed in terms of the three principal radii of the structure
1258 >        considered as an ellipsoid. A dynamic equation, describing the variations
1259 >        of the principal radii on the unfolding path, and a numerical procedure
1260 >        to solve this equation are proposed. Expanded and distorted conformations
1261 >        are refolded to the native structure by a dimensional-constraint
1262 >        energy minimization procedure. A unique and reproducible unfolding
1263 >        pathway for an intermediate of BPTI lacking the [30,51] disulfide
1264 >        bond is obtained. The resulting unfolded conformations are extended;
1265 >        they contain near-native local structure, but their longest principal
1266 >        radii are more than 2.5 times greater than that of the native structure.
1267 >        The most interesting finding is that the majority of expanded conformations,
1268 >        generated under various conditions, can be refolded closely to the
1269 >        native structure, as measured by the correct overall chain fold,
1270 >        by the rms deviations from the native structure of only 1.9-3.1
1271 >        angstrom, and by the energy differences of about 10 kcal/mol from
1272 >        the native structure. Introduction of the [30,51] disulfide bond
1273 >        at this stage, followed by minimization, improves the closeness
1274 >        of the refolded structures to the native structure, reducing the
1275 >        rms deviations to 0.9-2.0 angstrom. The unique refolding of these
1276 >        expanded structures over such a large conformational space implies
1277 >        that the folding is strongly dictated by the interactions in the
1278 >        amino acid sequence of BPTI. The simulations indicate that, under
1279 >        conditions that favor a compact structure as mimicked by the volume
1280 >        constraints in our algorithm; the expanded conformations have a
1281 >        strong tendency to move toward the native structure; therefore,
1282 >        they probably would be favorable folding intermediates. The results
1283 >        presented here support a general model for protein folding, i.e.,
1284 >        progressive formation of partially folded structural units, followed
1285 >        by collapse to the compact native structure. The general applicability
1286 >        of the procedure is also discussed.},
1287 >  annote = {Ly294 Times Cited:27 Cited References Count:57},
1288 >  issn = {0006-2960},
1289 >  uri = {<Go to ISI>://A1993LY29400014},
1290   }
1291  
1292 < @Article{Viot1992b,
1293 <  author =   {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1294 <  title =    {SATURATION COVERAGE IN RANDOM SEQUENTIAL ADSORPTION
1295 <                  OF VERY ELONGATED PARTICLES},
1296 <  journal =      {Physica A},
1297 <  year =     1992,
1298 <  volume =   191,
1299 <  pages =    {248-252}
1292 > @ARTICLE{Hinsen2000,
1293 >  author = {K. Hinsen and A. J. Petrescu and S. Dellerue and M. C. Bellissent-Funel
1294 >        and G. R. Kneller},
1295 >  title = {Harmonicity in slow protein dynamics},
1296 >  journal = {Chemical Physics},
1297 >  year = {2000},
1298 >  volume = {261},
1299 >  pages = {25-37},
1300 >  number = {1-2},
1301 >  month = {Nov 1},
1302 >  abstract = {The slow dynamics of proteins around its native folded state is usually
1303 >        described by diffusion in a strongly anharmonic potential. In this
1304 >        paper, we try to understand the form and origin of the anharmonicities,
1305 >        with the principal aim of gaining a better understanding of the
1306 >        principal motion types, but also in order to develop more efficient
1307 >        numerical methods for simulating neutron scattering spectra of large
1308 >        proteins. First, we decompose a molecular dynamics (MD) trajectory
1309 >        of 1.5 ns for a C-phycocyanin dimer surrounded by a layer of water
1310 >        into three contributions that we expect to be independent: the global
1311 >        motion of the residues, the rigid-body motion of the sidechains
1312 >        relative to the backbone, and the internal deformations of the sidechains.
1313 >        We show that they are indeed almost independent by verifying the
1314 >        factorization of the incoherent intermediate scattering function.
1315 >        Then, we show that the global residue motions, which include all
1316 >        large-scale backbone motions, can be reproduced by a simple harmonic
1317 >        model which contains two contributions: a short-time vibrational
1318 >        term, described by a standard normal mode calculation in a local
1319 >        minimum, and a long-time diffusive term, described by Brownian motion
1320 >        in an effective harmonic potential. The potential and the friction
1321 >        constants were fitted to the MD data. The major anharmonic contribution
1322 >        to the incoherent intermediate scattering function comes from the
1323 >        rigid-body diffusion of the sidechains. This model can be used to
1324 >        calculate scattering functions for large proteins and for long-time
1325 >        scales very efficiently, and thus provides a useful complement to
1326 >        MD simulations, which are best suited for detailed studies on smaller
1327 >        systems or for shorter time scales. (C) 2000 Elsevier Science B.V.
1328 >        All rights reserved.},
1329 >  annote = {Sp. Iss. SI 368MT Times Cited:16 Cited References Count:31},
1330 >  issn = {0301-0104},
1331 >  uri = {<Go to ISI>://000090121700003},
1332   }
1333  
1334 < @Article{Dobson1987,
1335 <  author =       {B.~W. Dobson},
1336 <  title =        {},
1337 <  journal =      prb,
1338 <  year =         1987,
1339 <  volume =       36,
1340 <  pages =        1068
1334 > @ARTICLE{Ho1992,
1335 >  author = {C. Ho and C. D. Stubbs},
1336 >  title = {Hydration at the Membrane Protein-Lipid Interface},
1337 >  journal = {Biophysical Journal},
1338 >  year = {1992},
1339 >  volume = {63},
1340 >  pages = {897-902},
1341 >  number = {4},
1342 >  month = {Oct},
1343 >  abstract = {Evidence has been found for the existence water at the protein-lipid
1344 >        hydrophobic interface ot the membrane proteins, gramicidin and apocytochrome
1345 >        C, using two related fluorescence spectroscopic approaches. The
1346 >        first approach exploited the fact that the presence of water in
1347 >        the excited state solvent cage of a fluorophore increases the rate
1348 >        of decay. For 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5-hexatrienyl)
1349 >        phenyl]ethyl]carbonyl]-3-sn-PC (DPH-PC), where the fluorophores
1350 >        are located in the hydrophobic core of the lipid bilayer, the introduction
1351 >        of gramicidin reduced the fluorescence lifetime, indicative of an
1352 >        increased presence of water in the bilayer. Since a high protein:lipid
1353 >        ratio was used, the fluorophores were forced to be adjacent to the
1354 >        protein hydrophobic surface, hence the presence of water in this
1355 >        region could be inferred. Cholesterol is known to reduce the water
1356 >        content of lipid bilayers and this effect was maintained at the
1357 >        protein-lipid interface with both gramicidin and apocytochrome C,
1358 >        again suggesting hydration in this region. The second approach was
1359 >        to use the fluorescence enhancement induced by exchanging deuterium
1360 >        oxide (D2O) for H2O. Both the fluorescence intensities of trimethylammonium-DPH,
1361 >        located in the lipid head group region, and of the gramicidin intrinsic
1362 >        tryptophans were greater in a D2O buffer compared with H2O, showing
1363 >        that the fluorophores were exposed to water in the bilayer at the
1364 >        protein-lipid interface. In the presence of cholesterol the fluorescence
1365 >        intensity ratio of D2O to H2O decreased, indicating a removal of
1366 >        water by the cholesterol, in keeping with the lifetime data. Altered
1367 >        hydration at the protein-lipid interface could affect conformation,
1368 >        thereby offering a new route by which membrane protein functioning
1369 >        may be modified.},
1370 >  annote = {Ju251 Times Cited:55 Cited References Count:44},
1371 >  issn = {0006-3495},
1372 >  uri = {<Go to ISI>://A1992JU25100002},
1373   }
1374  
1375 < @Article{Boyer1995,
1376 <  author =       {D. Boyer and P. Viot and G. Tarjus and J. Talbot},
1377 <  title =        {PERCUS-$\mbox{Y}$EVICK-LIKE INTERGRAL EQUATION FOR RANDOM SEQUENTIAL
1378 <                  ADSORPTION},
1379 <  journal =      jcp,
1380 <  year =         1995,
1423 <  volume =       103,
1424 <  pages =        1607
1375 > @BOOK{Hockney1981,
1376 >  title = {Computer Simulation Using Particles},
1377 >  publisher = {McGraw-Hill},
1378 >  year = {1981},
1379 >  author = {R.W. Hockney and J.W. Eastwood},
1380 >  address = {New York},
1381   }
1382  
1383 < @Article{Viot1992c,
1384 <  author =       {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1385 <  title =        {SATURATION COVERAGE OF HIGHLY ELONGATED ANISOTROPIC
1386 <                  PARTICLES},
1387 <  journal =      {Physica A},
1388 <  year =         1992,
1389 <  volume =       191,
1390 <  pages =        {248-252}
1383 > @ARTICLE{Huh2004,
1384 >  author = {Y. Huh and N. M. Cann},
1385 >  title = {Discrimination in isotropic, nematic, and smectic phases of chiral
1386 >        calamitic molecules: A computer simulation study},
1387 >  journal = {Journal of Chemical Physics},
1388 >  year = {2004},
1389 >  volume = {121},
1390 >  pages = {10299-10308},
1391 >  number = {20},
1392 >  month = {Nov 22},
1393 >  abstract = {Racemic fluids of chiral calamitic molecules are investigated with
1394 >        molecular dynamics simulations. In particular, the phase behavior
1395 >        as a function of density is examined for eight racemates. The relationship
1396 >        between chiral discrimination and orientational order in the phase
1397 >        is explored. We find that the transition from the isotropic phase
1398 >        to a liquid crystal phase is accompanied by an increase in chiral
1399 >        discrimination, as measured by differences in radial distributions.
1400 >        Among ordered phases, discrimination is largest for smectic phases
1401 >        with a significant preference for heterochiral contact within the
1402 >        layers. (C) 2004 American Institute of Physics.},
1403 >  annote = {870FJ Times Cited:0 Cited References Count:63},
1404 >  issn = {0021-9606},
1405 >  uri = {<Go to ISI>://000225042700059},
1406   }
1407  
1408 < @Article{Ricci1994,
1409 <  author =       {S.~M. Ricci and J. Talbot and G. Tarjus and P. Viot},
1410 <  title =        {A STRUCTURAL COMPARISON OF RANDOM SEQUENTIAL ADSORPTION AND
1411 <                  EQUILIBRIUM CONFIGURATIONS OF SPHEROCYLINDERS},
1412 <  journal =      jcp,
1413 <  year =         1994,
1414 <  volume =       101,
1415 <  pages =        9164
1408 > @ARTICLE{Izaguirre2001,
1409 >  author = {J. A. Izaguirre and D. P. Catarello and J. M. Wozniak and R. D. Skeel},
1410 >  title = {Langevin stabilization of molecular dynamics},
1411 >  journal = {Journal of Chemical Physics},
1412 >  year = {2001},
1413 >  volume = {114},
1414 >  pages = {2090-2098},
1415 >  number = {5},
1416 >  month = {Feb 1},
1417 >  abstract = {In this paper we show the possibility of using very mild stochastic
1418 >        damping to stabilize long time step integrators for Newtonian molecular
1419 >        dynamics. More specifically, stable and accurate integrations are
1420 >        obtained for damping coefficients that are only a few percent of
1421 >        the natural decay rate of processes of interest, such as the velocity
1422 >        autocorrelation function. Two new multiple time stepping integrators,
1423 >        Langevin Molly (LM) and Brunger-Brooks-Karplus-Molly (BBK-M), are
1424 >        introduced in this paper. Both use the mollified impulse method
1425 >        for the Newtonian term. LM uses a discretization of the Langevin
1426 >        equation that is exact for the constant force, and BBK-M uses the
1427 >        popular Brunger-Brooks-Karplus integrator (BBK). These integrators,
1428 >        along with an extrapolative method called LN, are evaluated across
1429 >        a wide range of damping coefficient values. When large damping coefficients
1430 >        are used, as one would for the implicit modeling of solvent molecules,
1431 >        the method LN is superior, with LM closely following. However, with
1432 >        mild damping of 0.2 ps(-1), LM produces the best results, allowing
1433 >        long time steps of 14 fs in simulations containing explicitly modeled
1434 >        flexible water. With BBK-M and the same damping coefficient, time
1435 >        steps of 12 fs are possible for the same system. Similar results
1436 >        are obtained for a solvated protein-DNA simulation of estrogen receptor
1437 >        ER with estrogen response element ERE. A parallel version of BBK-M
1438 >        runs nearly three times faster than the Verlet-I/r-RESPA (reversible
1439 >        reference system propagator algorithm) when using the largest stable
1440 >        time step on each one, and it also parallelizes well. The computation
1441 >        of diffusion coefficients for flexible water and ER/ERE shows that
1442 >        when mild damping of up to 0.2 ps-1 is used the dynamics are not
1443 >        significantly distorted. (C) 2001 American Institute of Physics.},
1444 >  annote = {397CQ Times Cited:14 Cited References Count:36},
1445 >  issn = {0021-9606},
1446 >  uri = {<Go to ISI>://000166676100020},
1447   }
1448  
1449 < @Article{Semmler1998,
1450 <  author =   {M. Semmler and E.~K. Mann and J. Ricka and M. Borkovec},
1451 <  title =    {Diffusional Deposition of Charged Latex Particles on
1452 <                  Water-Solid Interfaces at Low Ionic Strength},
1453 <  journal =      {Langmuir},
1454 <  year =     1998,
1455 <  volume =   14,
1456 <  pages =    {5127-5132}
1449 > @ARTICLE{Gray2003,
1450 >  author = {J.~J Gray,S. Moughon, C. Wang },
1451 >  title = {Protein-protein docking with simultaneous optimization of rigid-body
1452 >        displacement and side-chain conformations},
1453 >  journal = {jmb},
1454 >  year = {2003},
1455 >  volume = {331},
1456 >  pages = {281-299},
1457   }
1458  
1459 < @Article{Solomon1986,
1460 <  author =   {H. Solomon and H. Weiner},
1461 <  title =    {A REVIEW OF THE PACKING PROBLEM},
1462 <  journal =      {Comm. Statistics A},
1463 <  year =     1986,
1464 <  volume =   15,
1465 <  pages =    {2571-2607}
1459 > @ARTICLE{Torre1977,
1460 >  author = {Jose Garcia De La Torre, V.A. Bloomfield},
1461 >  title = {Hydrodynamic properties of macromolecular complexes. I. Translation},
1462 >  journal = {Biopolymers},
1463 >  year = {1977},
1464 >  volume = {16},
1465 >  pages = {1747-1763},
1466   }
1467  
1468 < @Article{Bonnier1993,
1469 <  author =   {B. Bonnier and M. Hontebeyrie and C. Meyers},
1470 <  title =    {ON THE RANDOM FILLING OF R(D) BY NONOVERLAPPING
1471 <                  D-DIMENSIONAL CUBES},
1472 <  journal =      {Physica A},
1473 <  year =     1993,
1474 <  volume =   198,
1475 <  pages =    {1-10}
1468 > @ARTICLE{Kane2000,
1469 >  author = {C. Kane and J. E. Marsden and M. Ortiz and M. West},
1470 >  title = {Variational integrators and the Newmark algorithm for conservative
1471 >        and dissipative mechanical systems},
1472 >  journal = {International Journal for Numerical Methods in Engineering},
1473 >  year = {2000},
1474 >  volume = {49},
1475 >  pages = {1295-1325},
1476 >  number = {10},
1477 >  month = {Dec 10},
1478 >  abstract = {The purpose of this work is twofold. First, we demonstrate analytically
1479 >        that the classical Newmark family as well as related integration
1480 >        algorithms are variational in the sense of the Veselov formulation
1481 >        of discrete mechanics. Such variational algorithms are well known
1482 >        to be symplectic and momentum preserving and to often have excellent
1483 >        global energy behaviour. This analytical result is verified through
1484 >        numerical examples and is believed to be one of the primary reasons
1485 >        that this class of algorithms performs so well. Second, we develop
1486 >        algorithms for mechanical systems with forcing, and in particular,
1487 >        for dissipative systems. In this case, we develop integrators that
1488 >        are based on a discretization of the Lagrange d'Alembert principle
1489 >        as well as on a variational formulation of dissipation. It is demonstrated
1490 >        that these types of structured integrators have good numerical behaviour
1491 >        in terms of obtaining the correct amounts by which the energy changes
1492 >        over the integration run. Copyright (C) 2000 John Wiley & Sons,
1493 >        Ltd.},
1494 >  annote = {373CJ Times Cited:30 Cited References Count:41},
1495 >  issn = {0029-5981},
1496 >  uri = {<Go to ISI>://000165270600004},
1497   }
1498  
1499 < @Book{Frenkel1996,
1500 <  author =   {D. Frenkel and B. Smit},
1501 <  title =    {Understanding Molecular Simulation : From Algorithms
1502 <                  to Applications},
1503 <  publisher =    {Academic Press},
1504 <  year =     1996,
1505 <  address =  {New York}
1506 <
1507 <
1508 < }
1509 <
1510 < @Article{Dullweber1997,
1511 <  author =   {A. Dullweber and B. Leimkuhler and R. McLachlan},
1512 <  title =    {Symplectic splitting methods for rigid body molecular
1513 <                  dynamics},
1514 <  journal =      jcp,
1515 <  year =     1997,
1516 <  volume =   107,
1517 <  number =   15,
1518 <  pages =    {5840-5851}
1519 < }
1520 <
1521 < @Article{Siepmann1998,
1499 <  author =   {M. Martin and J.~I. Siepmann},
1500 <  title =    {Transferable Potentials for Phase Equilibria. 1. United-Atom
1501 <                  Description of n-Alkanes},
1502 <  journal =      jpcB,
1503 <  year =     1998,
1504 <  volume =   102,
1505 <  pages =    {2569-2577}
1506 < }
1507 <
1508 < @Article{Marrink01,
1509 <  author =   {S.~J. Marrink and E. Lindahl and O. Edholm and A.~E. Mark},
1510 <  title =    {Simulations of the Spontaneous Aggregation of Phospholipids
1511 <                  into Bilayers},
1512 <  journal =      jacs,
1513 <  year =     2001,
1514 <  volume =   123,
1515 <  pages =    {8638-8639}
1499 > @ARTICLE{Klimov1997,
1500 >  author = {D. K. Klimov and D. Thirumalai},
1501 >  title = {Viscosity dependence of the folding rates of proteins},
1502 >  journal = {Physical Review Letters},
1503 >  year = {1997},
1504 >  volume = {79},
1505 >  pages = {317-320},
1506 >  number = {2},
1507 >  month = {Jul 14},
1508 >  abstract = {The viscosity (eta) dependence of the folding rates for four sequences
1509 >        (the native state of three sequences is a beta sheet, while the
1510 >        fourth forms an alpha helix) is calculated for off-lattice models
1511 >        of proteins. Assuming that the dynamics is given by the Langevin
1512 >        equation, we show that the folding rates increase linearly at low
1513 >        viscosities eta, decrease as 1/eta at large eta, and have a maximum
1514 >        at intermediate values. The Kramers' theory of barrier crossing
1515 >        provides a quantitative fit of the numerical results. By mapping
1516 >        the simulation results to real proteins we estimate that for optimized
1517 >        sequences the time scale for forming a four turn alpha-helix topology
1518 >        is about 500 ns, whereas for beta sheet it is about 10 mu s.},
1519 >  annote = {Xk293 Times Cited:77 Cited References Count:17},
1520 >  issn = {0031-9007},
1521 >  uri = {<Go to ISI>://A1997XK29300035},
1522   }
1523  
1524 < @Article{liu96:new_model,
1525 <  author =   {Y. Liu and T. Ichiye},
1526 <  title =    {Soft sticky dipole potential for liquid water: a new model},
1527 <  journal =      jpc,
1528 <  year =     1996,
1529 <  volume =   100,
1530 <  pages =    {2723-2730}
1524 > @ARTICLE{Kol1997,
1525 >  author = {A. Kol and B. B. Laird and B. J. Leimkuhler},
1526 >  title = {A symplectic method for rigid-body molecular simulation},
1527 >  journal = {Journal of Chemical Physics},
1528 >  year = {1997},
1529 >  volume = {107},
1530 >  pages = {2580-2588},
1531 >  number = {7},
1532 >  month = {Aug 15},
1533 >  abstract = {Rigid-body molecular dynamics simulations typically are performed
1534 >        in a quaternion representation. The nonseparable form of the Hamiltonian
1535 >        in quaternions prevents the use of a standard leapfrog (Verlet)
1536 >        integrator, so nonsymplectic Runge-Kutta, multistep, or extrapolation
1537 >        methods are generally used, This is unfortunate since symplectic
1538 >        methods like Verlet exhibit superior energy conservation in long-time
1539 >        integrations. In this article, we describe an alternative method,
1540 >        which we call RSHAKE (for rotation-SHAKE), in which the entire rotation
1541 >        matrix is evolved (using the scheme of McLachlan and Scovel [J.
1542 >        Nonlin. Sci, 16 233 (1995)]) in tandem with the particle positions.
1543 >        We employ a fast approximate Newton solver to preserve the orthogonality
1544 >        of the rotation matrix. We test our method on a system of soft-sphere
1545 >        dipoles and compare with quaternion evolution using a 4th-order
1546 >        predictor-corrector integrator, Although the short-time error of
1547 >        the quaternion algorithm is smaller for fixed time step than that
1548 >        for RSHAKE, the quaternion scheme exhibits an energy drift which
1549 >        is not observed in simulations with RSHAKE, hence a fixed energy
1550 >        tolerance can be achieved by using a larger time step, The superiority
1551 >        of RSHAKE increases with system size. (C) 1997 American Institute
1552 >        of Physics.},
1553 >  annote = {Xq332 Times Cited:11 Cited References Count:18},
1554 >  issn = {0021-9606},
1555 >  uri = {<Go to ISI>://A1997XQ33200046},
1556   }
1557  
1558 < @Article{liu96:monte_carlo,
1559 <  author =   {Y. Liu and T. Ichiye},
1560 <  title =    {The static dielectric constant of the soft sticky dipole model of liquid water: $\mbox{Monte Carlo}$ simulation},
1561 <  journal =      {Chemical Physics Letters},
1562 <  year =     1996,
1563 <  volume =   256,
1564 <  pages =    {334-340}
1558 > @ARTICLE{Lansac2001,
1559 >  author = {Y. Lansac and M. A. Glaser and N. A. Clark},
1560 >  title = {Microscopic structure and dynamics of a partial bilayer smectic liquid
1561 >        crystal},
1562 >  journal = {Physical Review E},
1563 >  year = {2001},
1564 >  volume = {6405},
1565 >  pages = {-},
1566 >  number = {5},
1567 >  month = {Nov},
1568 >  abstract = {Cyanobiphenyls (nCB's) represent a useful and intensively studied
1569 >        class of mesogens. Many of the peculiar properties of nCB's (e.g.,
1570 >        the occurence of the partial bilayer smectic-A(d) phase) are thought
1571 >        to be a manifestation of short-range antiparallel association of
1572 >        neighboring molecules, resulting from strong dipole-dipole interactions
1573 >        between cyano groups. To test and extend existing models of microscopic
1574 >        ordering in nCB's, we carry out large-scale atomistic simulation
1575 >        studies of the microscopic structure and dynamics of the Sm-A(d)
1576 >        phase of 4-octyl-4'-cyanobiphenyl (8CB). We compute a variety of
1577 >        thermodynamic, structural, and dynamical properties for this material,
1578 >        and make a detailed comparison of our results with experimental
1579 >        measurements in order to validate our molecular model. Semiquantitative
1580 >        agreement with experiment is found: the smectic layer spacing and
1581 >        mass density are well reproduced, translational diffusion constants
1582 >        are similar to experiment, but the orientational ordering of alkyl
1583 >        chains is overestimated. This simulation provides a detailed picture
1584 >        of molecular conformation, smectic layer structure, and intermolecular
1585 >        correlations in Sm-A(d) 8CB, and demonstrates that pronounced short-range
1586 >        antiparallel association of molecules arising from dipole-dipole
1587 >        interactions plays a dominant role in determining the molecular-scale
1588 >        structure of 8CB.},
1589 >  annote = {Part 1 496QF Times Cited:10 Cited References Count:60},
1590 >  issn = {1063-651X},
1591 >  uri = {<Go to ISI>://000172406900063},
1592   }
1593  
1594 < @Article{chandra99:ssd_md,
1595 <  author =   {A. Chandra and T. Ichiye},
1596 <  title =    {Dynamical properties of the soft sticky dipole model of water: Molecular dynamics simulation},
1597 <  journal =      {Journal of Chemical Physics},
1598 <  year =     1999,
1599 <  volume =   111,
1600 <  number =   6,
1601 <  pages =    {2701-2709}
1594 > @ARTICLE{Lansac2003,
1595 >  author = {Y. Lansac and P. K. Maiti and N. A. Clark and M. A. Glaser},
1596 >  title = {Phase behavior of bent-core molecules},
1597 >  journal = {Physical Review E},
1598 >  year = {2003},
1599 >  volume = {67},
1600 >  pages = {-},
1601 >  number = {1},
1602 >  month = {Jan},
1603 >  abstract = {Recently, a new class of smectic liquid crystal phases characterized
1604 >        by the spontaneous formation of macroscopic chiral domains from
1605 >        achiral bent-core molecules has been discovered. We have carried
1606 >        out Monte Carlo simulations of a minimal hard spherocylinder dimer
1607 >        model to investigate the role of excluded volume interactions in
1608 >        determining the phase behavior of bent-core materials and to probe
1609 >        the molecular origins of polar and chiral symmetry breaking. We
1610 >        present the phase diagram of hard spherocylinder dimers of length-diameter
1611 >        ratio of 5 as a function of pressure or density and dimer opening
1612 >        angle psi. With decreasing psi, a transition from a nonpolar to
1613 >        a polar smectic A phase is observed near psi=167degrees, and the
1614 >        nematic phase becomes thermodynamically unstable for psi<135degrees.
1615 >        Free energy calculations indicate that the antipolar smectic A (SmAP(A))
1616 >        phase is more stable than the polar smectic A phase (SmAP(F)). No
1617 >        chiral smectic or biaxial nematic phases were found.},
1618 >  annote = {Part 1 646CM Times Cited:15 Cited References Count:38},
1619 >  issn = {1063-651X},
1620 >  uri = {<Go to ISI>://000181017300042},
1621   }
1622  
1623 < @Book{allen87:csl,
1624 <  author =   {M.~P. Allen and D.~J. Tildesley},
1625 <  title =    {Computer Simulations of Liquids},
1626 <  publisher =    {Oxford University Press},
1627 <  year =     1987,
1628 <  address =  {New York}
1623 > @BOOK{Leach2001,
1624 >  title = {Molecular Modeling: Principles and Applications},
1625 >  publisher = {Pearson Educated Limited},
1626 >  year = {2001},
1627 >  author = {A. Leach},
1628 >  address = {Harlow, England},
1629 >  edition = {2nd},
1630   }
1631  
1632 < @Book{leach01:mm,
1633 <  author =   {A. Leach},
1634 <  title =    {Molecular Modeling: Principles and Applications},
1635 <  publisher =    {Pearson Educated Limited},
1636 <  year =     2001,
1637 <  address =  {Harlow, England},
1638 <  edition =  {2nd}
1632 > @ARTICLE{Leimkuhler1999,
1633 >  author = {B. Leimkuhler},
1634 >  title = {Reversible adaptive regularization: perturbed Kepler motion and classical
1635 >        atomic trajectories},
1636 >  journal = {Philosophical Transactions of the Royal Society of London Series
1637 >        a-Mathematical Physical and Engineering Sciences},
1638 >  year = {1999},
1639 >  volume = {357},
1640 >  pages = {1101-1133},
1641 >  number = {1754},
1642 >  month = {Apr 15},
1643 >  abstract = {Reversible and adaptive integration methods based on Kustaanheimo-Stiefel
1644 >        regularization and modified Sundman transformations are applied
1645 >        to simulate general perturbed Kepler motion and to compute classical
1646 >        trajectories of atomic systems (e.g. Rydberg atoms). The new family
1647 >        of reversible adaptive regularization methods also conserves angular
1648 >        momentum and exhibits superior energy conservation and numerical
1649 >        stability in long-time integrations. The schemes are appropriate
1650 >        for scattering, for astronomical calculations of escape time and
1651 >        long-term stability, and for classical and semiclassical studies
1652 >        of atomic dynamics. The components of an algorithm for trajectory
1653 >        calculations are described. Numerical experiments illustrate the
1654 >        effectiveness of the reversible approach.},
1655 >  annote = {199EE Times Cited:11 Cited References Count:48},
1656 >  issn = {1364-503X},
1657 >  uri = {<Go to ISI>://000080466800007},
1658   }
1659  
1660 <
1661 < @Article{katsaras00,
1662 <  author =   {J. Katsaras and S. Tristram-Nagle and Y. Liu and R.~L. Headrick and E. Fontes and P.~C. Mason and J.~F. Nagle},
1663 <  title =    {Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples},
1664 <  journal =      {Physical Review E},
1665 <  year =     2000,
1569 <  volume =   61,
1570 <  number =   5,
1571 <  pages =    {5668-5677}
1660 > @BOOK{Leimkuhler2004,
1661 >  title = {Simulating Hamiltonian Dynamics},
1662 >  publisher = {Cambridge University Press},
1663 >  year = {2004},
1664 >  author = {B. Leimkuhler and S. Reich},
1665 >  address = {Cambridge},
1666   }
1667  
1668 < @Article{sengupta00,
1669 <  author =   {K. Sengupta and V.~A. Raghunathan and J. Katsaras},
1670 <  title =    {Novel structural Features of the ripple phase of phospholipids},
1671 <  journal =      {Europhysics Letters},
1672 <  year =     2000,
1673 <  volume =   49,
1674 <  number =   6,
1675 <  pages =    {722-728}
1668 > @ARTICLE{Levelut1981,
1669 >  author = {A. M. Levelut and R. J. Tarento and F. Hardouin and M. F. Achard
1670 >        and G. Sigaud},
1671 >  title = {Number of Sa Phases},
1672 >  journal = {Physical Review A},
1673 >  year = {1981},
1674 >  volume = {24},
1675 >  pages = {2180-2186},
1676 >  number = {4},
1677 >  annote = {Ml751 Times Cited:96 Cited References Count:16},
1678 >  issn = {1050-2947},
1679 >  uri = {<Go to ISI>://A1981ML75100057},
1680   }
1681  
1682 < @Article{venable00,
1683 <  author =   {R.~M. Venable and B.~R. Brooks and R.~W. Pastor},
1684 <  title =    {Molecular dynamics simulations of gel ($L_{\beta I}$) phase lipid bilayers in constant pressure and constant surface area ensembles},
1685 <  journal =      jcp,
1686 <  year =     2000,
1687 <  volume =   112,
1688 <  number =   10,
1689 <  pages =    {4822-4832}
1682 > @ARTICLE{Lieb1982,
1683 >  author = {W. R. Lieb and M. Kovalycsik and R. Mendelsohn},
1684 >  title = {Do Clinical-Levels of General-Anesthetics Affect Lipid Bilayers -
1685 >        Evidence from Raman-Scattering},
1686 >  journal = {Biochimica Et Biophysica Acta},
1687 >  year = {1982},
1688 >  volume = {688},
1689 >  pages = {388-398},
1690 >  number = {2},
1691 >  annote = {Nu461 Times Cited:40 Cited References Count:28},
1692 >  issn = {0006-3002},
1693 >  uri = {<Go to ISI>://A1982NU46100012},
1694   }
1695  
1696 < @Article{lindahl00,
1697 <  author =   {E. Lindahl and O. Edholm},
1698 <  title =    {Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations},
1699 <  journal =      {Biophysical Journal},
1700 <  year =     2000,
1701 <  volume =   79,
1702 <  pages =    {426-433},
1703 <  month =    {July}
1696 > @ARTICLE{Link1997,
1697 >  author = {D. R. Link and G. Natale and R. Shao and J. E. Maclennan and N. A.
1698 >        Clark and E. Korblova and D. M. Walba},
1699 >  title = {Spontaneous formation of macroscopic chiral domains in a fluid smectic
1700 >        phase of achiral molecules},
1701 >  journal = {Science},
1702 >  year = {1997},
1703 >  volume = {278},
1704 >  pages = {1924-1927},
1705 >  number = {5345},
1706 >  month = {Dec 12},
1707 >  abstract = {A smectic liquid-crystal phase made from achiral molecules with bent
1708 >        cores was found to have fluid layers that exhibit two spontaneous
1709 >        symmetry-breaking instabilities: polar molecular orientational ordering
1710 >        about the layer normal and molecular tilt. These instabilities combine
1711 >        to form a chiral layer structure with a handedness that depends
1712 >        on the sign of the tilt. The bulk states are either antiferroelectric-racemic,
1713 >        with the layer polar direction and handedness alternating in sign
1714 >        from layer to layer, or antiferroelectric-chiral, which is of uniform
1715 >        layer handedness. Both states exhibit an electric field-induced
1716 >        transition from antiferroelectric to ferroelectric.},
1717 >  annote = {Yl002 Times Cited:407 Cited References Count:25},
1718 >  issn = {0036-8075},
1719 >  uri = {<Go to ISI>://A1997YL00200028},
1720   }
1721  
1722 <
1723 < @Article{saiz02,
1724 <  author =   {L. Saiz and M. Klein},
1725 <  title =    {Electrostatic interactions in a neutral model phospholipid bilayer by molecular dynamics simulations},
1726 <  journal =      jcp,
1727 <  year =     2002,
1728 <  volume =   116,
1729 <  number =   7,
1730 <  pages =    {3052-3057}
1722 > @ARTICLE{Liwo2005,
1723 >  author = {A. Liwo and M. Khalili and H. A. Scheraga},
1724 >  title = {Ab initio simulations of protein folding pathways by molecular dynamics
1725 >        with the united-residue (UNRES) model of polypeptide chains},
1726 >  journal = {Febs Journal},
1727 >  year = {2005},
1728 >  volume = {272},
1729 >  pages = {359-360},
1730 >  month = {Jul},
1731 >  annote = {Suppl. 1 005MG Times Cited:0 Cited References Count:0},
1732 >  issn = {1742-464X},
1733 >  uri = {<Go to ISI>://000234826102043},
1734   }
1735  
1736 < @Article{stevens95,
1737 <  author =   {M.~J. Stevens and G.~S. Grest},
1738 <  title =    {Phase coexistence of a Stockmayer fluid in an aplied field},
1739 <  journal =      {Physical Review E},
1740 <  year =     1995,
1741 <  volume =   51,
1742 <  number =   6,
1743 <  pages =    {5976-5983}
1736 > @ARTICLE{Luty1994,
1737 >  author = {B. A. Luty and M. E. Davis and I. G. Tironi and W. F. Vangunsteren},
1738 >  title = {A Comparison of Particle-Particle, Particle-Mesh and Ewald Methods
1739 >        for Calculating Electrostatic Interactions in Periodic Molecular-Systems},
1740 >  journal = {Molecular Simulation},
1741 >  year = {1994},
1742 >  volume = {14},
1743 >  pages = {11-20},
1744 >  number = {1},
1745 >  abstract = {We compare the Particle-Particle Particle-Mesh (PPPM) and Ewald methods
1746 >        for calculating electrostatic interactions in periodic molecular
1747 >        systems. A brief comparison of the theories shows that the methods
1748 >        are very similar differing mainly in the technique which is used
1749 >        to perform the ''k-space'' or mesh calculation. Because the PPPM
1750 >        utilizes the highly efficient numerical Fast Fourier Transform (FFT)
1751 >        method it requires significantly less computational effort than
1752 >        the Ewald method and scale's almost linearly with system size.},
1753 >  annote = {Qf464 Times Cited:50 Cited References Count:20},
1754 >  issn = {0892-7022},
1755 >  uri = {<Go to ISI>://A1994QF46400002},
1756   }
1757  
1758 < @Article{darden93:pme,
1759 <  author =   {T. Darden and D. York and L. Pedersen},
1760 <  title =    {Particle mesh Ewald: An $N \log N$ method for Ewald sums in large systems},
1761 <  journal =      {Journal of Chemical Physics},
1762 <  year =     1993,
1763 <  volume =   98,
1764 <  number =   12,
1632 <  pages =    {10089-10092}
1758 > @BOOK{Marion1990,
1759 >  title = {Classical Dynamics of Particles and Systems},
1760 >  publisher = {Academic Press},
1761 >  year = {1990},
1762 >  author = {J.~B. Marion},
1763 >  address = {New York},
1764 >  edition = {2rd},
1765   }
1766  
1767 <
1768 <
1769 < @Article{goetz98,
1770 <  author =   {R. Goetz and R. Lipowsky},
1771 <  title =    {Computer simulations of bilayer membranes: Self-assembly and interfacial tension},
1772 <  journal =      {Journal of Chemical Physics},
1773 <  year =     1998,
1774 <  volume =   108,
1775 <  number =   17,
1776 <  pages =    7397
1767 > @ARTICLE{Marsden1998,
1768 >  author = {J. E. Marsden and G. W. Patrick and S. Shkoller},
1769 >  title = {Multisymplectic geometry, variational integrators, and nonlinear
1770 >        PDEs},
1771 >  journal = {Communications in Mathematical Physics},
1772 >  year = {1998},
1773 >  volume = {199},
1774 >  pages = {351-395},
1775 >  number = {2},
1776 >  month = {Dec},
1777 >  abstract = {This paper presents a geometric-variational approach to continuous
1778 >        and discrete mechanics and field theories. Using multisymplectic
1779 >        geometry, we show that the existence of the fundamental geometric
1780 >        structures as well as their preservation along solutions can be
1781 >        obtained directly from the variational principle. In particular,
1782 >        we prove that a unique multisymplectic structure is obtained by
1783 >        taking the derivative of an action function, and use this structure
1784 >        to prove covariant generalizations of conservation of symplecticity
1785 >        and Noether's theorem. Natural discretization schemes for PDEs,
1786 >        which have these important preservation properties, then follow
1787 >        by choosing a discrete action functional. In the case of mechanics,
1788 >        we recover the variational symplectic integrators of Veselov type,
1789 >        while for PDEs we obtain covariant spacetime integrators which conserve
1790 >        the corresponding discrete multisymplectic form as well as the discrete
1791 >        momentum mappings corresponding to symmetries. We show that the
1792 >        usual notion of symplecticity along an infinite-dimensional space
1793 >        of fields can be naturally obtained by making a spacetime split.
1794 >        All of the aspects of our method are demonstrated with a nonlinear
1795 >        sine-Gordon equation, including computational results and a comparison
1796 >        with other discretization schemes.},
1797 >  annote = {154RH Times Cited:88 Cited References Count:36},
1798 >  issn = {0010-3616},
1799 >  uri = {<Go to ISI>://000077902200006},
1800   }
1801  
1802 < @Article{marrink01:undulation,
1803 <  author =   {S.~J. Marrink and A.~E. Mark},
1804 <  title =    {Effect of undulations on surface tension in simulated bilayers},
1805 <  journal =      {Journal of Physical Chemistry B},
1806 <  year =     2001,
1807 <  volume =   105,
1808 <  pages =    {6122-6127}
1802 > @ARTICLE{McLachlan1993,
1803 >  author = {R.~I McLachlan},
1804 >  title = {Explicit Lie-Poisson integration and the Euler equations},
1805 >  journal = {prl},
1806 >  year = {1993},
1807 >  volume = {71},
1808 >  pages = {3043-3046},
1809   }
1810  
1811 < @Article{lindahl00:undulation,
1812 <  author =   {E. Lindahl and O. Edholm},
1813 <  title =    {Mesoscopic undulation and thickness fluctuations in lipid bilayers from molecular dynamics simulation},
1814 <  journal =      {Biophysical Journal},
1815 <  year =     2000,
1816 <  volume =   79,
1817 <  pages =    {426-433}
1811 > @ARTICLE{McLachlan1998a,
1812 >  author = {R. I. McLachlan and G. R. W. Quispel},
1813 >  title = {Generating functions for dynamical systems with symmetries, integrals,
1814 >        and differential invariants},
1815 >  journal = {Physica D},
1816 >  year = {1998},
1817 >  volume = {112},
1818 >  pages = {298-309},
1819 >  number = {1-2},
1820 >  month = {Jan 15},
1821 >  abstract = {We give a survey and some new examples of generating functions for
1822 >        systems with symplectic structure, systems with a first integral,
1823 >        systems that preserve volume, and systems with symmetries and/or
1824 >        time-reversing symmetries. Both ODEs and maps are treated, and we
1825 >        discuss how generating functions may be used in the structure-preserving
1826 >        numerical integration of ODEs with the above properties.},
1827 >  annote = {Yt049 Times Cited:7 Cited References Count:26},
1828 >  issn = {0167-2789},
1829 >  uri = {<Go to ISI>://000071558900021},
1830   }
1831  
1832 < @Article{metropolis:1949,
1833 <  author =   {N. Metropolis and S. Ulam},
1834 <  title =    {The $\mbox{Monte Carlo}$ Method},
1835 <  journal =      {J. Am. Stat. Ass.},
1836 <  year =     1949,
1837 <  volume =   44,
1838 <  pages =    {335-341}
1832 > @ARTICLE{McLachlan1998,
1833 >  author = {R. I. McLachlan and G. R. W. Quispel and G. S. Turner},
1834 >  title = {Numerical integrators that preserve symmetries and reversing symmetries},
1835 >  journal = {Siam Journal on Numerical Analysis},
1836 >  year = {1998},
1837 >  volume = {35},
1838 >  pages = {586-599},
1839 >  number = {2},
1840 >  month = {Apr},
1841 >  abstract = {We consider properties of flows, the relationships between them, and
1842 >        whether numerical integrators can be made to preserve these properties.
1843 >        This is done in the context of automorphisms and antiautomorphisms
1844 >        of a certain group generated by maps associated to vector fields.
1845 >        This new framework unifies several known constructions. We also
1846 >        use the concept of #covariance# of a numerical method with respect
1847 >        to a group of coordinate transformations. The main application is
1848 >        to explore the relationship between spatial symmetries, reversing
1849 >        symmetries, and time symmetry of flows and numerical integrators.},
1850 >  annote = {Zc449 Times Cited:14 Cited References Count:33},
1851 >  issn = {0036-1429},
1852 >  uri = {<Go to ISI>://000072580500010},
1853   }
1854  
1855 < @Article{metropolis:1953,
1856 <  author =   {N. Metropolis and A.~W. Rosenbluth and M.~N. Rosenbluth and A.~H. Teller and E. Teller},
1857 <  title =    {Equation of State Calculations by Fast Computing Machines},
1858 <  journal =      {J. Chem. Phys.},
1859 <  year =     1953,
1860 <  volume =   21,
1861 <  pages =    {1087-1092}
1855 > @ARTICLE{McLachlan2005,
1856 >  author = {R. I. McLachlan and A. Zanna},
1857 >  title = {The discrete Moser-Veselov algorithm for the free rigid body, revisited},
1858 >  journal = {Foundations of Computational Mathematics},
1859 >  year = {2005},
1860 >  volume = {5},
1861 >  pages = {87-123},
1862 >  number = {1},
1863 >  month = {Feb},
1864 >  abstract = {In this paper we revisit the Moser-Veselov description of the free
1865 >        rigid body in body coordinates, which, in the 3 x 3 case, can be
1866 >        implemented as an explicit, second-order, integrable approximation
1867 >        of the continuous solution. By backward error analysis, we study
1868 >        the modified vector field which is integrated exactly by the discrete
1869 >        algorithm. We deduce that the discrete Moser-Veselov (DMV) is well
1870 >        approximated to higher order by time reparametrizations of the continuous
1871 >        equations (modified vector field). We use the modified vector field
1872 >        to scale the initial data of the DMV to improve the order of the
1873 >        approximation and show the equivalence of the DMV and the RATTLE
1874 >        algorithm. Numerical integration with these preprocessed initial
1875 >        data is several orders of magnitude more accurate than the original
1876 >        DMV and RATTLE approach.},
1877 >  annote = {911NS Times Cited:0 Cited References Count:14},
1878 >  issn = {1615-3375},
1879 >  uri = {<Go to ISI>://000228011900003},
1880   }
1881  
1882 < @Article{born:1912,
1883 <  author =   {M. Born and Th. Von~Karman},
1884 <  title =    {Uber Schwingungen in Raumgittern},
1885 <  journal =      {Physik Z.},
1886 <  year =     1912,
1887 <  volume =   13,
1888 <  number =   {297-309}
1882 > @ARTICLE{Memmer2002,
1883 >  author = {R. Memmer},
1884 >  title = {Liquid crystal phases of achiral banana-shaped molecules: a computer
1885 >        simulation study},
1886 >  journal = {Liquid Crystals},
1887 >  year = {2002},
1888 >  volume = {29},
1889 >  pages = {483-496},
1890 >  number = {4},
1891 >  month = {Apr},
1892 >  abstract = {The phase behaviour of achiral banana-shaped molecules was studied
1893 >        by computer simulation. The banana-shaped molecules were described
1894 >        by model intermolecular interactions based on the Gay-Berne potential.
1895 >        The characteristic molecular structure was considered by joining
1896 >        two calamitic Gay-Berne particles through a bond to form a biaxial
1897 >        molecule of point symmetry group C-2v with a suitable bending angle.
1898 >        The dependence on temperature of systems of N=1024 rigid banana-shaped
1899 >        molecules with bending angle phi=140degrees has been studied by
1900 >        means of Monte Carlo simulations in the isobaric-isothermal ensemble
1901 >        (NpT). On cooling an isotropic system, two phase transitions characterized
1902 >        by phase transition enthalpy, entropy and relative volume change
1903 >        have been observed. For the first time by computer simulation of
1904 >        a many-particle system of banana-shaped molecules, at low temperature
1905 >        an untilted smectic phase showing a global phase biaxiality and
1906 >        a spontaneous local polarization in the layers, i.e. a local polar
1907 >        arrangement of the steric dipoles, with an antiferroelectric-like
1908 >        superstructure could be proven, a phase structure which recently
1909 >        has been discovered experimentally. Additionally, at intermediate
1910 >        temperature a nematic-like phase has been proved, whereas close
1911 >        to the transition to the smectic phase hints of a spontaneous achiral
1912 >        symmetry breaking have been determined. Here, in the absence of
1913 >        a layered structure a helical superstructure has been formed. All
1914 >        phases have been characterized by visual representations of selected
1915 >        configurations, scalar and pseudoscalar correlation functions, and
1916 >        order parameters.},
1917 >  annote = {531HT Times Cited:12 Cited References Count:37},
1918 >  issn = {0267-8292},
1919 >  uri = {<Go to ISI>://000174410500001},
1920   }
1921  
1922 < @Book{chandler:1987,
1923 <  author =   {David Chandler},
1924 <  title =    {Introduction to Modern Statistical Mechanics},
1925 <  publisher =    {Oxford University Press},
1926 <  year =     1987
1922 > @ARTICLE{Metropolis1949,
1923 >  author = {N. Metropolis and S. Ulam},
1924 >  title = {The $\mbox{Monte Carlo}$ Method},
1925 >  journal = {J. Am. Stat. Ass.},
1926 >  year = {1949},
1927 >  volume = {44},
1928 >  pages = {335-341},
1929   }
1930  
1931 <
1932 < @Article{pearlman:1995,
1933 <  author =   {David~A. Pearlman and David~A. Case and James~W. Caldwell and Wilson~S. Ross and Thomas~E. Cheatham~III and Steve DeBolt and David Ferguson and George Seibel and Peter Kollman},
1934 <  title =    {{\sc amber}, a package of computer programs for applying molecular mechanics. normal mode analysis, molecular dynamics, and free energy calculations to simulate the structural and energetic properties of molecules},
1935 <  journal =      {Computer Physics Communications},
1936 <  year =     1995,
1937 <  volume =   91,
1938 <  pages =    {1-41}
1931 > @ARTICLE{Mielke2004,
1932 >  author = {S. P. Mielke and W. H. Fink and V. V. Krishnan and N. Gronbech-Jensen
1933 >        and C. J. Benham},
1934 >  title = {Transcription-driven twin supercoiling of a DNA loop: A Brownian
1935 >        dynamics study},
1936 >  journal = {Journal of Chemical Physics},
1937 >  year = {2004},
1938 >  volume = {121},
1939 >  pages = {8104-8112},
1940 >  number = {16},
1941 >  month = {Oct 22},
1942 >  abstract = {The torque generated by RNA polymerase as it tracks along double-stranded
1943 >        DNA can potentially induce long-range structural deformations integral
1944 >        to mechanisms of biological significance in both prokaryotes and
1945 >        eukaryotes. In this paper, we introduce a dynamic computer model
1946 >        for investigating this phenomenon. Duplex DNA is represented as
1947 >        a chain of hydrodynamic beads interacting through potentials of
1948 >        linearly elastic stretching, bending, and twisting, as well as excluded
1949 >        volume. The chain, linear when relaxed, is looped to form two open
1950 >        but topologically constrained subdomains. This permits the dynamic
1951 >        introduction of torsional stress via a centrally applied torque.
1952 >        We simulate by Brownian dynamics the 100 mus response of a 477-base
1953 >        pair B-DNA template to the localized torque generated by the prokaryotic
1954 >        transcription ensemble. Following a sharp rise at early times, the
1955 >        distributed twist assumes a nearly constant value in both subdomains,
1956 >        and a succession of supercoiling deformations occurs as superhelical
1957 >        stress is increasingly partitioned to writhe. The magnitude of writhe
1958 >        surpasses that of twist before also leveling off when the structure
1959 >        reaches mechanical equilibrium with the torsional load. Superhelicity
1960 >        is simultaneously right handed in one subdomain and left handed
1961 >        in the other, as predicted by the #transcription-induced##twin-supercoiled-domain#
1962 >        model [L. F. Liu and J. C. Wang, Proc. Natl. Acad. Sci. U.S.A. 84,
1963 >        7024 (1987)]. The properties of the chain at the onset of writhing
1964 >        agree well with predictions from theory, and the generated stress
1965 >        is ample for driving secondary structural transitions in physiological
1966 >        DNA. (C) 2004 American Institute of Physics.},
1967 >  annote = {861ZF Times Cited:3 Cited References Count:34},
1968 >  issn = {0021-9606},
1969 >  uri = {<Go to ISI>://000224456500064},
1970   }
1971  
1972 < @Book{Goldstein01,
1973 <  author =   {H. Goldstein and C. Poole and J. Safko},
1974 <  title =    {Classical Mechanics},
1975 <  publisher =    {Addison Wesley},
1976 <  year =     2001,
1977 <  address =  {San Francisco},
1978 <  edition =  {3rd}
1972 > @ARTICLE{Naess2001,
1973 >  author = {S. N. Naess and H. M. Adland and A. Mikkelsen and A. Elgsaeter},
1974 >  title = {Brownian dynamics simulation of rigid bodies and segmented polymer
1975 >        chains. Use of Cartesian rotation vectors as the generalized coordinates
1976 >        describing angular orientations},
1977 >  journal = {Physica A},
1978 >  year = {2001},
1979 >  volume = {294},
1980 >  pages = {323-339},
1981 >  number = {3-4},
1982 >  month = {May 15},
1983 >  abstract = {The three Eulerian angles constitute the classical choice of generalized
1984 >        coordinates used to describe the three degrees of rotational freedom
1985 >        of a rigid body, but it has long been known that this choice yields
1986 >        singular equations of motion. The latter is also true when Eulerian
1987 >        angles are used in Brownian dynamics analyses of the angular orientation
1988 >        of single rigid bodies and segmented polymer chains. Starting from
1989 >        kinetic theory we here show that by instead employing the three
1990 >        components of Cartesian rotation vectors as the generalized coordinates
1991 >        describing angular orientation, no singularity appears in the configuration
1992 >        space diffusion equation and the associated Brownian dynamics algorithm.
1993 >        The suitability of Cartesian rotation vectors in Brownian dynamics
1994 >        simulations of segmented polymer chains with spring-like or ball-socket
1995 >        joints is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.},
1996 >  annote = {433TA Times Cited:7 Cited References Count:19},
1997 >  issn = {0378-4371},
1998 >  uri = {<Go to ISI>://000168774800005},
1999   }
2000  
2001 < @Article{Bratko85,
2002 <  author =   {D. Bratko and L. Blum and A. Luzar},
2003 <  title =    {A simple model for the intermolecular potential of water},
2004 <  journal =      jcp,
2005 <  year =     1985,
2006 <  volume =   83,
2007 <  number =   12,
2008 <  pages =    {6367-6370}
2001 > @ARTICLE{Niori1996,
2002 >  author = {T. Niori and T. Sekine and J. Watanabe and T. Furukawa and H. Takezoe},
2003 >  title = {Distinct ferroelectric smectic liquid crystals consisting of banana
2004 >        shaped achiral molecules},
2005 >  journal = {Journal of Materials Chemistry},
2006 >  year = {1996},
2007 >  volume = {6},
2008 >  pages = {1231-1233},
2009 >  number = {7},
2010 >  month = {Jul},
2011 >  abstract = {The synthesis of a banana-shaped molecule is reported and it is found
2012 >        that the smectic phase which it forms is biaxial with the molecules
2013 >        packed in the best,direction into a layer. Because of this characteristic
2014 >        packing, spontaneous polarization appears parallel to the layer
2015 >        and switches on reversal of an applied electric field. This is the
2016 >        first obvious example of ferroelectricity in an achiral smectic
2017 >        phase and is ascribed to the C-2v symmetry of the molecular packing.},
2018 >  annote = {Ux855 Times Cited:447 Cited References Count:18},
2019 >  issn = {0959-9428},
2020 >  uri = {<Go to ISI>://A1996UX85500025},
2021   }
2022  
2023 < @Article{Bratko95,
2024 <  author =   {L. Blum and F. Vericat and D. Bratko},
2025 <  title =    {Towards an analytical model of water: The octupolar model},
2026 <  journal =      jcp,
2027 <  year =     1995,
2028 <  volume =   102,
2029 <  number =   3,
2030 <  pages =    {1461-1462}
2023 > @ARTICLE{Noguchi2002,
2024 >  author = {H. Noguchi and M. Takasu},
2025 >  title = {Structural changes of pulled vesicles: A Brownian dynamics simulation},
2026 >  journal = {Physical Review E},
2027 >  year = {2002},
2028 >  volume = {65},
2029 >  pages = {-},
2030 >  number = {5},
2031 >  month = {may},
2032 >  abstract = {We Studied the structural changes of bilayer vesicles induced by mechanical
2033 >        forces using a Brownian dynamics simulation. Two nanoparticles,
2034 >        which interact repulsively with amphiphilic molecules, are put inside
2035 >        a vesicle. The position of one nanoparticle is fixed, and the other
2036 >        is moved by a constant force as in optical-trapping experiments.
2037 >        First, the pulled vesicle stretches into a pear or tube shape. Then
2038 >        the inner monolayer in the tube-shaped region is deformed, and a
2039 >        cylindrical structure is formed between two vesicles. After stretching
2040 >        the cylindrical region, fission occurs near the moved vesicle. Soon
2041 >        after this the cylindrical region shrinks. The trapping force similar
2042 >        to 100 pN is needed to induce the formation of the cylindrical structure
2043 >        and fission.},
2044 >  annote = {Part 1 568PX Times Cited:5 Cited References Count:39},
2045 >  issn = {1063-651X},
2046 >  uri = {<Go to ISI>://000176552300084},
2047   }
2048  
2049 < @Article{Ichiye03,
2050 <  author =   {M.-L. Tan and J.~T. Fischer and A. Chandra and B.~R. Brooks
2051 <                  and T. Ichiye},
2052 <  title =    {A temperature of maximum density in soft sticky dipole
2053 <                  water},
2054 <  journal =      cpl,
2055 <  year =     2003,
2056 <  volume =   376,
2057 <  pages =    {646-652},
2049 > @ARTICLE{Noguchi2001,
2050 >  author = {H. Noguchi and M. Takasu},
2051 >  title = {Fusion pathways of vesicles: A Brownian dynamics simulation},
2052 >  journal = {Journal of Chemical Physics},
2053 >  year = {2001},
2054 >  volume = {115},
2055 >  pages = {9547-9551},
2056 >  number = {20},
2057 >  month = {Nov 22},
2058 >  abstract = {We studied the fusion dynamics of vesicles using a Brownian dynamics
2059 >        simulation. Amphiphilic molecules spontaneously form vesicles with
2060 >        a bilayer structure. Two vesicles come into contact and form a stalk
2061 >        intermediate, in which a necklike structure only connects the outer
2062 >        monolayers, as predicted by the stalk hypothesis. We have found
2063 >        a new pathway of pore opening from stalks at high temperature: the
2064 >        elliptic stalk bends and contact between the ends of the arc-shaped
2065 >        stalk leads to pore opening. On the other hand, we have clarified
2066 >        that the pore-opening process at low temperature agrees with the
2067 >        modified stalk model: a pore is induced by contact between the inner
2068 >        monolayers inside the stalk. (C) 2001 American Institute of Physics.},
2069 >  annote = {491UW Times Cited:48 Cited References Count:25},
2070 >  issn = {0021-9606},
2071 >  uri = {<Go to ISI>://000172129300049},
2072   }
2073  
2074 <
2075 < @Article{Soper86,
2076 <  author =   {A.~K. Soper and M.~G. Phillips},
2077 <  title =    {A new determination of the structure of water at 298K},
2078 <  journal =      cp,
2079 <  year =     1986,
1755 <  volume =   107,
1756 <  number =   1,
1757 <  pages =    {47-60},
2074 > @BOOK{Olver1986,
2075 >  title = {Applications of Lie groups to differential equatitons},
2076 >  publisher = {Springer},
2077 >  year = {1986},
2078 >  author = {P.J. Olver},
2079 >  address = {New York},
2080   }
2081  
2082 < @Article{plimpton95,
2083 <  author =   {S. Plimpton},
2084 <  title =    {Fast Parallel Algorithms for Short-Range Molecular Dymanics},
2085 <  journal =      {J. Comp. Phys.},
2086 <  year =     1995,
2087 <  volume =   117,
2088 <  pages =    {1-19},
2082 > @ARTICLE{Omelyan1998,
2083 >  author = {I. P. Omelyan},
2084 >  title = {On the numerical integration of motion for rigid polyatomics: The
2085 >        modified quaternion approach},
2086 >  journal = {Computers in Physics},
2087 >  year = {1998},
2088 >  volume = {12},
2089 >  pages = {97-103},
2090 >  number = {1},
2091 >  month = {Jan-Feb},
2092 >  abstract = {A revised version of the quaternion approach for numerical integration
2093 >        of the equations of motion for rigid polyatomic molecules is proposed.
2094 >        The modified approach is based on a formulation of the quaternion
2095 >        dynamics with constraints. This allows one to resolve the rigidity
2096 >        problem rigorously using constraint forces. It is shown that the
2097 >        procedure for preservation of molecular rigidity can be realized
2098 >        particularly simply within the Verlet algorithm in velocity form.
2099 >        We demonstrate that the method presented leads to an improved numerical
2100 >        stability with respect to the usual quaternion rescaling scheme
2101 >        and it is roughly as good as the cumbersome atomic-constraint technique.
2102 >        (C) 1998 American Institute of Physics.},
2103 >  annote = {Yx279 Times Cited:12 Cited References Count:28},
2104 >  issn = {0894-1866},
2105 >  uri = {<Go to ISI>://000072024300025},
2106   }
2107  
2108 < @Article{plimpton93,
2109 <  author =   {S.~J. Plimpton and B.~A. Hendrickson},
2110 <  title =    {Parallel Molecular Dynamics with the Embedded Atom Method},
2111 <  journal =      {MRS Proceedings},
2112 <  year =     1993,
2113 <  volume =   291,
2114 <  pages =    37
2108 > @ARTICLE{Omelyan1998a,
2109 >  author = {I. P. Omelyan},
2110 >  title = {Algorithm for numerical integration of the rigid-body equations of
2111 >        motion},
2112 >  journal = {Physical Review E},
2113 >  year = {1998},
2114 >  volume = {58},
2115 >  pages = {1169-1172},
2116 >  number = {1},
2117 >  month = {Jul},
2118 >  abstract = {An algorithm for numerical integration of the rigid-body equations
2119 >        of motion is proposed. The algorithm uses the leapfrog scheme and
2120 >        the quantities involved are angular velocities and orientational
2121 >        variables that can be expressed in terms of either principal axes
2122 >        or quaternions. Due to specific features of the algorithm, orthonormality
2123 >        and unit norms of the orientational variables are integrals of motion,
2124 >        despite an approximate character of the produced trajectories. It
2125 >        is shown that the method presented appears to be the most efficient
2126 >        among all such algorithms known.},
2127 >  annote = {101XL Times Cited:8 Cited References Count:22},
2128 >  issn = {1063-651X},
2129 >  uri = {<Go to ISI>://000074893400151},
2130   }
2131  
2132 <
2133 < @Article{Ercolessi02,
2134 <  author =   {U. Tartaglino and E. Tosatti and D. Passerone and F. Ercolessi},
2135 <  title =    {Bending strain-driven modification of surface resconstructions: Au(111)},
2136 <  journal =      prb,
2137 <  year =     2002,
2138 <  volume =   65,
2139 <  pages =    241406
2132 > @ARTICLE{Orlandi2006,
2133 >  author = {S. Orlandi and R. Berardi and J. Steltzer and C. Zannoni},
2134 >  title = {A Monte Carlo study of the mesophases formed by polar bent-shaped
2135 >        molecules},
2136 >  journal = {Journal of Chemical Physics},
2137 >  year = {2006},
2138 >  volume = {124},
2139 >  pages = {-},
2140 >  number = {12},
2141 >  month = {Mar 28},
2142 >  abstract = {Liquid crystal phases formed by bent-shaped (or #banana#) molecules
2143 >        are currently of great interest. Here we investigate by Monte Carlo
2144 >        computer simulations the phases formed by rigid banana molecules
2145 >        modeled combining three Gay-Berne sites and containing either one
2146 >        central or two lateral and transversal dipoles. We show that changing
2147 >        the dipole position and orientation has a profound effect on the
2148 >        mesophase stability and molecular organization. In particular, we
2149 >        find a uniaxial nematic phase only for off-center dipolar models
2150 >        and tilted phases only for the one with terminal dipoles. (c) 2006
2151 >        American Institute of Physics.},
2152 >  annote = {028CP Times Cited:0 Cited References Count:42},
2153 >  issn = {0021-9606},
2154 >  uri = {<Go to ISI>://000236464000072},
2155   }
2156  
2157 < @Article{Ercolessi88,
2158 <  author =   {F. Ercolessi  and M. Parrinello  and E. Tosatti},
2159 <  title =    {Simulation of Gold in the Glue Model.},
2160 <  journal =      {Philosophical Magazine A},
2161 <  year =     1988,
2162 <  volume =   58,
2163 <  pages =    {213-226}
2157 > @ARTICLE{Owren1992,
2158 >  author = {B. Owren and M. Zennaro},
2159 >  title = {Derivation of Efficient, Continuous, Explicit Runge-Kutta Methods},
2160 >  journal = {Siam Journal on Scientific and Statistical Computing},
2161 >  year = {1992},
2162 >  volume = {13},
2163 >  pages = {1488-1501},
2164 >  number = {6},
2165 >  month = {Nov},
2166 >  abstract = {Continuous, explicit Runge-Kutta methods with the minimal number of
2167 >        stages are considered. These methods are continuously differentiable
2168 >        if and only if one of the stages is the FSAL evaluation. A characterization
2169 >        of a subclass of these methods is developed for orders 3, 4, and
2170 >        5. It is shown how the free parameters of these methods can be used
2171 >        either to minimize the continuous truncation error coefficients
2172 >        or to maximize the stability region. As a representative for these
2173 >        methods the fifth-order method with minimized error coefficients
2174 >        is chosen, supplied with an error estimation method, and analysed
2175 >        by using the DETEST software. The results are compared with a similar
2176 >        implementation of the Dormand-Prince 5(4) pair with interpolant,
2177 >        showing a significant advantage in the new method for the chosen
2178 >        problems.},
2179 >  annote = {Ju936 Times Cited:25 Cited References Count:20},
2180 >  issn = {0196-5204},
2181 >  uri = {<Go to ISI>://A1992JU93600013},
2182   }
2183  
2184 < @Article{Finnis84,
2185 <  author =   {M.~W Finnis and J.~E. Sinclair },
2186 <  title =    {A Simple Empirical N-Body Potential for Transition-Metals},
2187 <  journal =      {Phil. Mag. A},
2188 <  year =     1984,
2189 <  volume =   50,
2190 <  pages =    {45-55}
2184 > @ARTICLE{Palacios1998,
2185 >  author = {J. L. Garcia-Palacios and F. J. Lazaro},
2186 >  title = {Langevin-dynamics study of the dynamical properties of small magnetic
2187 >        particles},
2188 >  journal = {Physical Review B},
2189 >  year = {1998},
2190 >  volume = {58},
2191 >  pages = {14937-14958},
2192 >  number = {22},
2193 >  month = {Dec 1},
2194 >  abstract = {The stochastic Landau-Lifshitz-Gilbert equation of motion for a classical
2195 >        magnetic moment is numerically solved (properly observing the customary
2196 >        interpretation of it as a Stratonovich stochastic differential equation),
2197 >        in order to study the dynamics of magnetic nanoparticles. The corresponding
2198 >        Langevin-dynamics approach allows for the study of the fluctuating
2199 >        trajectories of individual magnetic moments, where we have encountered
2200 >        remarkable phenomena in the overbarrier rotation process, such as
2201 >        crossing-back or multiple crossing of the potential barrier, rooted
2202 >        in the gyromagnetic nature of the system. Concerning averaged quantities,
2203 >        we study the linear dynamic response of the archetypal ensemble
2204 >        of noninteracting classical magnetic moments with axially symmetric
2205 >        magnetic anisotropy. The results are compared with different analytical
2206 >        expressions used to model the relaxation of nanoparticle ensembles,
2207 >        assessing their accuracy. It has been found that, among a number
2208 >        of heuristic expressions for the linear dynamic susceptibility,
2209 >        only the simple formula proposed by Shliomis and Stepanov matches
2210 >        the coarse features of the susceptibility reasonably. By comparing
2211 >        the numerical results with the asymptotic formula of Storonkin {Sov.
2212 >        Phys. Crystallogr. 30, 489 (1985) [Kristallografiya 30, 841 (1985)]},
2213 >        the effects of the intra-potential-well relaxation modes on the
2214 >        low-temperature longitudinal dynamic response have been assessed,
2215 >        showing their relatively small reflection in the susceptibility
2216 >        curves but their dramatic influence on the phase shifts. Comparison
2217 >        of the numerical results with the exact zero-damping expression
2218 >        for the transverse susceptibility by Garanin, Ishchenko, and Panina
2219 >        {Theor. Math. Phys. (USSR) 82, 169 (1990) [Teor. Mat. Fit. 82, 242
2220 >        (1990)]}, reveals a sizable contribution of the spread of the precession
2221 >        frequencies of the magnetic moment in the anisotropy field to the
2222 >        dynamic response at intermediate-to-high temperatures. [S0163-1829
2223 >        (98)00446-9].},
2224 >  annote = {146XW Times Cited:66 Cited References Count:45},
2225 >  issn = {0163-1829},
2226 >  uri = {<Go to ISI>://000077460000052},
2227   }
2228  
2229 < @Article{FBD86,
2230 <  author =       {S.~M. Foiles and M.~I. Baskes and M.~S. Daw},
2231 <  title =        {Embedded-atom-method functions for the fcc metals
2232 < $\mbox{Cu, Ag, Au, Ni, Pd, Pt}$, and their alloys},
2233 <  journal =      prb,
2234 <  year =         1986,
2235 <  volume =       33,
2236 <  number =       12,
2237 <  pages =        7983
2229 > @ARTICLE{Pastor1988,
2230 >  author = {R. W. Pastor and B. R. Brooks and A. Szabo},
2231 >  title = {An Analysis of the Accuracy of Langevin and Molecular-Dynamics Algorithms},
2232 >  journal = {Molecular Physics},
2233 >  year = {1988},
2234 >  volume = {65},
2235 >  pages = {1409-1419},
2236 >  number = {6},
2237 >  month = {Dec 20},
2238 >  annote = {T1302 Times Cited:61 Cited References Count:26},
2239 >  issn = {0026-8976},
2240 >  uri = {<Go to ISI>://A1988T130200011},
2241   }
2242  
2243 < @Article{johnson89,
2244 <  author =   {R.~A. Johnson},
2245 <  title =    {Alloy models with the embedded-atom method},
2246 <  journal =      prb,
2247 <  year =     1989,
2248 <  volume =   39,
2249 <  number =   17,
2250 <  pages =    12554
2243 > @ARTICLE{Pelzl1999,
2244 >  author = {G. Pelzl and S. Diele and W. Weissflog},
2245 >  title = {Banana-shaped compounds - A new field of liquid crystals},
2246 >  journal = {Advanced Materials},
2247 >  year = {1999},
2248 >  volume = {11},
2249 >  pages = {707-724},
2250 >  number = {9},
2251 >  month = {Jul 5},
2252 >  annote = {220RC Times Cited:313 Cited References Count:49},
2253 >  issn = {0935-9648},
2254 >  uri = {<Go to ISI>://000081680400007},
2255   }
2256  
2257 < @Article{Laird97,
2258 <  author =   {A. Kol and B.~B. Laird and B.~J. Leimkuhler},
2259 <  title =    {A symplectic method for rigid-body molecular simulation},
2260 <  journal =      jcp,
2261 <  year =     1997,
2262 <  volume =   107,
2263 <  number =   7,
2264 <  pages =    {2580-2588}
2257 > @ARTICLE{Perram1985,
2258 >  author = {J. W. Perram and M. S. Wertheim},
2259 >  title = {Statistical-Mechanics of Hard Ellipsoids .1. Overlap Algorithm and
2260 >        the Contact Function},
2261 >  journal = {Journal of Computational Physics},
2262 >  year = {1985},
2263 >  volume = {58},
2264 >  pages = {409-416},
2265 >  number = {3},
2266 >  annote = {Akb93 Times Cited:71 Cited References Count:12},
2267 >  issn = {0021-9991},
2268 >  uri = {<Go to ISI>://A1985AKB9300008},
2269   }
2270  
2271 <
2272 < @Article{hoover85,
2273 <  author =   {W.~G. Hoover},
2274 <  title =    {Canonical dynamics: Equilibrium phase-space distributions},
2275 <  journal =      pra,
2276 <  year =     1985,
2277 <  volume =   31,
1844 <  pages =    1695
2271 > @ARTICLE{Rotne1969,
2272 >  author = {F. Perrin},
2273 >  title = {Variational treatment of hydrodynamic interaction in polymers},
2274 >  journal = {J. Chem. Phys.},
2275 >  year = {1969},
2276 >  volume = {50},
2277 >  pages = {4831¨C4837},
2278   }
2279  
2280 < @Article{Roux91,
2281 <  author =   {B. Roux and M. Karplus},
2282 <  title =    {Ion transport in a Gramicidin-like channel: dynamics and mobility},
2283 <  journal =      jpc,
2284 <  year =     1991,
2285 <  volume =   95,
2286 <  number =   15,
2287 <  pages =    {4856-4868}
2280 > @ARTICLE{Perrin1936,
2281 >  author = {F. Perrin},
2282 >  title = {Mouvement brownien d'un ellipsoid(II). Rotation libre et depolarisation
2283 >        des fluorescences. Translation et diffusion de moleculese ellipsoidales},
2284 >  journal = {J. Phys. Radium},
2285 >  year = {1936},
2286 >  volume = {7},
2287 >  pages = {1-11},
2288   }
2289  
2290 <
2291 < @Article{Marrink94,
2292 <  author =   {S.~J Marrink and H.~J.~C. Berendsen},
2293 <  title =    {Simulation of water transport through a lipid membrane},
2294 <  journal =      jpc,
2295 <  year =     1994,
2296 <  volume =   98,
2297 <  number =   15,
1865 <  pages =    {4155-4168}
2290 > @ARTICLE{Perrin1934,
2291 >  author = {F. Perrin},
2292 >  title = {Mouvement brownien d'un ellipsoid(I). Dispersion dielectrique pour
2293 >        des molecules ellipsoidales},
2294 >  journal = {J. Phys. Radium},
2295 >  year = {1934},
2296 >  volume = {5},
2297 >  pages = {497-511},
2298   }
2299  
2300 <
2301 < @Article{Daw89,
2302 <  author =   {Murray~S. Daw},
2303 <  title =    {Model of metallic cohesion: The embedded-atom method},
2304 <  journal =      {Physical Review B},
2305 <  year =     1989,
2306 <  volume =   39,
2307 <  pages =    {7441-7452}
2300 > @ARTICLE{Petrache1998,
2301 >  author = {H. I. Petrache and S. Tristram-Nagle and J. F. Nagle},
2302 >  title = {Fluid phase structure of EPC and DMPC bilayers},
2303 >  journal = {Chemistry and Physics of Lipids},
2304 >  year = {1998},
2305 >  volume = {95},
2306 >  pages = {83-94},
2307 >  number = {1},
2308 >  month = {Sep},
2309 >  abstract = {X-ray diffraction data taken at high instrumental resolution were
2310 >        obtained for EPC and DMPC under various osmotic pressures, primarily
2311 >        at T = 30 degrees C. The headgroup thickness D-HH was obtained from
2312 >        relative electron density profiles. By using volumetric results
2313 >        and by comparing to gel phase DPPC we obtain areas A(EPC)(F) = 69.4
2314 >        +/- 1.1 Angstrom(2) and A(DMPC)(F) = 59.7 +/- 0.2 Angstrom(2). The
2315 >        analysis also gives estimates for the areal compressibility K-A.
2316 >        The A(F) results lead to other structural results regarding membrane
2317 >        thickness and associated waters. Using the recently determined absolute
2318 >        electrons density profile of DPPC, the AF results also lead to absolute
2319 >        electron density profiles and absolute continuous transforms \F(q)\
2320 >        for EPC and DMPC, Limited measurements of temperature dependence
2321 >        show directly that fluctuations increase with increasing temperature
2322 >        and that a small decrease in bending modulus K-c accounts for the
2323 >        increased water spacing reported by Simon et al. (1995) Biophys.
2324 >        J. 69, 1473-1483. (C) 1998 Elsevier Science Ireland Ltd. All rights
2325 >        reserved.},
2326 >  annote = {130AT Times Cited:98 Cited References Count:39},
2327 >  issn = {0009-3084},
2328 >  uri = {<Go to ISI>://000076497600007},
2329   }
2330  
2331 < @InBook{voter,
2332 <  author =   {A.~F. Voter},
2333 <  editor =   {J.~H. Westbrook and R.~L. Fleischer},
2334 <  title =    {Intermetallic Compounds: Principles and Practice},
2335 <  chapter =      4,
2336 <  publisher =    {John Wiley and Sons Ltd},
2337 <  year =     1995,
2338 <  volume =   1,
1886 <  pages =    77
2331 > @ARTICLE{Powles1973,
2332 >  author = {J.~G. Powles},
2333 >  title = {A general ellipsoid can not always serve as a modle for the rotational
2334 >        diffusion properties of arbitrary shaped rigid molecules},
2335 >  journal = {Advan. Phys.},
2336 >  year = {1973},
2337 >  volume = {22},
2338 >  pages = {1-56},
2339   }
2340  
2341 < @Article{marrink:2002,
2342 <  author =   {S.~J. Marrink and D.~P. Teileman},
2343 <  title =    {Molecular Dynamics Simulation of Spontaneous Membrane Fusion during a Cubic-Hexagonal Phase Transition},
2344 <  journal =      {Biophysical Journal},
2345 <  year =     2002,
2346 <  volume =   83,
2347 <  pages =    {2386-2392}
2341 > @ARTICLE{Recio2004,
2342 >  author = {J. Fernandez-Recio and M. Totrov and R. Abagyan},
2343 >  title = {Identification of protein-protein interaction sites from docking
2344 >        energy landscapes},
2345 >  journal = {Journal of Molecular Biology},
2346 >  year = {2004},
2347 >  volume = {335},
2348 >  pages = {843-865},
2349 >  number = {3},
2350 >  month = {Jan 16},
2351 >  abstract = {Protein recognition is one of the most challenging and intriguing
2352 >        problems in structural biology. Despite all the available structural,
2353 >        sequence and biophysical information about protein-protein complexes,
2354 >        the physico-chemical patterns, if any, that make a protein surface
2355 >        likely to be involved in protein-protein interactions, remain elusive.
2356 >        Here, we apply protein docking simulations and analysis of the interaction
2357 >        energy landscapes to identify protein-protein interaction sites.
2358 >        The new protocol for global docking based on multi-start global
2359 >        energy optimization of an allatom model of the ligand, with detailed
2360 >        receptor potentials and atomic solvation parameters optimized in
2361 >        a training set of 24 complexes, explores the conformational space
2362 >        around the whole receptor without restrictions. The ensembles of
2363 >        the rigid-body docking solutions generated by the simulations were
2364 >        subsequently used to project the docking energy landscapes onto
2365 >        the protein surfaces. We found that highly populated low-energy
2366 >        regions consistently corresponded to actual binding sites. The procedure
2367 >        was validated on a test set of 21 known protein-protein complexes
2368 >        not used in the training set. As much as 81% of the predicted high-propensity
2369 >        patch residues were located correctly in the native interfaces.
2370 >        This approach can guide the design of mutations on the surfaces
2371 >        of proteins, provide geometrical details of a possible interaction,
2372 >        and help to annotate protein surfaces in structural proteomics.
2373 >        (C) 2003 Elsevier Ltd. All rights reserved.},
2374 >  annote = {763GQ Times Cited:21 Cited References Count:59},
2375 >  issn = {0022-2836},
2376 >  uri = {<Go to ISI>://000188066900016},
2377   }
2378  
2379 < @Article{sum:2003,
2380 <  author =   {A.~K. Sum and J.~J. de~Pablo},
2381 <  title =    {Molecular Simulation Study on the influence of Dimethylsulfoxide on the structure of Phospholipid Bilayers},
2382 <  journal =      {Biophysical Journal},
2383 <  year =     2003,
2384 <  volume =   85,
2385 <  pages =    {3636-3645}
2379 > @ARTICLE{Reddy2006,
2380 >  author = {R. A. Reddy and C. Tschierske},
2381 >  title = {Bent-core liquid crystals: polar order, superstructural chirality
2382 >        and spontaneous desymmetrisation in soft matter systems},
2383 >  journal = {Journal of Materials Chemistry},
2384 >  year = {2006},
2385 >  volume = {16},
2386 >  pages = {907-961},
2387 >  number = {10},
2388 >  abstract = {An overview on the recent developments in the field of liquid crystalline
2389 >        bent-core molecules (so-called banana liquid crystals) is given.
2390 >        After some basic issues, dealing with general aspects of the systematisation
2391 >        of the mesophases, development of polar order and chirality in this
2392 >        class of LC systems and explaining some general structure-property
2393 >        relationships, we focus on fascinating new developments in this
2394 >        field, such as modulated, undulated and columnar phases, so-called
2395 >        B7 phases, phase biaxiality, ferroelectric and antiferroelectric
2396 >        polar order in smectic and columnar phases, amplification and switching
2397 >        of chirality and the spontaneous formation of superstructural and
2398 >        supramolecular chirality.},
2399 >  annote = {021NS Times Cited:2 Cited References Count:316},
2400 >  issn = {0959-9428},
2401 >  uri = {<Go to ISI>://000235990500001},
2402   }
2403  
2404 < @Article{gomez:2003,
2405 <  author =   {J.~D. Faraldo-Gomez and G.~R. Smith and M.~S.P. Sansom},
2406 <  title =    {Setting up and optimization of membrane protein simulations},
2407 <  journal =      {Eur. Biophys. J.},
2408 <  year =     2002,
2409 <  volume =   31,
2410 <  pages =    {217-227}
2404 > @ARTICLE{Reich1999,
2405 >  author = {S. Reich},
2406 >  title = {Backward error analysis for numerical integrators},
2407 >  journal = {Siam Journal on Numerical Analysis},
2408 >  year = {1999},
2409 >  volume = {36},
2410 >  pages = {1549-1570},
2411 >  number = {5},
2412 >  month = {Sep 8},
2413 >  abstract = {Backward error analysis has become an important tool for understanding
2414 >        the long time behavior of numerical integration methods. This is
2415 >        true in particular for the integration of Hamiltonian systems where
2416 >        backward error analysis can be used to show that a symplectic method
2417 >        will conserve energy over exponentially long periods of time. Such
2418 >        results are typically based on two aspects of backward error analysis:
2419 >        (i) It can be shown that the modified vector fields have some qualitative
2420 >        properties which they share with the given problem and (ii) an estimate
2421 >        is given for the difference between the best interpolating vector
2422 >        field and the numerical method. These aspects have been investigated
2423 >        recently, for example, by Benettin and Giorgilli in [J. Statist.
2424 >        Phys., 74 (1994), pp. 1117-1143], by Hairer in [Ann. Numer. Math.,
2425 >        1 (1994), pp. 107-132], and by Hairer and Lubich in [Numer. Math.,
2426 >        76 (1997), pp. 441-462]. In this paper we aim at providing a unifying
2427 >        framework and a simplification of the existing results and corresponding
2428 >        proofs. Our approach to backward error analysis is based on a simple
2429 >        recursive definition of the modified vector fields that does not
2430 >        require explicit Taylor series expansion of the numerical method
2431 >        and the corresponding flow maps as in the above-cited works. As
2432 >        an application we discuss the long time integration of chaotic Hamiltonian
2433 >        systems and the approximation of time averages along numerically
2434 >        computed trajectories.},
2435 >  annote = {237HV Times Cited:43 Cited References Count:41},
2436 >  issn = {0036-1429},
2437 >  uri = {<Go to ISI>://000082650600010},
2438   }
2439  
2440 <
2441 < @Article{smondyrev:1999,
2442 <  author =   {A.~M. Smondyrev and M.~L. Berkowitz},
2443 <  title =    {Molecular Dynamics Simulation of {\sc dppc} Bilayer in {\sc dmso}},
2444 <  journal =      {Biophysical Journal},
2445 <  year =     1999,
2446 <  volume =   76,
2447 <  pages =    {2472-2478}
2440 > @ARTICLE{Ros2005,
2441 >  author = {M. B. Ros and J. L. Serrano and M. R. {de la Fuente} and C. L. Folcia},
2442 >  title = {Banana-shaped liquid crystals: a new field to explore},
2443 >  journal = {Journal of Materials Chemistry},
2444 >  year = {2005},
2445 >  volume = {15},
2446 >  pages = {5093-5098},
2447 >  number = {48},
2448 >  abstract = {The recent literature in the field of liquid crystals shows that banana-shaped
2449 >        mesogenic materials represent a bewitching and stimulating field
2450 >        of research that is interesting both academically and in terms of
2451 >        applications. Numerous topics are open to investigation in this
2452 >        area because of the rich phenomenology and new possibilities that
2453 >        these materials offer. The principal concepts in this area are reviewed
2454 >        along with recent results. In addition, new directions to stimulate
2455 >        further research activities are highlighted.},
2456 >  annote = {990XA Times Cited:3 Cited References Count:72},
2457 >  issn = {0959-9428},
2458 >  uri = {<Go to ISI>://000233775500001},
2459   }
2460  
2461 < @Article{nina:2002,
2462 <  author =   {M. Nina and T. Simonson},
2463 <  title =    {Molecular Dynamics of the $\text{tRNA}^{\text{Ala}}$ Acceptor Stem: Comparison between Continuum Reaction Field and Particle-Mesh Ewald Electrostatic Treatments},
2464 <  journal =      {J. Phys. Chem. B},
2465 <  year =     2002,
2466 <  volume =   106,
2467 <  pages =    {3696-3705}
2461 > @ARTICLE{Roy2005,
2462 >  author = {A. Roy and N. V. Madhusudana},
2463 >  title = {A frustrated packing model for the B-6-B-1-SmAP(A) sequence of phases
2464 >        in banana shaped molecules},
2465 >  journal = {European Physical Journal E},
2466 >  year = {2005},
2467 >  volume = {18},
2468 >  pages = {253-258},
2469 >  number = {3},
2470 >  month = {Nov},
2471 >  abstract = {A vast majority of compounds with bent core or banana shaped molecules
2472 >        exhibit the phase sequence B-6-B-1-B-2 as the chain length is increased
2473 >        in a homologous series. The B-6 phase has an intercalated fluid
2474 >        lamellar structure with a layer spacing of half the molecular length.
2475 >        The B-1 phase has a two dimensionally periodic rectangular columnar
2476 >        structure. The B-2 phase has a monolayer fluid lamellar structure
2477 >        with molecules tilted with respect to the layer normal. Neglecting
2478 >        the tilt order of the molecules in the B-2 phase, we have developed
2479 >        a frustrated packing model to describe this phase sequence qualitatively.
2480 >        The model has some analogy with that of the frustrated smectics
2481 >        exhibited by highly polar rod like molecules.},
2482 >  annote = {985FW Times Cited:0 Cited References Count:30},
2483 >  issn = {1292-8941},
2484 >  uri = {<Go to ISI>://000233363300002},
2485   }
2486  
2487 < @Article{norberg:2000,
2488 <  author =   {J. Norberg and L. Nilsson},
2489 <  title =    {On the truncation of Long-Range Electrostatic Interactions in {\sc dna}},
2490 <  journal =      {Biophysical Journal},
2491 <  year =     2000,
2492 <  volume =   79,
2493 <  pages =    {1537-1553}
2487 > @ARTICLE{Ryckaert1977,
2488 >  author = {J. P. Ryckaert and G. Ciccotti and H. J. C. Berendsen},
2489 >  title = {Numerical-Integration of Cartesian Equations of Motion of a System
2490 >        with Constraints - Molecular-Dynamics of N-Alkanes},
2491 >  journal = {Journal of Computational Physics},
2492 >  year = {1977},
2493 >  volume = {23},
2494 >  pages = {327-341},
2495 >  number = {3},
2496 >  annote = {Cz253 Times Cited:3680 Cited References Count:7},
2497 >  issn = {0021-9991},
2498 >  uri = {<Go to ISI>://A1977CZ25300007},
2499   }
2500  
2501 < @Article{patra:2003,
2502 <  author =   {M. Patra and M. Karttunen and M.~T. Hyv\"{o}nen and E. Falk and P. Lindqvist and I. Vattulainen},
2503 <  title =    {Molecular Dynamics Simulations of Lipid Bilayers: Major Artifacts Due to Truncating Electrostatic Interactions},
2504 <  journal =      {Biophysical Journal},
2505 <  year =     2003,
2506 <  volume =   84,
2507 <  pages =    {3636-3645}
2501 > @ARTICLE{Sagui1999,
2502 >  author = {C. Sagui and T. A. Darden},
2503 >  title = {Molecular dynamics simulations of biomolecules: Long-range electrostatic
2504 >        effects},
2505 >  journal = {Annual Review of Biophysics and Biomolecular Structure},
2506 >  year = {1999},
2507 >  volume = {28},
2508 >  pages = {155-179},
2509 >  abstract = {Current computer simulations of biomolecules typically make use of
2510 >        classical molecular dynamics methods, as a very large number (tens
2511 >        to hundreds of thousands) of atoms are involved over timescales
2512 >        of many nanoseconds. The methodology for treating short-range bonded
2513 >        and van der Waals interactions has matured. However, long-range
2514 >        electrostatic interactions still represent a bottleneck in simulations.
2515 >        In this article, we introduce the basic issues for an accurate representation
2516 >        of the relevant electrostatic interactions. In spite of the huge
2517 >        computational time demanded by most biomolecular systems, it is
2518 >        no longer necessary to resort to uncontrolled approximations such
2519 >        as the use of cutoffs. In particular, we discuss the Ewald summation
2520 >        methods, the fast particle mesh methods, and the fast multipole
2521 >        methods. We also review recent efforts to understand the role of
2522 >        boundary conditions in systems with long-range interactions, and
2523 >        conclude with a short perspective on future trends.},
2524 >  annote = {213KJ Times Cited:126 Cited References Count:73},
2525 >  issn = {1056-8700},
2526 >  uri = {<Go to ISI>://000081271400008},
2527   }
2528  
2529 < @Article{marrink04,
2530 <  author =   {S.~J. Marrink and A.~H. de~Vries and A.~E. Mark},
2531 <  title =    {Coarse Grained Model for Semiquantitative Lipid Simulations},
2532 <  journal =      {J. Phys. Chem. B},
2533 <  year =     2004,
2534 <  volume =   108,
2535 <  pages =    {750-760}
2529 > @ARTICLE{Sandu1999,
2530 >  author = {A. Sandu and T. Schlick},
2531 >  title = {Masking resonance artifacts in force-splitting methods for biomolecular
2532 >        simulations by extrapolative Langevin dynamics},
2533 >  journal = {Journal of Computational Physics},
2534 >  year = {1999},
2535 >  volume = {151},
2536 >  pages = {74-113},
2537 >  number = {1},
2538 >  month = {May 1},
2539 >  abstract = {Numerical resonance artifacts have become recognized recently as a
2540 >        limiting factor to increasing the timestep in multiple-timestep
2541 >        (MTS) biomolecular dynamics simulations. At certain timesteps correlated
2542 >        to internal motions (e.g., 5 fs, around half the period of the fastest
2543 >        bond stretch, T-min), visible inaccuracies or instabilities can
2544 >        occur. Impulse-MTS schemes are vulnerable to these resonance errors
2545 >        since large energy pulses are introduced to the governing dynamics
2546 >        equations when the slow forces are evaluated. We recently showed
2547 >        that such resonance artifacts can be masked significantly by applying
2548 >        extrapolative splitting to stochastic dynamics. Theoretical and
2549 >        numerical analyses of force-splitting integrators based on the Verlet
2550 >        discretization are reported here for linear models to explain these
2551 >        observations and to suggest how to construct effective integrators
2552 >        for biomolecular dynamics that balance stability with accuracy.
2553 >        Analyses for Newtonian dynamics demonstrate the severe resonance
2554 >        patterns of the Impulse splitting, with this severity worsening
2555 >        with the outer timestep. Delta t: Constant Extrapolation is generally
2556 >        unstable, but the disturbances do not grow with Delta t. Thus. the
2557 >        stochastic extrapolative combination can counteract generic instabilities
2558 >        and largely alleviate resonances with a sufficiently strong Langevin
2559 >        heat-bath coupling (gamma), estimates for which are derived here
2560 >        based on the fastest and slowest motion periods. These resonance
2561 >        results generally hold for nonlinear test systems: a water tetramer
2562 >        and solvated protein. Proposed related approaches such as Extrapolation/Correction
2563 >        and Midpoint Extrapolation work better than Constant Extrapolation
2564 >        only for timesteps less than T-min/2. An effective extrapolative
2565 >        stochastic approach for biomolecules that balances long-timestep
2566 >        stability with good accuracy for the fast subsystem is then applied
2567 >        to a biomolecule using a three-class partitioning: the medium forces
2568 >        are treated by Midpoint Extrapolation via position Verlet, and the
2569 >        slow forces are incorporated by Constant Extrapolation. The resulting
2570 >        algorithm (LN) performs well on a solvated protein system in terms
2571 >        of thermodynamic properties and yields an order of magnitude speedup
2572 >        with respect to single-timestep Langevin trajectories. Computed
2573 >        spectral density functions also show how the Newtonian modes can
2574 >        be approximated by using a small gamma in the range Of 5-20 ps(-1).
2575 >        (C) 1999 Academic Press.},
2576 >  annote = {194FM Times Cited:14 Cited References Count:32},
2577 >  issn = {0021-9991},
2578 >  uri = {<Go to ISI>://000080181500004},
2579   }
2580  
2581 < @Article{andersen83,
2582 <  author =   {H.~C. Andersen},
2583 <  title =    {{\sc rattle}: A Velocity Version of the Shake Algorithm for Molecular Dynamics Calculations},
2584 <  journal =      {Journal of Computational Physics},
2585 <  year =     1983,
2586 <  volume =   52,
2587 <  pages =    {24-34}
2581 > @ARTICLE{Satoh1996,
2582 >  author = {K. Satoh and S. Mita and S. Kondo},
2583 >  title = {Monte Carlo simulations using the dipolar Gay-Berne model: Effect
2584 >        of terminal dipole moment on mesophase formation},
2585 >  journal = {Chemical Physics Letters},
2586 >  year = {1996},
2587 >  volume = {255},
2588 >  pages = {99-104},
2589 >  number = {1-3},
2590 >  month = {Jun 7},
2591 >  abstract = {The effects of dipole-dipole interaction on mesophase formation are
2592 >        investigated with a Monte Carlo simulation using the dipolar Gay-Berne
2593 >        potential. It is shown that the dipole moment at the end of a molecule
2594 >        causes a shift in the nematic-isotropic transition toward higher
2595 >        temperature and a spread of the temperature range of the nematic
2596 >        phase and that layer structures with various interdigitations are
2597 >        formed in the smectic phase.},
2598 >  annote = {Uq975 Times Cited:32 Cited References Count:33},
2599 >  issn = {0009-2614},
2600 >  uri = {<Go to ISI>://A1996UQ97500017},
2601   }
2602  
2603 < @Article{hura00,
2604 <  author =   {G. Hura and J.~M. Sorenson and R.~M. Glaeser and T. Head-Gordon},
2605 <  title =    {A high-quality x-ray scattering experiment on liquid water at ambient conditions},
2606 <  journal =      {J. Chem. Phys.},
2607 <  year =     2000,
2608 <  volume =   113,
2609 <  pages =    {9140-9148}
2603 > @ARTICLE{Shen2002,
2604 >  author = {M. Y. Shen and K. F. Freed},
2605 >  title = {Long time dynamics of met-enkephalin: Comparison of explicit and
2606 >        implicit solvent models},
2607 >  journal = {Biophysical Journal},
2608 >  year = {2002},
2609 >  volume = {82},
2610 >  pages = {1791-1808},
2611 >  number = {4},
2612 >  month = {Apr},
2613 >  abstract = {Met-enkephalin is one of the smallest opiate peptides. Yet, its dynamical
2614 >        structure and receptor docking mechanism are still not well understood.
2615 >        The conformational dynamics of this neuron peptide in liquid water
2616 >        are studied here by using all-atom molecular dynamics (MID) and
2617 >        implicit water Langevin dynamics (LD) simulations with AMBER potential
2618 >        functions and the three-site transferable intermolecular potential
2619 >        (TIP3P) model for water. To achieve the same simulation length in
2620 >        physical time, the full MID simulations require 200 times as much
2621 >        CPU time as the implicit water LID simulations. The solvent hydrophobicity
2622 >        and dielectric behavior are treated in the implicit solvent LD simulations
2623 >        by using a macroscopic solvation potential, a single dielectric
2624 >        constant, and atomic friction coefficients computed using the accessible
2625 >        surface area method with the TIP3P model water viscosity as determined
2626 >        here from MID simulations for pure TIP3P water. Both the local and
2627 >        the global dynamics obtained from the implicit solvent LD simulations
2628 >        agree very well with those from the explicit solvent MD simulations.
2629 >        The simulations provide insights into the conformational restrictions
2630 >        that are associated with the bioactivity of the opiate peptide dermorphin
2631 >        for the delta-receptor.},
2632 >  annote = {540MH Times Cited:36 Cited References Count:45},
2633 >  issn = {0006-3495},
2634 >  uri = {<Go to ISI>://000174932400010},
2635   }
2636  
2637 <
2638 < @Article{ryckaert77,
2639 <  author =   {J.~P. Ryckaert and G. Ciccotti and H.~J.~C. Berendsen},
2640 <  title =    {Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes},
2641 <  journal =      {Journal of Computational Physics},
2642 <  year =     1977,
2643 <  volume =   23,
2644 <  pages =    {327-341}
2637 > @ARTICLE{Shillcock2005,
2638 >  author = {J. C. Shillcock and R. Lipowsky},
2639 >  title = {Tension-induced fusion of bilayer membranes and vesicles},
2640 >  journal = {Nature Materials},
2641 >  year = {2005},
2642 >  volume = {4},
2643 >  pages = {225-228},
2644 >  number = {3},
2645 >  month = {Mar},
2646 >  annote = {901QJ Times Cited:9 Cited References Count:23},
2647 >  issn = {1476-1122},
2648 >  uri = {<Go to ISI>://000227296700019},
2649   }
2650  
2651 <
2652 < @InBook{fowles99:lagrange,
2653 <  author =   {G.~R. Fowles and G.~L. Cassiday},
2654 <  title =    {Analytical Mechanics},
2655 <  chapter =      10,
2656 <  publisher =    {Saunders College Publishing},
2657 <  year =     1999,
2658 <  edition =  {6th}
2651 > @ARTICLE{Shimada1993,
2652 >  author = {J. Shimada and H. Kaneko and T. Takada},
2653 >  title = {Efficient Calculations of Coulombic Interactions in Biomolecular
2654 >        Simulations with Periodic Boundary-Conditions},
2655 >  journal = {Journal of Computational Chemistry},
2656 >  year = {1993},
2657 >  volume = {14},
2658 >  pages = {867-878},
2659 >  number = {7},
2660 >  month = {Jul},
2661 >  abstract = {To make improved treatments of electrostatic interactions in biomacromolecular
2662 >        simulations, two possibilities are considered. The first is the
2663 >        famous particle-particle and particle-mesh (PPPM) method developed
2664 >        by Hockney and Eastwood, and the second is a new one developed here
2665 >        in their spirit but by the use of the multipole expansion technique
2666 >        suggested by Ladd. It is then numerically found that the new PPPM
2667 >        method gives more accurate results for a two-particle system at
2668 >        small separation of particles. Preliminary numerical examination
2669 >        of the various computational methods for a single configuration
2670 >        of a model BPTI-water system containing about 24,000 particles indicates
2671 >        that both of the PPPM methods give far more accurate values with
2672 >        reasonable computational cost than do the conventional truncation
2673 >        methods. It is concluded the two PPPM methods are nearly comparable
2674 >        in overall performance for the many-particle systems, although the
2675 >        first method has the drawback that the accuracy in the total electrostatic
2676 >        energy is not high for configurations of charged particles randomly
2677 >        generated.},
2678 >  annote = {Lh164 Times Cited:27 Cited References Count:47},
2679 >  issn = {0192-8651},
2680 >  uri = {<Go to ISI>://A1993LH16400011},
2681   }
2682  
2683 < @Article{petrache00,
2684 <  author =   {H.~I. Petrache and S.~W. Dodd and M.~F. Brown},
2685 <  title =    {Area per Lipid and Acyl Length Distributions in Fluid Phosphatidylcholines Determined by $^2\text{H}$ {\sc nmr} Spectroscopy},
2686 <  journal =      {Biophysical Journal},
2687 <  year =     2000,
2688 <  volume =   79,
2689 <  pages =    {3172-3192}
2683 > @ARTICLE{Skeel2002,
2684 >  author = {R. D. Skeel and J. A. Izaguirre},
2685 >  title = {An impulse integrator for Langevin dynamics},
2686 >  journal = {Molecular Physics},
2687 >  year = {2002},
2688 >  volume = {100},
2689 >  pages = {3885-3891},
2690 >  number = {24},
2691 >  month = {Dec 20},
2692 >  abstract = {The best simple method for Newtonian molecular dynamics is indisputably
2693 >        the leapfrog Stormer-Verlet method. The appropriate generalization
2694 >        to simple Langevin dynamics is unclear. An analysis is presented
2695 >        comparing an 'impulse method' (kick; fluctuate; kick), the 1982
2696 >        method of van Gunsteren and Berendsen, and the Brunger-Brooks-Karplus
2697 >        (BBK) method. It is shown how the impulse method and the van Gunsteren-Berendsen
2698 >        methods can be implemented as efficiently as the BBK method. Other
2699 >        considerations suggest that the impulse method is the best basic
2700 >        method for simple Langevin dynamics, with the van Gunsteren-Berendsen
2701 >        method a close contender.},
2702 >  annote = {633RX Times Cited:8 Cited References Count:22},
2703 >  issn = {0026-8976},
2704 >  uri = {<Go to ISI>://000180297200014},
2705   }
2706  
2707 < @Article{egberts88,
2708 <  author =   {E. Egberts and H.~J.~C. Berendsen},
2709 <  title =    {Molecular Dynamics Simulation of a smectic liquid crystal with atomic detail},
2710 <  journal =      {J. Chem. Phys.},
2711 <  year =     1988,
2712 <  volume =   89,
2713 <  pages =    {3718-3732}
2707 > @ARTICLE{Skeel1997,
2708 >  author = {R. D. Skeel and G. H. Zhang and T. Schlick},
2709 >  title = {A family of symplectic integrators: Stability, accuracy, and molecular
2710 >        dynamics applications},
2711 >  journal = {Siam Journal on Scientific Computing},
2712 >  year = {1997},
2713 >  volume = {18},
2714 >  pages = {203-222},
2715 >  number = {1},
2716 >  month = {Jan},
2717 >  abstract = {The following integration methods for special second-order ordinary
2718 >        differential equations are studied: leapfrog, implicit midpoint,
2719 >        trapezoid, Stormer-Verlet, and Cowell-Numerov. We show that all
2720 >        are members, or equivalent to members, of a one-parameter family
2721 >        of schemes. Some methods have more than one common form, and we
2722 >        discuss a systematic enumeration of these forms. We also present
2723 >        a stability and accuracy analysis based on the idea of ''modified
2724 >        equations'' and a proof of symplecticness. It follows that Cowell-Numerov
2725 >        and ''LIM2'' (a method proposed by Zhang and Schlick) are symplectic.
2726 >        A different interpretation of the values used by these integrators
2727 >        leads to higher accuracy and better energy conservation. Hence,
2728 >        we suggest that the straightforward analysis of energy conservation
2729 >        is misleading.},
2730 >  annote = {We981 Times Cited:30 Cited References Count:35},
2731 >  issn = {1064-8275},
2732 >  uri = {<Go to ISI>://A1997WE98100012},
2733   }
2734  
2735 < @Article{Holz00,
2736 <  author =       {M. Holz and S.~R. Heil and A. Sacco},
2737 <  title =        {Temperature-dependent self-diffusion coefficients of
2738 <                  water and six selected molecular liquids for calibration
2739 <                  in accurate $^1${\sc h} {\sc nmr pfg} measurements},
2740 <  journal =      {Phys. Chem. Chem. Phys.},
2741 <  year =         2000,
2742 <  volume =       2,
2743 <  pages =        {4740-4742},
2735 > @ARTICLE{Tao2005,
2736 >  author = {Y. G. Tao and W. K. {den Otter} and J. T. Padding and J. K. G. Dhont
2737 >        and W. J. Briels},
2738 >  title = {Brownian dynamics simulations of the self- and collective rotational
2739 >        diffusion coefficients of rigid long thin rods},
2740 >  journal = {Journal of Chemical Physics},
2741 >  year = {2005},
2742 >  volume = {122},
2743 >  pages = {-},
2744 >  number = {24},
2745 >  month = {Jun 22},
2746 >  abstract = {Recently a microscopic theory for the dynamics of suspensions of long
2747 >        thin rigid rods was presented, confirming and expanding the well-known
2748 >        theory by Doi and Edwards [The Theory of Polymer Dynamics (Clarendon,
2749 >        Oxford, 1986)] and Kuzuu [J. Phys. Soc. Jpn. 52, 3486 (1983)]. Here
2750 >        this theory is put to the test by comparing it against computer
2751 >        simulations. A Brownian dynamics simulation program was developed
2752 >        to follow the dynamics of the rods, with a length over a diameter
2753 >        ratio of 60, on the Smoluchowski time scale. The model accounts
2754 >        for excluded volume interactions between rods, but neglects hydrodynamic
2755 >        interactions. The self-rotational diffusion coefficients D-r(phi)
2756 >        of the rods were calculated by standard methods and by a new, more
2757 >        efficient method based on calculating average restoring torques.
2758 >        Collective decay of orientational order was calculated by means
2759 >        of equilibrium and nonequilibrium simulations. Our results show
2760 >        that, for the currently accessible volume fractions, the decay times
2761 >        in both cases are virtually identical. Moreover, the observed decay
2762 >        of diffusion coefficients with volume fraction is much quicker than
2763 >        predicted by the theory, which is attributed to an oversimplification
2764 >        of dynamic correlations in the theory. (c) 2005 American Institute
2765 >        of Physics.},
2766 >  annote = {943DN Times Cited:3 Cited References Count:26},
2767 >  issn = {0021-9606},
2768 >  uri = {<Go to ISI>://000230332400077},
2769   }
2770  
2771 < @InCollection{zannoni94,
2772 <  author =   {C. Zannoni},
2773 <  title =    {An introduction to the molecular dynamics method and to orientational dynamics in liquid crystals},
2774 <  booktitle =    {The Molecular Dynamics of Liquid Crstals},
2775 <  pages =    {139-169},
2776 <  publisher =    {Kluwer Academic Publishers},
2777 <  year =     1994,
2778 <  editor =   {G.~R. Luckhurst and C.~A. Veracini},
2037 <  chapter =  6
2771 > @BOOK{Tolman1979,
2772 >  title = {The Principles of Statistical Mechanics},
2773 >  publisher = {Dover Publications, Inc.},
2774 >  year = {1979},
2775 >  author = {R.~C. Tolman},
2776 >  address = {New York},
2777 >  chapter = {2},
2778 >  pages = {19-22},
2779   }
2780  
2781 <
2782 < @Article{melchionna93,
2783 <  author =   {S. Melchionna and G. Ciccotti and B.~L. Holian},
2784 <  title =    {Hoover {\sc npt} dynamics for systems varying in shape and size},
2785 <  journal =      {Molecular Physics},
2786 <  year =     1993,
2787 <  volume =   78,
2788 <  pages =    {533-544}
2781 > @ARTICLE{Tu1995,
2782 >  author = {K. Tu and D. J. Tobias and M. L. Klein},
2783 >  title = {Constant pressure and temperature molecular dynamics simulation of
2784 >        a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine
2785 >        bilayer},
2786 >  journal = {Biophysical Journal},
2787 >  year = {1995},
2788 >  volume = {69},
2789 >  pages = {2558-2562},
2790 >  number = {6},
2791 >  month = {Dec},
2792 >  abstract = {We report a constant pressure and temperature molecular dynamics simulation
2793 >        of a fully hydrated liquid crystal (L(alpha) phase bilayer of dipalmitoylphosphatidylcholine
2794 >        at 50 degrees C and 28 water molecules/lipid. We have shown that
2795 >        the bilayer is stable throughout the 1550-ps simulation and have
2796 >        demonstrated convergence of the system dimensions. Several important
2797 >        aspects of the bilayer structure have been investigated and compared
2798 >        favorably with experimental results. For example, the average positions
2799 >        of specific carbon atoms along the bilayer normal agree well with
2800 >        neutron diffraction data, and the electron density profile is in
2801 >        accord with x-ray diffraction results. The hydrocarbon chain deuterium
2802 >        order parameters agree reasonably well with NMR results for the
2803 >        middles of the chains, but the simulation predicts too much order
2804 >        at the chain ends. In spite of the deviations in the order parameters,
2805 >        the hydrocarbon chain packing density appears to be essentially
2806 >        correct, inasmuch as the area/lipid and bilayer thickness are in
2807 >        agreement with the most refined experimental estimates. The deuterium
2808 >        order parameters for the glycerol and choline groups, as well as
2809 >        the phosphorus chemical shift anisotropy, are in qualitative agreement
2810 >        with those extracted from NMR measurements.},
2811 >  annote = {Tv018 Times Cited:108 Cited References Count:34},
2812 >  issn = {0006-3495},
2813 >  uri = {<Go to ISI>://A1995TV01800037},
2814   }
2815  
2816 < @Article{fennell04,
2817 <  author =   {C.~J. Fennell and J.~D. Gezelter},
2818 <  title =    {On the structural and transport properties of the soft sticky dipole(SSD) and related single point water models},
2819 <  journal =      {J. Chem. Phys},
2820 <  year =     {in press 2004}
2816 > @ARTICLE{Tuckerman1992,
2817 >  author = {M. Tuckerman and B. J. Berne and G. J. Martyna},
2818 >  title = {Reversible Multiple Time Scale Molecular-Dynamics},
2819 >  journal = {Journal of Chemical Physics},
2820 >  year = {1992},
2821 >  volume = {97},
2822 >  pages = {1990-2001},
2823 >  number = {3},
2824 >  month = {Aug 1},
2825 >  abstract = {The Trotter factorization of the Liouville propagator is used to generate
2826 >        new reversible molecular dynamics integrators. This strategy is
2827 >        applied to derive reversible reference system propagator algorithms
2828 >        (RESPA) that greatly accelerate simulations of systems with a separation
2829 >        of time scales or with long range forces. The new algorithms have
2830 >        all of the advantages of previous RESPA integrators but are reversible,
2831 >        and more stable than those methods. These methods are applied to
2832 >        a set of paradigmatic systems and are shown to be superior to earlier
2833 >        methods. It is shown how the new RESPA methods are related to predictor-corrector
2834 >        integrators. Finally, we show how these methods can be used to accelerate
2835 >        the integration of the equations of motion of systems with Nose
2836 >        thermostats.},
2837 >  annote = {Je891 Times Cited:680 Cited References Count:19},
2838 >  issn = {0021-9606},
2839 >  uri = {<Go to ISI>://A1992JE89100044},
2840   }
2841  
2842 < @Article{klein01,
2843 <  author =   {J.~C. Shelley andf M.~Y. Shelley and R.~C. Reeder and S. Bandyopadhyay and M.~L. Klein},
2844 <  title =    {A coarse Grain Model for Phospholipid Simulations},
2845 <  journal =      {J. Phys. Chem. B},
2846 <  year =     2001,
2847 <  volume =   105,
2063 <  pages =    {4464-4470}
2842 > @BOOK{Varadarajan1974,
2843 >  title = {Lie groups, Lie algebras, and their representations},
2844 >  publisher = {Prentice-Hall},
2845 >  year = {1974},
2846 >  author = {V.S. Varadarajan},
2847 >  address = {New York},
2848   }
2849  
2850 <
2851 < @Article{marrink03:vesicles,
2852 <  author =   {S.~J. Marrink and A.~E. Mark},
2853 <  title =    {Molecular Dynaimcs Simulation of the Formation, Structure, and Dynamics of Small Phospholipid Vesicles},
2854 <  journal =      {J. Am. Chem. Soc.},
2855 <  year =     2003,
2856 <  volume =   125,
2857 <  pages =    {15233-15242}
2850 > @ARTICLE{Wegener1979,
2851 >  author = {W.~A. Wegener, V.~J. Koester and R.~M. Dowben},
2852 >  title = {A general ellipsoid can not always serve as a modle for the rotational
2853 >        diffusion properties of arbitrary shaped rigid molecules},
2854 >  journal = {Proc. Natl. Acad. Sci.},
2855 >  year = {1979},
2856 >  volume = {76},
2857 >  pages = {6356-6360},
2858 >  number = {12},
2859   }
2860  
2861 < @Book{gamma94,
2862 <  author =       {E. Gamma, R. Helm, R. Johnson and J. Vlissides},
2863 <  title =        {Design Patterns: Elements of Reusable Object-Oriented Software},
2864 <  chapter =      7,
2865 <  publisher =    {Perason Education},
2866 <  year =         1994,
2867 <  address =      {London},
2868 <  pages =        {199-206}
2861 > @ARTICLE{Withers2003,
2862 >  author = {I. M. Withers},
2863 >  title = {Effects of longitudinal quadrupoles on the phase behavior of a Gay-Berne
2864 >        fluid},
2865 >  journal = {Journal of Chemical Physics},
2866 >  year = {2003},
2867 >  volume = {119},
2868 >  pages = {10209-10223},
2869 >  number = {19},
2870 >  month = {Nov 15},
2871 >  abstract = {The effects of longitudinal quadrupole moments on the formation of
2872 >        liquid crystalline phases are studied by means of constant NPT Monte
2873 >        Carlo simulation methods. The popular Gay-Berne model mesogen is
2874 >        used as the reference fluid, which displays the phase sequences
2875 >        isotropic-smectic A-smectic B and isotropic-smectic B at high (T*=2.0)
2876 >        and low (T*=1.5) temperatures, respectively. With increasing quadrupole
2877 >        magnitude the smectic phases are observed to be stabilized with
2878 >        respect to the isotropic liquid, while the smectic B is destabilized
2879 >        with respect to the smectic A. At the lower temperature, a sufficiently
2880 >        large quadrupole magnitude results in the injection of the smectic
2881 >        A phase into the phase sequence and the replacement of the smectic
2882 >        B phase by the tilted smectic J phase. The nematic phase is also
2883 >        injected into the phase sequence at both temperatures considered,
2884 >        and ultimately for sufficiently large quadrupole magnitudes no coherent
2885 >        layered structures were observed. The stabilization of the smectic
2886 >        A phase supports the commonly held belief that, while the inclusion
2887 >        of polar groups is not a prerequisite for the formation of the smectic
2888 >        A phase, quadrupolar interactions help to increase the temperature
2889 >        and pressure range for which the smectic A phase is observed. The
2890 >        quality of the layered structure is worsened with increasing quadrupole
2891 >        magnitude. This behavior, along with the injection of the nematic
2892 >        phase into the phase sequence, indicate that the general tendency
2893 >        of the quadrupolar interactions is to destabilize the layered structure.
2894 >        A pressure dependence upon the smectic layer spacing is observed.
2895 >        This behavior is in much closer agreement with experimental findings
2896 >        than has been observed previously for nonpolar Gay-Berne and hard
2897 >        spherocylinder models. (C) 2003 American Institute of Physics.},
2898 >  annote = {738EF Times Cited:3 Cited References Count:43},
2899 >  issn = {0021-9606},
2900 >  uri = {<Go to ISI>://000186273200027},
2901   }
2902  
2903 < @Book{alexander,
2904 <  author =       {C. Alexander},
2905 <  title =        {A Pattern Language: Towns, Buildings, Construction},
2906 <  publisher =    {Oxford University Press},
2907 <  year =         1987,
2908 <  address =      {New York}
2903 > @ARTICLE{Wolf1999,
2904 >  author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
2905 >  title = {Exact method for the simulation of Coulombic systems by spherically
2906 >        truncated, pairwise r(-1) summation},
2907 >  journal = {Journal of Chemical Physics},
2908 >  year = {1999},
2909 >  volume = {110},
2910 >  pages = {8254-8282},
2911 >  number = {17},
2912 >  month = {May 1},
2913 >  abstract = {Based on a recent result showing that the net Coulomb potential in
2914 >        condensed ionic systems is rather short ranged, an exact and physically
2915 >        transparent method permitting the evaluation of the Coulomb potential
2916 >        by direct summation over the r(-1) Coulomb pair potential is presented.
2917 >        The key observation is that the problems encountered in determining
2918 >        the Coulomb energy by pairwise, spherically truncated r(-1) summation
2919 >        are a direct consequence of the fact that the system summed over
2920 >        is practically never neutral. A simple method is developed that
2921 >        achieves charge neutralization wherever the r(-1) pair potential
2922 >        is truncated. This enables the extraction of the Coulomb energy,
2923 >        forces, and stresses from a spherically truncated, usually charged
2924 >        environment in a manner that is independent of the grouping of the
2925 >        pair terms. The close connection of our approach with the Ewald
2926 >        method is demonstrated and exploited, providing an efficient method
2927 >        for the simulation of even highly disordered ionic systems by direct,
2928 >        pairwise r(-1) summation with spherical truncation at rather short
2929 >        range, i.e., a method which fully exploits the short-ranged nature
2930 >        of the interactions in ionic systems. The method is validated by
2931 >        simulations of crystals, liquids, and interfacial systems, such
2932 >        as free surfaces and grain boundaries. (C) 1999 American Institute
2933 >        of Physics. [S0021-9606(99)51517-1].},
2934 >  annote = {189PD Times Cited:70 Cited References Count:34},
2935 >  issn = {0021-9606},
2936 >  uri = {<Go to ISI>://000079913000008},
2937   }
2938  
2939 < @Article{wilson,
2940 <  author =   {G.~V. Wilson },
2941 <  title =    {Where's the Real Bottleneck in Scientific Computing?},
2942 <  journal =      {American Scientist},
2943 <  year =     2006,
2944 <  volume =   94
2939 > @ARTICLE{Yoshida1990,
2940 >  author = {H. Yoshida},
2941 >  title = {Construction of Higher-Order Symplectic Integrators},
2942 >  journal = {Physics Letters A},
2943 >  year = {1990},
2944 >  volume = {150},
2945 >  pages = {262-268},
2946 >  number = {5-7},
2947 >  month = {Nov 12},
2948 >  annote = {Ej798 Times Cited:492 Cited References Count:9},
2949 >  issn = {0375-9601},
2950 >  uri = {<Go to ISI>://A1990EJ79800009},
2951   }
2952  
2102 @article{Meineke05,
2103        Author = {M.~A. Meineke and C.~F. {Vardeman II} and T. Lin and C.~J. Fennell and J.~D. Gezelter},
2104        Date-Modified = {2006-03-05 12:37:31 -0500},
2105        Journal = {J. Comp. Chem.},
2106        Local-Url = {file://localhost/Users/cfennell/Documents/pdf_files/MyPapers/Meineke_OOPSE_05.pdf},
2107        Pages = {252-271},
2108        Title = {OOPSE: An Open Source Object-Oriented Parallel Simulation Engine for Molecular Dynamics},
2109        Volume = 26,
2110        Year = 2005
2111 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines