ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/dissertation.bib
(Generate patch)

Comparing trunk/tengDissertation/dissertation.bib (file contents):
Revision 2691 by tim, Tue Apr 4 04:33:23 2006 UTC vs.
Revision 2801 by tim, Tue Jun 6 14:56:36 2006 UTC

# Line 1 | Line 1
1 < @string{jcp = "J. Chem. Phys."}
2 < @string{cpl = "Chem. Phys. Lett."}
3 < @string{jpc = "J. Phys. Chem."}
4 < @string{jpcA = "J. Phys. Chem. A"}
5 < @string{jpcB = "J. Phys. Chem. B"}
6 < @string{cp  = "Chem. Phys."}
7 < @string{acp = "Adv. Chem. Phys."}
8 < @string{pra = "Phys. Rev. A"}
9 < @string{prb = "Phys. Rev. B"}
10 < @string{pre = "Phys. Rev. E"}
11 < @string{prl = "Phys. Rev. Lett."}
12 < @string{rmp = "Rev. Mod. Phys."}
13 < @string{jml = "J. Mol. Liq."}
14 < @string{mp = "Mol. Phys."}
15 < @string{pnas = "Proc. Natl. Acad. Sci. USA"}
16 < @string{jacs = "J. Am. Chem. Soc."}
1 > This file was created with JabRef 2.0.1.
2 > Encoding: GBK
3  
4 < @Book{Berne90,
5 <  author =       {B.~J. Berne and R. Pecora},
6 <  title =        {Dynamic Light Scattering},
7 <  publisher =    {Robert E. Krieger Publishing Company, Inc.},
8 <  year =         1990,
9 <  address =      {Malabar, Florida}
10 < }
11 <
12 < @Article{Evans77,
13 <  author =       {D.~J. Evans},
14 <  title =        {On the representation of orientation space},
15 <  journal =      {Mol. Phys.},
16 <  year =         1977,
17 <  volume =       34,
18 <  pages =        {317-325}
19 < }
20 <
21 < @Article{Tuckerman92,
22 <  author =       {M. Tuckerman and B.~J. Berne and G.~J. Martyna},
23 <  title =        {Reversible multiple time scale molecular dynamics},
24 <  journal =      jcp,
25 <  year =         1992,
26 <  volume =       97,
27 <  pages =        {1990-2001}
28 < }
29 <
30 < @Book{Hansen86,
31 <  author =       {J.~P. Hansen and I.~R. McDonald},
32 <  title =        {Theory of Simple Liquids},
33 <  chapter =      7,
34 <  publisher =    {Academic Press},
35 <  year =         1986,
36 <  address =      {London},
37 <  pages =        {199-206}
38 < }
39 <
54 < @Article{Angelani98,
55 <  author =       {L. Angelani and G. Parisi and G. Ruocco and G. Viliani},
56 <  title =        {Connected Network of Minima as a Model Glass: Long
57 <                  Time Dynamics},
58 <  journal =      prl,
59 <  year =         1998,
60 <  volume =       81,
61 <  number =       21,
62 <  pages =        {4648-4651}
63 < }
64 <
65 < @Article{Stillinger82,
66 <  author =       {F.~H. Stillinger and T.~A. Weber},
67 <  title =        {Hidden structure in liquids},
68 <  journal =      pra,
69 <  year =         1982,
70 <  volume =       25,
71 <  number =       2,
72 <  pages =        {978-989}
73 < }
74 <
75 < @Article{Stillinger83,
76 <  author =       {F.~H. Stillinger and T.~A. Weber},
77 <  title =        {Dynamics of structural transitions in liquids},
78 <  journal =      pra,
79 <  year =         1983,
80 <  volume =       28,
81 <  number =       4,
82 <  pages =        {2408-2416}
83 < }
84 <
85 < @Article{Weber84,
86 <  author =       {T.~A. Weber and F.~H. Stillinger},
87 <  title =        {The effect of density on the inherent structure in
88 <                  liquids},
89 <  journal =      jcp,
90 <  year =         1984,
91 <  volume =       80,
92 <  number =       6,
93 <  pages =        {2742-2746}
94 < }
95 <
96 < @Article{Stillinger85,
97 <  author =       {F.~H. Stillinger and T.~A. Weber},
98 <  title =        {Inherent structure theory of liquids in the
99 <                  hard-sphere limit},
100 <  journal =      jcp,
101 <  year =         1985,
102 <  volume =       83,
103 <  number =       9,
104 <  pages =        {4767-4775}
105 < }
106 <
107 < @Article{Stillinger98,
108 <  author =       {S. Sastry and P.~G. Debenedetti and F.~H. Stillinger},
109 <  title =        {Signatures of distinct dynamical regimes in the
110 <                  energy landscape of a glass-forming liquid},
111 <  journal =      {Nature},
112 <  year =         1998,
113 <  volume =       393,
114 <  pages =        {554-557}
115 < }
116 <
117 <
118 < @Article{Parkhurst75a,
119 <  author =       {H.~J. {Parkhurst, Jr.} and J. Jonas},
120 <  title =        {Dense liquids. I. The effect of density and
121 <                  temperature on viscosity of tetramethylsilane and
122 <                  benzene-$\mbox{D}_6$},
123 <  journal =      jcp,
124 <  year =         1975,
125 <  volume =       63,
126 <  number =       6,
127 <  pages =        {2698-2704}
128 < }
129 <
130 < @Article{Parkhurst75b,
131 <  author =       {H.~J. {Parkhurst, Jr.} and J. Jonas},
132 <  title =        {Dense liquids. II. The effect of density and
133 <                  temperature on viscosity of tetramethylsilane and
134 <                  benzene },
135 <  journal =      jcp,
136 <  year =         1975,
137 <  volume =       63,
138 <  number =       6,
139 <  pages =        {2705-2709}
140 < }
141 <
142 < @Article{Forester97,
143 <  author =       {T.~R. Forester and W. Smith and J.~H.~R. Clarke},
144 <  title =        {Antibiotic activity of valinomycin - Molecular
145 <                  dynamics simulations involving the water/membrane
146 <                  interface},
147 <  journal =      {J. Chem. Soc. - Faraday Transactions},
148 <  year =         1997,
149 <  volume =       93,
150 <  pages =        {613-619}
151 < }
152 <
153 < @Article{Tieleman98,
154 <  author =       {D.~P. Tieleman and H.~J.~C. Berendsen},
155 <  title =        {A molecular dynamics study of the pores formed by
156 <                  Escherichia coli OmpF porin in a fully hydrated
157 <                  palmitoyloleoylphosphatidylcholine bilayer},
158 <  journal =      {Biophys. J.},
159 <  year =         1998,
160 <  volume =       74,
161 <  pages =        {2786-2801}
162 < }
163 <
164 < @Article{Cascales98,
165 <  author =       {J.~J.~L. Cascales and J.~G.~H. Cifre and J.~G. de~la~Torre},
166 <  title =        {Anaesthetic mechanism on a model biological
167 <                  membrane: A molecular dynamics simulation study},
168 <  journal =      {J. Phys. Chem. B},
169 <  year =         1998,
170 <  volume =       102,
171 <  pages =        {625-631}
172 < }
173 <
174 < @Article{Bassolino95,
175 <  author =       {D. Bassolino and H.~E. Alper and T.~R. Stouch},
176 <  title =        {MECHANISM OF SOLUTE DIFFUSION THROUGH LIPID
177 <                  BILAYER-MEMBRANES BY MOLECULAR-DYNAMICS SIMULATION},
178 <  journal =      {J. Am. Chem. Soc.},
179 <  year =         1995,
180 <  volume =       117,
181 <  pages =        {4118-4129}
182 < }
183 <
184 < @Article{Alper95,
185 <  author =       {H.~E. Alper and T.~R. Stouch},
186 <  title =        {ORIENTATION AND DIFFUSION OF A DRUG ANALOG IN
187 <                  BIOMEMBRANES - MOLECULAR-DYNAMICS SIMULATIONS},
188 <  journal =      {J. Phys. Chem.},
189 <  year =         1995,
190 <  volume =       99,
191 <  pages =        {5724-5731}
192 < }
193 <
194 < @Article{Sok92,
195 <  author =       {R.~M. Sok and H.~J.~C. Berendsen and W.~F. van~Gunsteren},
196 <  title =        {MOLECULAR-DYNAMICS SIMULATION OF THE TRANSPORT OF
197 <                  SMALL MOLECULES ACROSS A POLYMER MEMBRANE},
198 <  journal =      {J. Chem. Phys.},
199 <  year =         1992,
200 <  volume =       96,
201 <  pages =        {4699-4704}
202 < }
203 <
204 < @Article{Rabani99,
205 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
206 <  title =        {Direct Observation of Stretched-Exponential
207 <                  Relaxation in Low-Temperature Lennard-Jones Systems
208 <                  Using the Cage Correlation Function},
209 <  journal =      prl,
210 <  year =         {1999},
211 <  volume =       82,
212 <  pages =        {3649}
213 < }
214 <
215 < @Article{Rabani97,
216 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
217 <  title =        {Calculating the hopping rate for self-diffusion on
218 <                  rough potential energy surfaces: Cage correlations},
219 <  journal =      {J. Chem. Phys.},
220 <  year =         1997,
221 <  volume =       107,
222 <  pages =        {6867-6876}
223 < }
224 <
225 < @Article{Gezelter99,
226 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
227 <  title =        {Methods for calculating the hopping rate for
228 <                  orientational and spatial diffusion in a molecular
229 <                  liquid: $\mbox{CS}_{2}$},
230 <  journal =      jcp,
231 <  year =         1999,
232 <  volume =       110,
233 <  pages =        3444
234 < }
235 <
236 < @Article{Gezelter98a,
237 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
238 <  title =        {Response to 'Comment on a Critique of the
239 <                  Instantaneous Normal Mode (INM) Approach to
240 <                  Diffusion'},
241 <  journal =      jcp,
242 <  year =         1998,
243 <  volume =       109,
244 <  pages =        4695
245 < }
246 <
247 < @Article{Gezelter97,
248 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
249 <  title =        {Can imaginary instantaneous normal mode frequencies
250 <                  predict barriers to self-diffusion?},
251 <  journal =      jcp,
252 <  year =         1997,
253 <  volume =       107,
254 <  pages =        4618
255 < }
256 <
257 < @Article{Zwanzig83,
258 <  author =       {R. Zwanzig},
259 <  title =        {On the relation between self-diffusion and viscosity
260 <                  of liquids},
261 <  journal =      jcp,
262 <  year =         1983,
263 <  volume =       79,
264 <  pages =        {4507-4508}
265 < }
266 <
267 < @Article{Zwanzig88,
268 <  author =       {R. Zwanzig},
269 <  title =        {Diffusion in rough potential},
270 <  journal =      {Proc. Natl. Acad. Sci. USA},
271 <  year =         1988,
272 <  volume =       85,
273 <  pages =        2029
274 < }
275 <
276 < @Article{Stillinger95,
277 <  author =       {F.~H. Stillinger},
278 <  title =        {A Topographic View of Supercooled Liquids and Glass
279 <                  Formation},
280 <  journal =      {Science},
281 <  year =         1995,
282 <  volume =       267,
283 <  pages =        {1935-1939}
284 < }
285 <
286 < @InCollection{Angell85,
287 <  author =       {C.~A. Angell},
288 <  title =        {unknown},
289 <  booktitle =    {Relaxations in Complex Systems},
290 <  publisher =    {National Technical Information Service,
291 <                  U.S. Department of Commerce},
292 <  year =         1985,
293 <  editor =       {K.~Ngai and G.~B. Wright},
294 <  address =      {Springfield, VA},
295 <  pages =        1
296 < }
297 <
298 < @Article{Bembenek96,
299 <  author =       {S.~D. Bembenek and B.~B. Laird},
300 <  title =        {The role of localization in glasses and supercooled liquids},
301 <  journal =      jcp,
302 <  year =         1996,
303 <  volume =       104,
304 <  pages =        5199
305 < }
306 <
307 < @Article{Sun97,
308 <  author =       {X. Sun and W.~H. Miller},
309 <  title =        {Semiclassical initial value representation for
310 <                  electronically nonadiabatic molecular dynamics},
311 <  journal =      jcp,
312 <  year =         1997,
313 <  volume =       106,
314 <  pages =        6346
315 < }
316 <
317 < @Article{Spath96,
318 <  author =       {B.~W. Spath and W.~H. Miller},
319 <  title =        {SEMICLASSICAL CALCULATION OF CUMULATIVE REACTION
320 <                  PROBABILITIES},
321 <  journal =      jcp,
322 <  year =         1996,
323 <  volume =       104,
324 <  pages =        95
325 < }
326 <
327 < @Book{Warshel91,
328 <  author =       {Arieh Warshel},
329 <  title =        {Computer modeling of chemical reactions in enzymes
330 <                  and solutions},
331 <  publisher =    {Wiley},
332 <  year =         1991,
333 <  address =      {New York}
334 < }
335 <
336 < @Article{Vuilleumier97,
337 <  author =       {Rodolphe Vuilleumier and Daniel Borgis},
338 <  title =        {Molecular Dynamics of an excess proton in water
339 <                  using a non-additive valence bond force field},
340 <  journal =      jpc,
341 <  year =         1997,
342 <  volume =       {in press}
343 < }
344 <
345 < @Article{Kob95a,
346 <  author =       {W. Kob and H.~C. Andersen},
347 <  title =        {Testing mode-coupling theory for a supercooled
348 <                  binary Lennard-Jones mixtures: The van Hove
349 <                  corraltion function},
350 <  journal =      pre,
351 <  year =         1995,
352 <  volume =       51,
353 <  pages =        {4626-4641}
354 < }
355 <
356 < @Article{Kob95b,
357 <  author =       {W. Kob and H.~C. Andersen},
358 <  title =        {Testing mode-coupling theory for a supercooled
359 <                  binary Lennard-Jones mixtures. II. Intermediate
360 <                  scattering function and dynamic susceptibility},
361 <  journal =      pre,
362 <  year =         1995,
363 <  volume =       52,
364 <  pages =        {4134-4153}
365 < }
366 <
367 < @InProceedings{Gotze89,
368 <  author =       "W. G{\"{o}}tze",
369 <  title =        "Aspects of Structural Glass Transitions",
370 <  editor =       "J.~P. Hansen and D. Levesque and J. Zinn-Justin",
371 <  volume =       "I",
372 <  pages =        "287-503",
373 <  booktitle =    "Liquids, Freezing and Glass Transitions",
374 <  year =         1989,
375 <  publisher =    "North-Holland",
376 <  address =      "Amsterdam"
377 < }
378 <
379 < @Article{Sun97a,
380 <  author =       "X. Sun and W.~H. Miller",
381 <  title =        {Mixed semiclassical-classical approaches to the
382 <                  dynamics of complex molecular systems},
383 <  journal =      jcp,
384 <  year =         1997,
385 <  pages =        916
386 < }
387 <
388 < @Article{Keshavamurthy94,
389 <  author =       "S. Keshavamurthy and W.~H. Miller",
390 <  title =        "ivr",
391 <  journal =      cpl,
392 <  year =         1994,
393 <  volume =       218,
394 <  pages =        189
395 < }
396 <
397 < @Article{Billing75,
398 <  author =       "G.~D. Billing",
399 <  title =        "ehrenfest",
400 <  journal =      cpl,
401 <  year =         1975,
402 <  volume =       30,
403 <  pages =        391
404 < }
405 <
406 < @Article{Chang90,
407 <  author =       {Y.-T. Chang and W.~H. Miller},
408 <  title =        {An Empirical Valence Bond Model for Constructing
409 <                  Global Potential Energy Surfaces for Chemical
410 <                  Reactions of Polyatomic Molecular Systems},
411 <  journal =      jpc,
412 <  year =         1990,
413 <  volume =       94,
414 <  pages =        {5884-5888}
415 < }
416 <
417 < @Article{Shor94,
418 <  author =       {P.W. Shor},
419 <  title =        {Algorithms for quantum computation: discrete
420 <                  logarithms and factoring},
421 <  journal =      {Proceedings of the 35th Annual Symposium
422 < on Foundations of Computer Science},
423 <  year =         1994,
424 <  pages =        {124-134}
425 < }
426 <
427 < @Article{Feynman82,
428 <  author =       {R.~P. Feynman},
429 <  title =        {Simulating physics with computers},
430 <  journal =      {Int. J. Theor. Phys.},
431 <  year =         1982,
432 <  volume =       21,
433 <  pages =        {467-488}
434 < }
435 <
436 < @Article{Grover97,
437 <  author =       {L.~K. Grover},
438 <  title =        {Quantum computers can search arbitrarily large
439 <                  databases by a single query},
440 <  journal =      prl,
441 <  year =         1997,
442 <  volume =       79,
443 <  pages =        {4709-4712}
444 < }
445 <
446 < @Article{Chuang98,
447 <  author =       {I. Chuang and N. Gershenfeld and M. Kubinec},
448 <  title =        {Experimental Implementation of Fast Quantum Searching},
449 <  journal =      prl,
450 <  year =         1998,
451 <  volume =       80,
452 <  pages =        {3408-3411}
453 < }
454 <
455 < @Article{Monroe95,
456 <  author =       "C. Monroe and D.~M. Meekhof and B.~E. King and
457 <                  W.~M. Itano and D.~J. Wineland",
458 <  title =        {Demonstration of a fundamental quantum logic gate},
459 <  journal =      prl,
460 <  year =         1995,
461 <  volume =       75,
462 <  pages =        4714
463 < }
464 <
465 < @Article{Lent93,
466 <  author =       "C.~S. Lent and P.~D. Tougaw and W.~Porod and
467 <                  G.~H. Bernstein",
468 <  title =        {Quantum Cellular Automata},
469 <  journal =      {Nanotechnology},
470 <  year =         1993,
471 <  volume =       4,
472 <  pages =        {49-57}
473 < }
474 <
475 < @Article{Barenco95,
476 <  author =       "A. Barenco and C.~H. Bennett and R. Cleve and
477 <                  D.~P. DiVincenzo and N. Margolus and P. Shor and
478 <                  T. Sleator and J.~A. Smolin and H. Weinfurter",
479 <  title =        {elementary gates for quantum computation},
480 <  journal =      {Phys. Rev. A},
481 <  year =         1995,
482 <  volume =       52,
483 <  pages =        {3457-3467}
484 < }
485 <
486 < @Article{Small97,
487 <  author =       {T. Reinot and J.~M. Hayes and G.~J. Small},
488 <  title =        {Electronic dephasing and electron-phonon coupling of
489 <                  aluminum phthalocyanine tetrasulphonate in
490 <                  hyperquenched and annealed glassy films of ethanol
491 <                  and methanol over a broad temperature range},
492 <  journal =      jcp,
493 <  year =         1997,
494 <  volume =       106,
495 <  pages =        {457-466}
496 < }
497 <
498 < @Article{Laflamme96,
499 <  author =       {R. Laflamme and C. Miquel and J.~P. Paz and W.~H. Zurek},
500 <  title =        {A perfect quantum error correcting code: 5 bit code
501 <                  correcting a general 1 qubit error to encode 1 qubit
502 <                  of information},
503 <  journal =      prl,
504 <  year =         1996,
505 <  volume =       98,
506 <  pages =        77
507 < }
508 <
509 < @Article{Shor95,
510 <  author =       {P.~W. Shor},
511 <  title =        {SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY},
512 <  journal =      {Phys. Rev. A},
513 <  year =         1995,
514 <  volume =       52,
515 <  pages =        {2493-2496}
516 < }
517 <
518 < @Article{Calderbank96,
519 <  author =       {A.~R. Calderbank and P.~W. Shor},
520 <  title =        {Good quantum error-correcting codes exist},
521 <  journal =      {Phys. Rev. A},
522 <  year =         1996,
523 <  volume =       54,
524 <  pages =        {1098-1105}
525 < }
526 <
527 < @Article{Steane96,
528 <  author =       {A.~M. Steane},
529 <  title =        {Error correcting codes in quantum theory},
530 <  journal =      prl,
531 <  year =         1996,
532 <  volume =       77,
533 <  pages =        {793-797}
534 < }
535 <
536 < @Article{Gezelter95,
537 <  author =       {J.~D. Gezelter and W.~H. Miller},
538 <  title =        {RESONANT FEATURES IN THE ENERGY-DEPENDENCE OF THE
539 <                  RATE OF KETENE ISOMERIZATION},
540 <  journal =      jcp,
541 <  year =         1995,
542 <  volume =       103,
543 <  pages =        {7868-7876}
544 < }
545 <
546 < @Article{Chakrabarti92,
547 <  author =       {A.~C. Chakrabarti and D.~W. Deamer},
548 <  title =        {PERMEABILITY OF LIPID BILAYERS TO AMINO-ACIDS AND PHOSPHATE},
549 <  journal =      {Biochimica et Biophysica Acta},
550 <  year =         1992,
551 <  volume =       1111,
552 <  pages =        {171-177}
553 < }
554 <
555 < @Article{Paula96,
556 <  author =       {S. Paula and A.~G. Volkov and A.~N. VanHoek and
557 <                  T.~H. Haines and D.~W. Deamer},
558 <  title =        {Permeation of protons, potassium ions, and small
559 <                  polar molecules through phospholipid bilayers as a
560 <                  function of membrane thickness},
561 <  journal =      {Biophys. J.},
562 <  year =         1996,
563 <  volume =       70,
564 <  pages =        {339-348}
565 < }
566 <
567 < @Article{Little96,
568 <  author =       {H.~J. Little},
569 <  title =        {How has molecular pharmacology contributed to our
570 <                  understanding of the mechanism(s) of general
571 <                  anesthesia?},
572 <  journal =      {Pharmacology \& Therapeutics},
573 <  year =         1996,
574 <  volume =       69,
575 <  pages =        {37-58}
576 < }
577 <
578 < @Article{McKinnon92,
579 <  author =       {S.~J. McKinnon and S.~L. Whittenburg and B. Brooks},
580 <  title =        {Nonequilibrium Molecular Dynamics Simulation of
581 <                  Oxygen Diffusion through Hexadecane Monolayers with
582 <                  Varying Concentrations of Cholesterol},
583 <  journal =      jpc,
584 <  year =         1992,
585 <  volume =       96,
586 <  pages =        {10497-10506}
587 < }
588 <
589 < @Article{Venable93,
590 <  author =       {R.~M. Venable and Y. Zhang and B.~J. Hardy and
591 <                  R.~W. Pastor},
592 <  title =        {Molecular Dynamics Simulations of a Lipid Bilayer
593 <                  and of Hexadecane: An Investigation of Membrane Fluidity},
594 <  journal =      {Science},
595 <  year =         1993,
596 <  volume =       262,
597 <  pages =        {223-226}
598 < }
599 <
600 < @Article{Essmann99,
601 <  author =       {U. Essmann and M.~L. Berkowitz},
602 <  title =        {Dynamical properties of phospholipid bilayers from
603 <                  computer simulation},
604 <  journal =      {Biophys. J.},
605 <  year =         1999,
606 <  volume =       76,
607 <  pages =        {2081-2089}
608 < }
609 <
610 < @Article{Tu98,
611 <  author =       {K.~C. Tu and M. Tarek and M.~L. Klein and D. Scharf},
612 <  title =        {Effects of anesthetics on the structure of a
613 <                  phospholipid bilayer: Molecular dynamics
614 <                  investigation of halothane in the hydrated liquid
615 <                  crystal phase of dipalmitoylphosphatidylcholine},
616 <  journal =      {Biophys. J.},
617 <  year =         1998,
618 <  volume =       75,
619 <  pages =        {2123-2134}
620 < }
621 <
622 < @Article{Pomes96,
623 <  author =       {R. Pomes and B. Roux},
624 <  title =        {Structure and dynamics of a proton wire: A
625 <                  theoretical study of H+ translocation along the
626 <                  single-file water chain in the gramicidin a channel},
627 <  journal =      {Biophys. J.},
628 <  year =         1996,
629 <  volume =       71,
630 <  pages =        {19-39}
631 < }
632 <
633 < @Article{Duwez60,
634 <  author =       {P. Duwez and R.~H. Willens and W. {Klement~Jr.}},
635 <  title =        {Continuous Series of Metastable Solid Solutions in
636 <                  Silver-Copper Alloys},
637 <  journal =      {J. Appl. Phys.},
638 <  year =         1960,
639 <  volume =       31,
640 <  pages =        {1136-1137}
641 < }
642 <
643 < @Article{Peker93,
644 <  author =       {A. Peker and W.~L. Johnson},
645 <  title =        {A highly processable metallic-glass -
646 <                  $\mbox{Zr}_{41.2}\mbox{Ti}_{13.8}\mbox{Cu}_{12.5}\mbox{Ni}_{10.0}\mbox{Be}_{22.5}$},
647 <  journal =      {Appl. Phys. Lett.},
648 <  year =         1993,
649 <  volume =       63,
650 <  pages =        {2342-2344}
651 < }
652 <
653 < @Article{ChoiYim97,
654 <  author =       {H. Choi-Yim and W.~L. Johnson},
655 <  title =        {Bulk metallic glass matrix composites},
656 <  journal =      {Appl. Phys. Lett.},
657 <  year =         1997,
658 <  volume =       71,
659 <  pages =        {3808-3810}
660 < }
661 <
662 < @Article{Sun96,
663 <  author =       {X. Sun and S. Schneider and U. Geyer and
664 <                  W.~L. Johnson and M.~A. Nicolet},
665 <  title =        {Oxidation and crystallization of an amorphous
666 <                  $\mbox{Zr}_{60}\mbox{Al}_{15}\mbox{Ni}_{25}$ alloy},
667 <  journal =      {J. Mater. Res.},
668 <  year =         1996,
669 <  volume =       11,
670 <  pages =        {2738-2743}
671 < }
672 <
673 < @Article{Heller93,
674 <  author =       {H. Heller and M. Schaefer and K. Schulten},
675 <  title =        {MOLECULAR DYNAMICS SIMULATION OF A BILAYER OF 200
676 <                  LIPIDS IN THE GEL AND IN THE LIQUID-CRYSTAL PHASES},
677 <  journal =      jpc,
678 <  year =         1993,
679 <  volume =       97,
680 <  pages =        {8343-8360}
681 < }
682 <
683 < @Article{Kushick76,
684 <  author =       {J. Kushick and B.~J. Berne},
685 <  title =        {Computer Simulation of anisotropic molecular fluids},
686 <  journal =      jcp,
687 <  year =         1976,
688 <  volume =       64,
689 <  pages =        {1362-1367}
690 < }
691 <
692 < @Article{Berardi96,
693 <  author =       {R. Berardi and S. Orlandi and C Zannoni},
694 <  title =        {Antiphase structures in polar smectic liquid
695 <                  crystals and their molecular origin},
696 <  journal =      cpl,
697 <  year =         1996,
698 <  volume =       261,
699 <  pages =        {357-362}
700 < }
701 <
702 < @Article{Berardi99,
703 <  author =       {R. Berardi and S. Orlandi and C. Zannoni},
704 <  title =        {Monte Carlo simulations of rod-like Gay-Berne
705 <                  mesogens with transverse dipoles},
706 <  journal =      {Int. J. Mod. Phys. C},
707 <  year =         1999,
708 <  volume =       10,
709 <  pages =        {477-484}
710 < }
711 <
712 < @Article{Pasterny2000,
713 <  author =       {K. Pasterny and E. Gwozdz and A. Brodka},
714 <  title =        {Properties of a model liquid crystal: Polar
715 <                  Gay-Berne particles},
716 <  journal =      {J. Mol. Liq.},
717 <  year =         2000,
718 <  volume =       85,
719 <  pages =        {173-184}
720 < }
721 <
722 < @Article{Jorgensen83,
723 <  author =       {W.~L. Jorgensen and J. Chandrasekhar and
724 <                  J.~D. Madura and R.~W. Impey and M.~L. Klein},
725 <  title =        {COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR
726 <                  SIMULATING LIQUID WATER},
727 <  journal =      jcp,
728 <  year =         1983,
729 <  volume =       79,
730 <  pages =        {926-935}
731 < }
732 <
733 < @Article{Berardi98,
734 <  author =       {R. Berardi and C. Fava and C. Zannoni},
735 <  title =        {A Gay-Berne potential for dissimilar biaxial particles},
736 <  journal =      cpl,
737 <  year =         1998,
738 <  volume =       297,
739 <  pages =        {8-14}
740 < }
741 <
742 < @Article{Luckhurst90,
743 <  author =       {G.~R. Luckhurst and R.~A. Stephens and R.~W. Phippen},
744 <  title =        {Computer simulation studies of anisotropic systems
745 <                  {XIX}. Mesophases formed by the Gay-Berne model mesogen},
746 <  journal =      {Liquid Crystals},
747 <  year =         1990,
748 <  volume =       8,
749 <  pages =        {451-464}
750 < }
751 <
752 < @Article{Gay81,
753 <  author =       {J.~G. Gay and B.~J. Berne},
754 <  title =        {MODIFICATION OF THE OVERLAP POTENTIAL TO MIMIC A
755 <                  LINEAR SITE-SITE POTENTIAL},
756 <  journal =      jcp,
757 <  year =         1981,
758 <  volume =       74,
759 <  pages =        {3316-3319}
4 > @ARTICLE{Torre2003,
5 >  author = {J. G. {de la Torre} and H. E. Sanchez and A. Ortega and J. G. Hernandez
6 >    and M. X. Fernandes and F. G. Diaz and M. C. L. Martinez},
7 >  title = {Calculation of the solution properties of flexible macromolecules:
8 >    methods and applications},
9 >  journal = {European Biophysics Journal with Biophysics Letters},
10 >  year = {2003},
11 >  volume = {32},
12 >  pages = {477-486},
13 >  number = {5},
14 >  month = {Aug},
15 >  abstract = {While the prediction of hydrodynamic properties of rigid particles
16 >    is nowadays feasible using simple and efficient computer programs,
17 >    the calculation of such properties and, in general, the dynamic
18 >    behavior of flexible macromolecules has not reached a similar situation.
19 >    Although the theories are available, usually the computational work
20 >    is done using solutions specific for each problem. We intend to
21 >    develop computer programs that would greatly facilitate the task
22 >    of predicting solution behavior of flexible macromolecules. In this
23 >    paper, we first present an overview of the two approaches that are
24 >    most practical: the Monte Carlo rigid-body treatment, and the Brownian
25 >    dynamics simulation technique. The Monte Carlo procedure is based
26 >    on the calculation of properties for instantaneous conformations
27 >    of the macromolecule that are regarded as if they were instantaneously
28 >    rigid. We describe how a Monte Carlo program can be interfaced to
29 >    the programs in the HYDRO suite for rigid particles, and provide
30 >    an example of such calculation, for a hypothetical particle: a protein
31 >    with two domains connected by a flexible linker. We also describe
32 >    briefly the essentials of Brownian dynamics, and propose a general
33 >    mechanical model that includes several kinds of intramolecular interactions,
34 >    such as bending, internal rotation, excluded volume effects, etc.
35 >    We provide an example of the application of this methodology to
36 >    the dynamics of a semiflexible, wormlike DNA.},
37 >  annote = {724XK Times Cited:6 Cited References Count:64},
38 >  issn = {0175-7571},
39 >  uri = {<Go to ISI>://000185513400011},
40   }
41  
42 < @Article{Berne72,
43 <  author =       {B.~J. Berne and P. Pechukas},
44 <  title =        {Gaussian Model Potentials for Molecular Interactions},
45 <  journal =      jcp,
46 <  year =         1972,
47 <  volume =       56,
48 <  pages =        {4213-4216}
42 > @ARTICLE{Alakent2005,
43 >  author = {B. Alakent and M. C. Camurdan and P. Doruker},
44 >  title = {Hierarchical structure of the energy landscape of proteins revisited
45 >    by time series analysis. II. Investigation of explicit solvent effects},
46 >  journal = {Journal of Chemical Physics},
47 >  year = {2005},
48 >  volume = {123},
49 >  pages = {-},
50 >  number = {14},
51 >  month = {Oct 8},
52 >  abstract = {Time series analysis tools are employed on the principal modes obtained
53 >    from the C-alpha trajectories from two independent molecular-dynamics
54 >    simulations of alpha-amylase inhibitor (tendamistat). Fluctuations
55 >    inside an energy minimum (intraminimum motions), transitions between
56 >    minima (interminimum motions), and relaxations in different hierarchical
57 >    energy levels are investigated and compared with those encountered
58 >    in vacuum by using different sampling window sizes and intervals.
59 >    The low-frequency low-indexed mode relationship, established in
60 >    vacuum, is also encountered in water, which shows the reliability
61 >    of the important dynamics information offered by principal components
62 >    analysis in water. It has been shown that examining a short data
63 >    collection period (100 ps) may result in a high population of overdamped
64 >    modes, while some of the low-frequency oscillations (< 10 cm(-1))
65 >    can be captured in water by using a longer data collection period
66 >    (1200 ps). Simultaneous analysis of short and long sampling window
67 >    sizes gives the following picture of the effect of water on protein
68 >    dynamics. Water makes the protein lose its memory: future conformations
69 >    are less dependent on previous conformations due to the lowering
70 >    of energy barriers in hierarchical levels of the energy landscape.
71 >    In short-time dynamics (< 10 ps), damping factors extracted from
72 >    time series model parameters are lowered. For tendamistat, the friction
73 >    coefficient in the Langevin equation is found to be around 40-60
74 >    cm(-1) for the low-indexed modes, compatible with literature. The
75 >    fact that water has increased the friction and that on the other
76 >    hand has lubrication effect at first sight contradicts. However,
77 >    this comes about because water enhances the transitions between
78 >    minima and forces the protein to reduce its already inherent inability
79 >    to maintain oscillations observed in vacuum. Some of the frequencies
80 >    lower than 10 cm(-1) are found to be overdamped, while those higher
81 >    than 20 cm(-1) are slightly increased. As for the long-time dynamics
82 >    in water, it is found that random-walk motion is maintained for
83 >    approximately 200 ps (about five times of that in vacuum) in the
84 >    low-indexed modes, showing the lowering of energy barriers between
85 >    the higher-level minima.},
86 >  annote = {973OH Times Cited:1 Cited References Count:33},
87 >  issn = {0021-9606},
88 >  uri = {<Go to ISI>://000232532000064},
89   }
90  
91 < @Article{Perram96,
92 <  author =       {J.~W. Perram and J. Rasmussen and E. Praestgaard and
93 <                  J.~L. Lebowitz},
94 <  title =        {Ellipsoid contact potential: Theory and relation to
95 <                  overlap potentials},
96 <  journal =      pre,
777 <  year =         1996,
778 <  volume =       54,
779 <  pages =        {6565-6572}
91 > @BOOK{Allen1987,
92 >  title = {Computer Simulations of Liquids},
93 >  publisher = {Oxford University Press},
94 >  year = {1987},
95 >  author = {M.~P. Allen and D.~J. Tildesley},
96 >  address = {New York},
97   }
98  
99 < @Article{Cornell95,
100 <  author =       {W.~D. Cornell and P. Cieplak and C.~I. Bayly and
101 <                  I.~R. Gould and K.~M. {Merz, Jr.} and D.~M. Ferguson
102 <                  and D.~C. Spellmeyer and T. Fox and J.~W. Caldwell
103 <                  and P.~A. Kollman},
104 <  title =        {A second generation force field for the simulation
105 <                  of proteins and nucleic acids},
106 <  journal =      jacs,
107 <  year =         1995,
108 <  volume =       117,
109 <  pages =        {5179-5197}
99 > @ARTICLE{Allison1991,
100 >  author = {S. A. Allison},
101 >  title = {A Brownian Dynamics Algorithm for Arbitrary Rigid Bodies - Application
102 >    to Polarized Dynamic Light-Scattering},
103 >  journal = {Macromolecules},
104 >  year = {1991},
105 >  volume = {24},
106 >  pages = {530-536},
107 >  number = {2},
108 >  month = {Jan 21},
109 >  abstract = {A Brownian dynamics algorithm is developed to simulate dynamics experiments
110 >    of rigid macromolecules. It is applied to polarized dynamic light
111 >    scattering from rodlike sturctures and from a model of a DNA fragment
112 >    (762 base pairs). A number of rod cases are examined in which the
113 >    translational anisotropy is increased form zero to a large value.
114 >    Simulated first cumulants as well as amplitudes and lifetimes of
115 >    the dynamic form factor are compared with predictions of analytic
116 >    theories and found to be in very good agreement with them. For DNA
117 >    fragments 762 base pairs in length or longer, translational anisotropy
118 >    does not contribute significantly to dynamic light scattering. In
119 >    a comparison of rigid and flexible simulations on semistiff models
120 >    of this fragment, it is shown directly that flexing contributes
121 >    to the faster decay processes probed by light scattering and that
122 >    the flexible model studies are in good agreement with experiment.},
123 >  annote = {Eu814 Times Cited:8 Cited References Count:32},
124 >  issn = {0024-9297},
125 >  uri = {<Go to ISI>://A1991EU81400029},
126   }
127  
128 < @Article{Brooks83,
129 <  author =       {B.~R. Brooks and R.~E. Bruccoleri and B.~D. Olafson
130 <                  and D.~J. States and S. Swaminathan and M. Karplus},
131 <  title =        {{\sc charmm}: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations},
132 <  journal =      {J. Comp. Chem.},
133 <  year =         1983,
134 <  volume =       4,
135 <  pages =        {187-217}
128 > @ARTICLE{Andersen1983,
129 >  author = {H. C. Andersen},
130 >  title = {Rattle - a Velocity Version of the Shake Algorithm for Molecular-Dynamics
131 >    Calculations},
132 >  journal = {Journal of Computational Physics},
133 >  year = {1983},
134 >  volume = {52},
135 >  pages = {24-34},
136 >  number = {1},
137 >  annote = {Rq238 Times Cited:559 Cited References Count:14},
138 >  issn = {0021-9991},
139 >  uri = {<Go to ISI>://A1983RQ23800002},
140   }
141  
142 < @InCollection{MacKerell98,
143 <  author =       {A.~D. {MacKerell, Jr.} and B. Brooks and
144 <                  C.~L. {Brooks III} and L. Nilsson and B. Roux and
145 <                  Y. Won and and M. Karplus},
146 <  title =        {{\sc charmm}: The Energy Function and Its Parameterization
147 <                  with an Overview of the Program},
148 <  booktitle =    {The Encyclopedia of Computational Chemistry},
149 <  pages =        {271-277},
150 <  publisher =    {John Wiley \& Sons},
151 <  year =         1998,
152 <  editor =       {P.~v.~R. {Schleyer, {\it et al.}}},
153 <  volume =       1,
154 <  address =      {New York}
142 > @ARTICLE{Auerbach2005,
143 >  author = {A. Auerbach},
144 >  title = {Gating of acetylcholine receptor channels: Brownian motion across
145 >    a broad transition state},
146 >  journal = {Proceedings of the National Academy of Sciences of the United States
147 >    of America},
148 >  year = {2005},
149 >  volume = {102},
150 >  pages = {1408-1412},
151 >  number = {5},
152 >  month = {Feb 1},
153 >  abstract = {Acetylcholine receptor channels (AChRs) are proteins that switch between
154 >    stable #closed# and #open# conformations. In patch clamp recordings,
155 >    diliganded AChR gating appears to be a simple, two-state reaction.
156 >    However, mutagenesis studies indicate that during gating dozens
157 >    of residues across the protein move asynchronously and are organized
158 >    into rigid body gating domains (#blocks#). Moreover, there is an
159 >    upper limit to the apparent channel opening rate constant. These
160 >    observations suggest that the gating reaction has a broad, corrugated
161 >    transition state region, with the maximum opening rate reflecting,
162 >    in part, the mean first-passage time across this ensemble. Simulations
163 >    reveal that a flat, isotropic energy profile for the transition
164 >    state can account for many of the essential features of AChR gating.
165 >    With this mechanism, concerted, local structural transitions that
166 >    occur on the broad transition state ensemble give rise to fractional
167 >    measures of reaction progress (Phi values) determined by rate-equilibrium
168 >    free energy relationship analysis. The results suggest that the
169 >    coarse-grained AChR gating conformational change propagates through
170 >    the protein with dynamics that are governed by the Brownian motion
171 >    of individual gating blocks.},
172 >  annote = {895QF Times Cited:9 Cited References Count:33},
173 >  issn = {0027-8424},
174 >  uri = {<Go to ISI>://000226877300030},
175   }
176  
177 < @InCollection{Jorgensen98,
178 <  author =       {W.~L. Jorgensen},
179 <  title =        {OPLS Force Fields},
180 <  booktitle =    {The Encyclopedia of Computational Chemistry},
181 <  pages =        {1986-1989},
182 <  publisher =    {John Wiley \& Sons},
183 <  year =         1998,
184 <  editor =       {P.~v.~R. {Schleyer, {\it et al.}}},
185 <  volume =       3,
186 <  address =      {New York}
187 < }
188 <
189 < @Article{Rabani2000,
190 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
191 <  title =        {Reply to `Comment on ``Direct Observation of
192 <                  Stretched-Exponential Relaxation in Low-Temperature
193 <                  Lennard-Jones Systems Using th eCage Correlation
194 <                  Function'' '},
195 <  journal =      prl,
196 <  year =         2000,
197 <  volume =       85,
198 <  pages =        467
199 < }
200 <
201 < @Book{Cevc87,
202 <  author =       {G. Cevc and D. Marsh},
203 <  title =        {Phospholipid Bilayers},
204 <  publisher =    {John Wiley \& Sons},
205 <  year =         1987,
206 <  address =      {New York}
207 < }
208 <
209 < @Article{Janiak79,
210 <  author =       {M.~J. Janiak and D.~M. Small and G.~G. Shipley},
854 <  title =        {Temperature and Compositional Dependence of the
855 <                  Structure of Hydrated Dimyristoyl Lecithin},
856 <  journal =      {J. Biol. Chem.},
857 <  year =         1979,
858 <  volume =       254,
859 <  pages =        {6068-6078}
860 < }
861 <
862 < @Book{Tobias90,
863 <  author =       {Sheila Tobias},
864 <  title =        {They're not Dumb. They're Different: Stalking the
865 <                  Second Tier},
866 <  publisher =    {Research Corp.},
867 <  year =         1990,
868 <  address =      {Tucson}
869 < }
870 <
871 < @Article{Mazur92,
872 <  author =       {E. Mazur},
873 <  title =        {Qualitative vs. Quantititative Thinking: Are we
874 <                  teaching the right thing? },
875 <  journal =      {Optics and Photonics News},
876 <  year =         1992,
877 <  volume =       3,
878 <  pages =        38
879 < }
880 <
881 < @Book{Mazur97,
882 <  author =       {Eric Mazur},
883 <  title =        {Peer Instruction: A User's Manual},
884 <  publisher =    {Prentice Hall},
885 <  year =         1997,
886 <  address =      {New Jersey}
887 < }
888 <
889 < @Article{Wigner55,
890 <  author =       {E.~P. Wigner},
891 <  title =        {Characteristic Vectors of Bordered Matrices with
892 <                  Infinite Dimensions},
893 <  journal =      {Annals of Mathematics},
894 <  year =         1955,
895 <  volume =       62,
896 <  pages =        {548-564}
897 < }
898 <
899 < @Article{Gaukel98,
900 <  author =       {C. Gaukel and H.~R. Schober},
901 <  title =        {Diffusion Mechanisms in under-cooled Binary Metal
902 <                  Liquids of $\mbox{Zr}_{67}\mbox{Cu}_{33}$},
903 <  journal =      {Solid State Comm.},
904 <  year =         1998,
905 <  volume =       107,
906 <  pages =        {1-5}
907 < }
908 <
909 < @Article{Qi99,
910 <  author =       {Y. Qi and T. \c{C}a\v{g}in and Y.
911 <                  Kimura and W.~A. {Goddard III}},
912 <  title =        {Molecular-dynamics simulations of glass formation
913 <                  and crystallization in binary liquid metals: $\mbox{Cu-Ag}$
914 <                  and $\mbox{Cu-Ni}$},
915 <  journal =      prb,
916 <  year =         1999,
917 <  volume =    59,
918 <  number =    5,
919 <  pages =     {3527-3533}
920 < }
921 <
922 < @Article{Khorunzhy97,
923 <  author =       {A. Khorunzhy and G.~J. Rodgers},
924 <  title =        {Eigenvalue distribution of large dilute random matrices},
925 <  journal =      {J. Math. Phys.},
926 <  year =         1997,
927 <  volume =       38,
928 <  pages =        {3300-3320}
929 < }
930 <
931 < @Article{Rodgers88,
932 <  author =       {G.~J. Rodgers and A. Bray},
933 <  title =        {Density of States of a Sparse Random Matrix},
934 <  journal =      {Phys. Rev. B},
935 <  year =         1988,
936 <  volume =       37,
937 <  pages =        355703562
938 < }
939 <
940 < @Article{Rodgers90,
941 <  author =       {G.~J. Rodgers and C. {De Dominicis}},
942 <  title =        {Density of states of sparse random matrices},
943 <  journal =      {J. Phys. A: Math. Gen.},
944 <  year =         1990,
945 <  volume =       23,
946 <  pages =        {1567-1573}
947 < }
948 <
949 < @InProceedings{Barker80,
950 <  author =       {J.~A. Barker},
951 <  title =        {Reaction field method for polar fluids},
952 <  booktitle =    {The problem of long-range forces in the computer
953 <                  simulation of condensed matter},
954 <  pages =        {45-6},
955 <  year =         1980,
956 <  editor =       {D. Ceperley},
957 <  volume =       9,
958 <  series =       {NRCC Workshop Proceedings}
959 < }
960 <
961 < @Article{Smith82,
962 <  author =       {W. Smith},
963 <  title =        {Point multipoles in the Ewald summation},
964 <  journal =      {CCP5 Quarterly},
965 <  year =         1982,
966 <  volume =       4,
967 <  pages =        {13-25}
177 > @ARTICLE{Baber1995,
178 >  author = {J. Baber and J. F. Ellena and D. S. Cafiso},
179 >  title = {Distribution of General-Anesthetics in Phospholipid-Bilayers Determined
180 >    Using H-2 Nmr and H-1-H-1 Noe Spectroscopy},
181 >  journal = {Biochemistry},
182 >  year = {1995},
183 >  volume = {34},
184 >  pages = {6533-6539},
185 >  number = {19},
186 >  month = {May 16},
187 >  abstract = {The effect of the general anesthetics halothane, enflurane, and isoflurane
188 >    on hydrocarbon chain packing in palmitoyl(d(31))oleoylphosphatidylcholine
189 >    membranes in the liquid crystalline phase was investigated using
190 >    H-2 NMR. Upon the addition of the anesthetics, the first five methylene
191 >    units near the interface generally show a very small increase in
192 >    segmental order, while segments deeper within the bilayer show a
193 >    small decrease in segmental order. From the H-2 NMR results, the
194 >    chain length for the perdeuterated palmitoyl chain in the absence
195 >    of anesthetic was found to be 12.35 Angstrom. Upon the addition
196 >    of halothane enflurane, or isoflurane, the acyl chain undergoes
197 >    slight contractions of 0.11, 0.20, or 0.16 Angstrom, respectively,
198 >    at 50 mol % anesthetic. A simple model was used to estimate the
199 >    relative amounts of anesthetic located near the interface and deeper
200 >    in the bilayer hydrocarbon region, and only a slight preference
201 >    for an interfacial location was observed. Intermolecular H-1-H-1
202 >    nuclear Overhauser effects (NOEs) were measured between phospholipid
203 >    and halothane protons. These NOEs are consistent with the intramembrane
204 >    location of the anesthetics suggested by the H-2 NMR data. In addition,
205 >    the NOE data indicate that anesthetics prefer the interfacial and
206 >    hydrocarbon regions of the membrane and are not found in high concentrations
207 >    in the phospholipid headgroup.},
208 >  annote = {Qz716 Times Cited:38 Cited References Count:37},
209 >  issn = {0006-2960},
210 >  uri = {<Go to ISI>://A1995QZ71600035},
211   }
212  
213 < @Article{Daw84,
214 <  author =       {M.~S. Daw and M.~I. Baskes},
215 <  title =        {Embedded-atom method: Derivation and application to
216 <                  impurities, surfaces, and other defects in metals},
217 <  journal =      prb,
218 <  year =         1984,
219 <  volume =    29,
220 <  number =    12,
221 <  pages =     {6443-6453}
213 > @ARTICLE{Banerjee2004,
214 >  author = {D. Banerjee and B. C. Bag and S. K. Banik and D. S. Ray},
215 >  title = {Solution of quantum Langevin equation: Approximations, theoretical
216 >    and numerical aspects},
217 >  journal = {Journal of Chemical Physics},
218 >  year = {2004},
219 >  volume = {120},
220 >  pages = {8960-8972},
221 >  number = {19},
222 >  month = {May 15},
223 >  abstract = {Based on a coherent state representation of noise operator and an
224 >    ensemble averaging procedure using Wigner canonical thermal distribution
225 >    for harmonic oscillators, a generalized quantum Langevin equation
226 >    has been recently developed [Phys. Rev. E 65, 021109 (2002); 66,
227 >    051106 (2002)] to derive the equations of motion for probability
228 >    distribution functions in c-number phase-space. We extend the treatment
229 >    to explore several systematic approximation schemes for the solutions
230 >    of the Langevin equation for nonlinear potentials for a wide range
231 >    of noise correlation, strength and temperature down to the vacuum
232 >    limit. The method is exemplified by an analytic application to harmonic
233 >    oscillator for arbitrary memory kernel and with the help of a numerical
234 >    calculation of barrier crossing, in a cubic potential to demonstrate
235 >    the quantum Kramers' turnover and the quantum Arrhenius plot. (C)
236 >    2004 American Institute of Physics.},
237 >  annote = {816YY Times Cited:8 Cited References Count:35},
238 >  issn = {0021-9606},
239 >  uri = {<Go to ISI>://000221146400009},
240   }
241  
242 <
243 < @Article{Chen90,
244 <  author =       {A.~P. Sutton and J. Chen},
245 <  title =        {Long-Range $\mbox{Finnis Sinclair}$ Potentials},
246 <  journal =      {Phil. Mag. Lett.},
247 <  year =         1990,
248 <  volume =    61,
988 <  pages =     {139-146}
242 > @ARTICLE{Barojas1973,
243 >  author = {J. Barojas and D. Levesque},
244 >  title = {Simulation of Diatomic Homonuclear Liquids},
245 >  journal = {Phys. Rev. A},
246 >  year = {1973},
247 >  volume = {7},
248 >  pages = {1092-1105},
249   }
250  
251 < @Article{Lu97,
252 <  author =       {J. Lu and J.~A. Szpunar},
253 <  title =        {Applications of the embedded-atom method to glass
254 <                  formation and crystallization of liquid and glass
255 <                  transition-metal nickel},
256 <  journal =      {Phil. Mag. A},
257 <  year =         {1997},
258 <  volume =    {75},
259 <  pages =        {1057-1066},
251 > @ARTICLE{Barth1998,
252 >  author = {E. Barth and T. Schlick},
253 >  title = {Overcoming stability limitations in biomolecular dynamics. I. Combining
254 >    force splitting via extrapolation with Langevin dynamics in LN},
255 >  journal = {Journal of Chemical Physics},
256 >  year = {1998},
257 >  volume = {109},
258 >  pages = {1617-1632},
259 >  number = {5},
260 >  month = {Aug 1},
261 >  abstract = {We present an efficient new method termed LN for propagating biomolecular
262 >    dynamics according to the Langevin equation that arose fortuitously
263 >    upon analysis of the range of harmonic validity of our normal-mode
264 >    scheme LIN. LN combines force linearization with force splitting
265 >    techniques and disposes of LIN'S computationally intensive minimization
266 >    (anharmonic correction) component. Unlike the competitive multiple-timestepping
267 >    (MTS) schemes today-formulated to be symplectic and time-reversible-LN
268 >    merges the slow and fast forces via extrapolation rather than impulses;
269 >    the Langevin heat bath prevents systematic energy drifts. This combination
270 >    succeeds in achieving more significant speedups than these MTS methods
271 >    which are Limited by resonance artifacts to an outer timestep less
272 >    than some integer multiple of half the period of the fastest motion
273 >    (around 4-5 fs for biomolecules). We show that LN achieves very
274 >    good agreement with small-timestep solutions of the Langevin equation
275 >    in terms of thermodynamics (energy means and variances), geometry,
276 >    and dynamics (spectral densities) for two proteins in vacuum and
277 >    a large water system. Significantly, the frequency of updating the
278 >    slow forces extends to 48 fs or more, resulting in speedup factors
279 >    exceeding 10. The implementation of LN in any program that employs
280 >    force-splitting computations is straightforward, with only partial
281 >    second-derivative information required, as well as sparse Hessian/vector
282 >    multiplication routines. The linearization part of LN could even
283 >    be replaced by direct evaluation of the fast components. The application
284 >    of LN to biomolecular dynamics is well suited for configurational
285 >    sampling, thermodynamic, and structural questions. (C) 1998 American
286 >    Institute of Physics.},
287 >  annote = {105HH Times Cited:29 Cited References Count:49},
288 >  issn = {0021-9606},
289 >  uri = {<Go to ISI>://000075066300006},
290   }
291  
292 < @Article{Shlesinger99,
293 <  author =       {M.~F. Shlesinger and J. Klafter and G. Zumofen},
294 <  title =        {Above, below, and beyond Brownian motion},
295 <  journal =      {Am. J. Phys.},
296 <  year =         1999,
297 <  volume =       67,
298 <  pages =        {1253-1259}
292 > @ARTICLE{Batcho2001,
293 >  author = {P. F. Batcho and T. Schlick},
294 >  title = {Special stability advantages of position-Verlet over velocity-Verlet
295 >    in multiple-time step integration},
296 >  journal = {Journal of Chemical Physics},
297 >  year = {2001},
298 >  volume = {115},
299 >  pages = {4019-4029},
300 >  number = {9},
301 >  month = {Sep 1},
302 >  abstract = {We present an analysis for a simple two-component harmonic oscillator
303 >    that compares the use of position-Verlet to velocity-Verlet for
304 >    multiple-time step integration. The numerical stability analysis
305 >    based on the impulse-Verlet splitting shows that position-Verlet
306 >    has enhanced stability, in terms of the largest allowable time step,
307 >    for cases where an ample separation of time scales exists. Numerical
308 >    investigations confirm the advantages of the position-Verlet scheme
309 >    when used for the fastest time scales of the system. Applications
310 >    to a biomolecule. a solvated protein, for both Newtonian and Langevin
311 >    dynamics echo these trends over large outer time-step regimes. (C)
312 >    2001 American Institute of Physics.},
313 >  annote = {469KV Times Cited:6 Cited References Count:30},
314 >  issn = {0021-9606},
315 >  uri = {<Go to ISI>://000170813800005},
316   }
317  
318 < @Article{Klafter96,
319 <  author =       {J. Klafter and M. Shlesinger and G. Zumofen},
320 <  title =        {Beyond Brownian Motion},
321 <  journal =      {Physics Today},
322 <  year =         1996,
323 <  volume =       49,
324 <  pages =        {33-39}
318 > @ARTICLE{Bates2005,
319 >  author = {M. A. Bates and G. R. Luckhurst},
320 >  title = {Biaxial nematic phases and V-shaped molecules: A Monte Carlo simulation
321 >    study},
322 >  journal = {Physical Review E},
323 >  year = {2005},
324 >  volume = {72},
325 >  pages = {-},
326 >  number = {5},
327 >  month = {Nov},
328 >  abstract = {Inspired by recent claims that compounds composed of V-shaped molecules
329 >    can exhibit the elusive biaxial nematic phase, we have developed
330 >    a generic simulation model for such systems. This contains the features
331 >    of the molecule that are essential to its liquid crystal behavior,
332 >    namely the anisotropies of the two arms and the angle between them.
333 >    The behavior of the model has been investigated using Monte Carlo
334 >    simulations for a wide range of these structural parameters. This
335 >    allows us to establish the relationship between the V-shaped molecule
336 >    and its ability to form a biaxial nematic phase. Of particular importance
337 >    are the criteria of geometry and the relative anisotropy necessary
338 >    for the system to exhibit a Landau point, at which the biaxial nematic
339 >    is formed directly from the isotropic phase. The simulations have
340 >    also been used to determine the orientational order parameters for
341 >    a selection of molecular axes. These are especially important because
342 >    they reveal the phase symmetry and are connected to the experimental
343 >    determination of this. The simulation results show that, whereas
344 >    some positions are extremely sensitive to the phase biaxiality,
345 >    others are totally blind to this.},
346 >  annote = {Part 1 988LQ Times Cited:0 Cited References Count:38},
347 >  issn = {1539-3755},
348 >  uri = {<Go to ISI>://000233603100030},
349   }
350  
351 < @Article{Blumen83,
352 <  author =       {A. Blumen and J. Klafter and G. Zumofen},
353 <  title =        {Recombination in amorphous materials as a
354 <                  continuous-time random-walk problem},
355 <  journal =      {Phys. Rev. B},
356 <  year =         1983,
357 <  volume =       27,
358 <  pages =        {3429-3435}
351 > @ARTICLE{Beard2003,
352 >  author = {D. A. Beard and T. Schlick},
353 >  title = {Unbiased rotational moves for rigid-body dynamics},
354 >  journal = {Biophysical Journal},
355 >  year = {2003},
356 >  volume = {85},
357 >  pages = {2973-2976},
358 >  number = {5},
359 >  month = {Nov 1},
360 >  abstract = {We introduce an unbiased protocol for performing rotational moves
361 >    in rigid-body dynamics simulations. This approach - based on the
362 >    analytic solution for the rotational equations of motion for an
363 >    orthogonal coordinate system at constant angular velocity - removes
364 >    deficiencies that have been largely ignored in Brownian dynamics
365 >    simulations, namely errors for finite rotations that result from
366 >    applying the noncommuting rotational matrices in an arbitrary order.
367 >    Our algorithm should thus replace standard approaches to rotate
368 >    local coordinate frames in Langevin and Brownian dynamics simulations.},
369 >  annote = {736UA Times Cited:0 Cited References Count:11},
370 >  issn = {0006-3495},
371 >  uri = {<Go to ISI>://000186190500018},
372   }
373  
374 < @Article{Klafter94,
375 <  author =       {J. Klafter and G. Zumofen},
376 <  title =        {Probability Distributions for Continuous-Time Random
377 <                  Walks with Long Tails},
378 <  journal =      jpc,
379 <  year =         1994,
380 <  volume =       98,
381 <  pages =        {7366-7370}
374 > @ARTICLE{Beloborodov1998,
375 >  author = {I. S. Beloborodov and V. Y. Orekhov and A. S. Arseniev},
376 >  title = {Effect of coupling between rotational and translational Brownian
377 >    motions on NMR spin relaxation: Consideration using green function
378 >    of rigid body diffusion},
379 >  journal = {Journal of Magnetic Resonance},
380 >  year = {1998},
381 >  volume = {132},
382 >  pages = {328-329},
383 >  number = {2},
384 >  month = {Jun},
385 >  abstract = {Using the Green function of arbitrary rigid Brownian diffusion (Goldstein,
386 >    Biopolymers 33, 409-436, 1993), it was analytically shown that coupling
387 >    between translation and rotation diffusion degrees of freedom does
388 >    not affect the correlation functions relevant to the NMR intramolecular
389 >    relaxation. It follows that spectral densities usually used for
390 >    the anisotropic rotation diffusion (Woessner, J. Chem. Phys. 37,
391 >    647-654, 1962) can be regarded as exact in respect to the rotation-translation
392 >    coupling for the spin system connected with a rigid body. (C) 1998
393 >    Academic Press.},
394 >  annote = {Zu605 Times Cited:2 Cited References Count:6},
395 >  issn = {1090-7807},
396 >  uri = {<Go to ISI>://000074214800017},
397   }
398  
399 <
400 < @Article{Dzugutov92,
401 <  author =       {M. Dzugutov},
402 <  title =        {Glass formation in a simple monatomic liquid with
403 <                  icosahedral inherent local order},
404 <  journal =      pra,
405 <  year =         1992,
406 <  volume =       46,
407 <  pages =        {R2984-R2987}
399 > @ARTICLE{Berardi1996,
400 >  author = {R. Berardi and S. Orlandi and C. Zannoni},
401 >  title = {Antiphase structures in polar smectic liquid crystals and their molecular
402 >    origin},
403 >  journal = {Chemical Physics Letters},
404 >  year = {1996},
405 >  volume = {261},
406 >  pages = {357-362},
407 >  number = {3},
408 >  month = {Oct 18},
409 >  abstract = {We demonstrate that the overall molecular dipole organization in a
410 >    smectic liquid crystal formed of polar molecules can be strongly
411 >    influenced by the position of the dipole in the molecule. We study
412 >    by large scale Monte Carlo simulations systems of attractive-repulsive
413 >    ''Gay-Berne'' elongated ellipsoids with an axial dipole at the center
414 >    or near the end of the molecule and we show that monolayer smectic
415 >    liquid crystals and modulated antiferroelectric bilayer stripe domains
416 >    similar to the experimentally observed ''antiphase'' structures
417 >    are obtained in the two cases.},
418 >  annote = {Vn637 Times Cited:49 Cited References Count:26},
419 >  issn = {0009-2614},
420 >  uri = {<Go to ISI>://A1996VN63700023},
421   }
422  
423 < @Article{Moore94,
424 <  author =       {P. Moore and T. Keyes},
425 <  title =        {Normal Mode Analysis of Liquid $\mbox{CS}_2$: Velocity
426 <                  Correlation Functions and Self-Diffusion Constants},
427 <  journal =      jcp,
428 <  year =         1994,
429 <  volume =       100,
430 <  pages =        6709
423 > @ARTICLE{Berkov2005,
424 >  author = {D. V. Berkov and N. L. Gorn},
425 >  title = {Magnetization precession due to a spin-polarized current in a thin
426 >    nanoelement: Numerical simulation study},
427 >  journal = {Physical Review B},
428 >  year = {2005},
429 >  volume = {72},
430 >  pages = {-},
431 >  number = {9},
432 >  month = {Sep},
433 >  abstract = {In this paper a detailed numerical study (in frames of the Slonczewski
434 >    formalism) of magnetization oscillations driven by a spin-polarized
435 >    current through a thin elliptical nanoelement is presented. We show
436 >    that a sophisticated micromagnetic model, where a polycrystalline
437 >    structure of a nanoelement is taken into account, can explain qualitatively
438 >    all most important features of the magnetization oscillation spectra
439 >    recently observed experimentally [S. I. Kiselev , Nature 425, 380
440 >    (2003)], namely, existence of several equidistant spectral bands,
441 >    sharp onset and abrupt disappearance of magnetization oscillations
442 >    with increasing current, absence of the out-of-plane regime predicted
443 >    by a macrospin model, and the relation between frequencies of so-called
444 >    small-angle and quasichaotic oscillations. However, a quantitative
445 >    agreement with experimental results (especially concerning the frequency
446 >    of quasichaotic oscillations) could not be achieved in the region
447 >    of reasonable parameter values, indicating that further model refinement
448 >    is necessary for a complete understanding of the spin-driven magnetization
449 >    precession even in this relatively simple experimental situation.},
450 >  annote = {969IT Times Cited:2 Cited References Count:55},
451 >  issn = {1098-0121},
452 >  uri = {<Go to ISI>://000232228500058},
453   }
454  
455 < @Article{Seeley89,
456 <  author =       {G. Seeley and T. Keyes},
457 <  title =        {Normal-mode analysis of liquid-state dynamics},
458 <  journal =      jcp,
459 <  year =         1989,
460 <  volume =       91,
461 <  pages =        {5581-5586}
455 > @ARTICLE{Berkov2005a,
456 >  author = {D. V. Berkov and N. L. Gorn},
457 >  title = {Stochastic dynamic simulations of fast remagnetization processes:
458 >    recent advances and applications},
459 >  journal = {Journal of Magnetism and Magnetic Materials},
460 >  year = {2005},
461 >  volume = {290},
462 >  pages = {442-448},
463 >  month = {Apr},
464 >  abstract = {Numerical simulations of fast remagnetization processes using stochastic
465 >    dynamics are widely used to study various magnetic systems. In this
466 >    paper, we first address several crucial methodological problems
467 >    of such simulations: (i) the influence of finite-element discretization
468 >    on simulated dynamics, (ii) choice between Ito and Stratonovich
469 >    stochastic calculi by the solution of micromagnetic stochastic equations
470 >    of motion and (iii) non-trivial correlation properties of the random
471 >    (thermal) field. Next, we discuss several examples to demonstrate
472 >    the great potential of the Langevin dynamics for studying fast remagnetization
473 >    processes in technically relevant applications: we present numerical
474 >    analysis of equilibrium magnon spectra in patterned structures,
475 >    study thermal noise effects on the magnetization dynamics of nanoelements
476 >    in pulsed fields and show some results for a remagnetization dynamics
477 >    induced by a spin-polarized current. (c) 2004 Elsevier B.V. All
478 >    rights reserved.},
479 >  annote = {Part 1 Sp. Iss. SI 922KU Times Cited:2 Cited References Count:25},
480 >  issn = {0304-8853},
481 >  uri = {<Go to ISI>://000228837600109},
482   }
483  
484 < @Article{Madan90,
485 <  author =       {B. Madan and T. Keyes and G. Seeley},
486 <  title =        {Diffusion in supercooled liquids via normal mode
487 <                  analysis},
488 <  journal =      jcp,
489 <  year =         1990,
490 <  volume =       92,
491 <  pages =        {7565-7569}
484 > @ARTICLE{Berkov2002,
485 >  author = {D. V. Berkov and N. L. Gorn and P. Gornert},
486 >  title = {Magnetization dynamics in nanoparticle systems: Numerical simulation
487 >    using Langevin dynamics},
488 >  journal = {Physica Status Solidi a-Applied Research},
489 >  year = {2002},
490 >  volume = {189},
491 >  pages = {409-421},
492 >  number = {2},
493 >  month = {Feb 16},
494 >  abstract = {We report on recent progress achieved by the development of numerical
495 >    methods based on the stochastic (Langevin) dynamics applied to systems
496 >    of interacting magnetic nanoparticles. The method enables direct
497 >    simulations of the trajectories of magnetic moments taking into
498 >    account (i) all relevant interactions, (ii) precession dynamics,
499 >    and (iii) temperature fluctuations included via the random (thermal)
500 >    field. We present several novel results obtained using new methods
501 >    developed for the solution of the Langevin equations. In particular,
502 >    we have investigated magnetic nanodots and disordered granular systems
503 >    of single-domain magnetic particles. For the first case we have
504 >    calculated the spectrum and the spatial distribution of spin excitations.
505 >    For the second system the complex ac susceptibility chi(omega, T)
506 >    for various particle concentrations and particle anisotropies were
507 >    computed and compared with numerous experimental results.},
508 >  annote = {526TF Times Cited:4 Cited References Count:37},
509 >  issn = {0031-8965},
510 >  uri = {<Go to ISI>://000174145200026},
511   }
512  
513 < @Article{Madan91,
514 <  author =       {B. Madan and T. Keyes and G. Seeley},
515 <  title =        {Normal mode analysis of the velocity correlation
516 <                  function in supercooled liquids},
517 <  journal =      jcp,
518 <  year =         1991,
519 <  volume =       94,
520 <  pages =        {6762-6769}
513 > @ARTICLE{Bernal1980,
514 >  author = {J.M. Bernal and J. G. {de la Torre}},
515 >  title = {Transport Properties and Hydrodynamic Centers of Rigid Macromolecules
516 >    with Arbitrary Shape},
517 >  journal = {Biopolymers},
518 >  year = {1980},
519 >  volume = {19},
520 >  pages = {751-766},
521   }
522  
523 < @Article{Buchner92,
524 <  author =       {M. Buchner, B.~M. Ladanyi and R.~M. Stratt},
525 <  title =        {The short-time dynamics of molecular
526 <                  liquids. Instantaneous-normal-mode theory},
527 <  journal =      jcp,
528 <  year =         1992,
529 <  volume =       97,
530 <  pages =        {8522-8535}
523 > @ARTICLE{Brunger1984,
524 >  author = {A. Brunger and C. L. Brooks and M. Karplus},
525 >  title = {Stochastic Boundary-Conditions for Molecular-Dynamics Simulations
526 >    of St2 Water},
527 >  journal = {Chemical Physics Letters},
528 >  year = {1984},
529 >  volume = {105},
530 >  pages = {495-500},
531 >  number = {5},
532 >  annote = {Sm173 Times Cited:143 Cited References Count:22},
533 >  issn = {0009-2614},
534 >  uri = {<Go to ISI>://A1984SM17300007},
535   }
536  
537 < @Article{Wan94,
538 <  author =       {Yi. Wan and R.~M. Stratt},
539 <  title =        {Liquid theory for the instantaneous normal modes of
540 <                  a liquid},
541 <  journal =      jcp,
542 <  year =         1994,
543 <  volume =       100,
544 <  pages =        {5123-5138}
537 > @ARTICLE{Budd1999,
538 >  author = {C. J. Budd and G. J. Collins and W. Z. Huang and R. D. Russell},
539 >  title = {Self-similar numerical solutions of the porous-medium equation using
540 >    moving mesh methods},
541 >  journal = {Philosophical Transactions of the Royal Society of London Series
542 >    a-Mathematical Physical and Engineering Sciences},
543 >  year = {1999},
544 >  volume = {357},
545 >  pages = {1047-1077},
546 >  number = {1754},
547 >  month = {Apr 15},
548 >  abstract = {This paper examines a synthesis of adaptive mesh methods with the
549 >    use of symmetry to study a partial differential equation. In particular,
550 >    it considers methods which admit discrete self-similar solutions,
551 >    examining the convergence of these to the true self-similar solution
552 >    as well as their stability. Special attention is given to the nonlinear
553 >    diffusion equation describing flow in a porous medium.},
554 >  annote = {199EE Times Cited:4 Cited References Count:14},
555 >  issn = {1364-503X},
556 >  uri = {<Go to ISI>://000080466800005},
557   }
558  
559 < @article{Stratt95,
560 <  author =       {R.~M. Stratt},
561 <  title =        {The instantaneous normal modes of liquids},
562 <  journal =      {Acc. Chem. Res.},
563 <  year =         1995,
564 <  volume =       28,
565 <  pages =        {201-207}
559 > @ARTICLE{Camp1999,
560 >  author = {P. J. Camp and M. P. Allen and A. J. Masters},
561 >  title = {Theory and computer simulation of bent-core molecules},
562 >  journal = {Journal of Chemical Physics},
563 >  year = {1999},
564 >  volume = {111},
565 >  pages = {9871-9881},
566 >  number = {21},
567 >  month = {Dec 1},
568 >  abstract = {Fluids of hard bent-core molecules have been studied using theory
569 >    and computer simulation. The molecules are composed of two hard
570 >    spherocylinders, with length-to-breadth ratio L/D, joined by their
571 >    ends at an angle 180 degrees - gamma. For L/D = 2 and gamma = 0,10,20
572 >    degrees, the simulations show isotropic, nematic, smectic, and solid
573 >    phases. For L/D = 2 and gamma = 30 degrees, only isotropic, nematic,
574 >    and solid phases are in evidence, which suggests that there is a
575 >    nematic-smectic-solid triple point at an angle in the range 20 degrees
576 >    < gamma < 30 degrees. In all of the orientationally ordered fluid
577 >    phases the order is purely uniaxial. For gamma = 10 degrees and
578 >    20 degrees, at the studied densities, the solid is also uniaxially
579 >    ordered, whilst for gamma = 30 degrees the solid layers are biaxially
580 >    ordered. For L/D = 2 and gamma = 60 degrees and 90 degrees we find
581 >    no spontaneous orientational ordering. This is shown to be due to
582 >    the interlocking of dimer pairs which precludes alignment. We find
583 >    similar results for L/D = 9.5 and gamma = 72 degrees, where an isotropic-biaxial
584 >    nematic transition is predicted by Onsager theory. Simulations in
585 >    the biaxial nematic phase show it to be at least mechanically stable
586 >    with respect to the isotropic phase, however. We have compared the
587 >    quasi-exact simulation results in the isotropic phase with the predicted
588 >    equations of state from three theories: the virial expansion containing
589 >    the second and third virial coefficients; the Parsons-Lee equation
590 >    of state; an application of Wertheim's theory of associating fluids
591 >    in the limit of infinite attractive association energy. For all
592 >    of the molecule elongations and geometries we have simulated, the
593 >    Wertheim theory proved to be the most accurate. Interestingly, the
594 >    isotropic equation of state is virtually independent of the dimer
595 >    bond angle-a feature that is also reflected in the lack of variation
596 >    with angle of the calculated second and third virial coefficients.
597 >    (C) 1999 American Institute of Physics. [S0021-9606(99)50445-5].},
598 >  annote = {255TC Times Cited:24 Cited References Count:38},
599 >  issn = {0021-9606},
600 >  uri = {<Go to ISI>://000083685400056},
601   }
602  
603 < @Article{Nitzan95,
604 <  author =       {G.~V. Vijayadamodar and A. Nitzan},
605 <  title =        {On the application of instantaneous normal mode
606 <                  analysis to long time dynamics of liquids},
607 <  journal =      jcp,
608 <  year =         1995,
609 <  volume =       103,
610 <  pages =        {2169-2177}
603 > @ARTICLE{Care2005,
604 >  author = {C. M. Care and D. J. Cleaver},
605 >  title = {Computer simulation of liquid crystals},
606 >  journal = {Reports on Progress in Physics},
607 >  year = {2005},
608 >  volume = {68},
609 >  pages = {2665-2700},
610 >  number = {11},
611 >  month = {Nov},
612 >  abstract = {A review is presented of molecular and mesoscopic computer simulations
613 >    of liquid crystalline systems. Molecular simulation approaches applied
614 >    to such systems are described, and the key findings for bulk phase
615 >    behaviour are reported. Following this, recently developed lattice
616 >    Boltzmann approaches to the mesoscale modelling of nemato-dynanics
617 >    are reviewed. This paper concludes with a discussion of possible
618 >    areas for future development in this field.},
619 >  annote = {989TU Times Cited:2 Cited References Count:258},
620 >  issn = {0034-4885},
621 >  uri = {<Go to ISI>://000233697600004},
622   }
623  
624 < @Article{Ribeiro98,
625 <  author =       "M.~C.~C. Ribeiro and P.~A. Madden",
626 <  title =        "Unstable Modes in Ionic Melts",
627 <  journal =      jcp,
628 <  year =         1998,
629 <  volume =       108,
630 <  pages =        {3256-3263}
624 > @ARTICLE{Carrasco1999,
625 >  author = {B. Carrasco and J. G. {de la Torre}},
626 >  title = {Hydrodynamic properties of rigid particles: Comparison of different
627 >    modeling and computational procedures},
628 >  journal = {Biophysical Journal},
629 >  year = {1999},
630 >  volume = {76},
631 >  pages = {3044-3057},
632 >  number = {6},
633 >  month = {Jun},
634 >  abstract = {The hydrodynamic properties of rigid particles are calculated from
635 >    models composed of spherical elements (beads) using theories developed
636 >    by Kirkwood, Bloomfield, and their coworkers. Bead models have usually
637 >    been built in such a way that the beads fill the volume occupied
638 >    by the particles. Sometimes the beads are few and of varying sizes
639 >    (bead models in the strict sense), and other times there are many
640 >    small beads (filling models). Because hydrodynamic friction takes
641 >    place at the molecular surface, another possibility is to use shell
642 >    models, as originally proposed by Bloomfield. In this work, we have
643 >    developed procedures to build models of the various kinds, and we
644 >    describe the theory and methods for calculating their hydrodynamic
645 >    properties, including approximate methods that may be needed to
646 >    treat models with a very large number of elements. By combining
647 >    the various possibilities of model building and hydrodynamic calculation,
648 >    several strategies can be designed. We have made a quantitative
649 >    comparison of the performance of the various strategies by applying
650 >    them to some test cases, for which the properties are known a priori.
651 >    We provide guidelines and computational tools for bead modeling.},
652 >  annote = {200TT Times Cited:46 Cited References Count:57},
653 >  issn = {0006-3495},
654 >  uri = {<Go to ISI>://000080556700016},
655   }
656  
657 < @Article{Keyes98a,
658 <  author =       {T. Keyes and W.-X. Li and U.~Z{\"{u}}rcher},
659 <  title =        {Comment on a critique of the instantaneous normal
660 <                  mode (INM) approach to diffusion
661 <                  (J. Chem. Phys. {\bf 107}, 4618 (1997))},
662 <  journal =      jcp,
663 <  year =         1998,
664 <  volume =       109,
665 <  pages =        {4693-4694}
657 > @ARTICLE{Chandra1999,
658 >  author = {A. Chandra and T. Ichiye},
659 >  title = {Dynamical properties of the soft sticky dipole model of water: Molecular
660 >    dynamics simulations},
661 >  journal = {Journal of Chemical Physics},
662 >  year = {1999},
663 >  volume = {111},
664 >  pages = {2701-2709},
665 >  number = {6},
666 >  month = {Aug 8},
667 >  abstract = {Dynamical properties of the soft sticky dipole (SSD) model of water
668 >    are calculated by means of molecular dynamics simulations. Since
669 >    this is not a simple point model, the forces and torques arising
670 >    from the SSD potential are derived here. Simulations are carried
671 >    out in the microcanonical ensemble employing the Ewald method for
672 >    the electrostatic interactions. Various time correlation functions
673 >    and dynamical quantities associated with the translational and rotational
674 >    motion of water molecules are evaluated and compared with those
675 >    of two other commonly used models of liquid water, namely the transferable
676 >    intermolecular potential-three points (TIP3P) and simple point charge/extended
677 >    (SPC/E) models, and also with experiments. The dynamical properties
678 >    of the SSD water model are found to be in good agreement with the
679 >    experimental results and appear to be better than the TIP3P and
680 >    SPC/E models in most cases, as has been previously shown for its
681 >    thermodynamic, structural, and dielectric properties. Also, molecular
682 >    dynamics simulations of the SSD model are found to run much faster
683 >    than TIP3P, SPC/E, and other multisite models. (C) 1999 American
684 >    Institute of Physics. [S0021-9606(99)51430-X].},
685 >  annote = {221EN Times Cited:14 Cited References Count:66},
686 >  issn = {0021-9606},
687 >  uri = {<Go to ISI>://000081711200038},
688   }
689  
690 < @Article{Alemany98,
691 <  author =       {M.~M.~G. Alemany and C. Rey and L.~J. Gallego},
692 <  title =        {Transport coefficients of liquid transition metals:
693 <                  A computer simulation study using the embedded atom
694 <                  model},
695 <  journal =      jcp,
696 <  year =         1998,
697 <  volume =       109,
698 <  pages =        {5175-5176}
699 < }
700 <
701 < @Article{Belonoshko00,
1161 <  author =       {A.~B. Belonoshko and R. Ahuja and O. Eriksson and
1162 <                  B. Johansson},
1163 <  title =        {Quasi ab initio molecular dynamic study of Cu melting},
1164 <  journal =      prb,
1165 <  year =         2000,
1166 <  volume =       61,
1167 <  pages =        {3838-3844}
1168 < }
1169 <
1170 < @Article{Banhart92,
1171 <  author =       {J. Banhart and H. Ebert and R. Kuentzler and
1172 <                  J. Voitl\"{a}nder},
1173 <  title =        {Electronic properties of single-phased metastable
1174 <                  Ag-Cu alloys},
1175 <  journal =      prb,
1176 <  year =         1992,
1177 <  volume =       46,
1178 <  pages =        {9968-9975}
1179 < }
1180 <
1181 < @Article{Wendt78,
1182 <  author =       {H. Wendt and F.~F. Abraham},
1183 <  title =        {},
1184 <  journal =      prl,
1185 <  year =         1978,
1186 <  volume =       41,
1187 <  pages =        1244
690 > @ARTICLE{Channell1990,
691 >  author = {P. J. Channell and C. Scovel},
692 >  title = {Symplectic Integration of Hamiltonian-Systems},
693 >  journal = {Nonlinearity},
694 >  year = {1990},
695 >  volume = {3},
696 >  pages = {231-259},
697 >  number = {2},
698 >  month = {may},
699 >  annote = {Dk631 Times Cited:152 Cited References Count:34},
700 >  issn = {0951-7715},
701 >  uri = {<Go to ISI>://A1990DK63100001},
702   }
703  
704 < @Article{Lewis91,
705 <  author =       {L.~J. Lewis},
706 <  title =        {Atomic dynamics through the glass transition},
707 <  journal =      prb,
708 <  year =         1991,
709 <  volume =       44,
710 <  pages =        {4245-4254}
704 > @ARTICLE{Chen2003,
705 >  author = {B. Chen and F. Solis},
706 >  title = {Explicit mixed finite order Runge-Kutta methods},
707 >  journal = {Applied Numerical Mathematics},
708 >  year = {2003},
709 >  volume = {44},
710 >  pages = {21-30},
711 >  number = {1-2},
712 >  month = {Jan},
713 >  abstract = {We investigate the asymptotic behavior of systems of nonlinear differential
714 >    equations and introduce a family of mixed methods from combinations
715 >    of explicit Runge-Kutta methods. These methods have better stability
716 >    behavior than traditional Runge-Kutta methods and generally extend
717 >    the range of validity of the calculated solutions. These methods
718 >    also give a way of determining if the numerical solutions are real
719 >    or spurious. Emphasis is put on examples coming from mathematical
720 >    models in ecology. (C) 2002 IMACS. Published by Elsevier Science
721 >    B.V. All rights reserved.},
722 >  annote = {633ZD Times Cited:0 Cited References Count:9},
723 >  issn = {0168-9274},
724 >  uri = {<Go to ISI>://000180314200002},
725   }
726  
727 < @Article{Liu92,
728 <  author =       {R.~S. Liu and D.~W. Qi and S. Wang},
729 <  title =        {Subpeaks of structure factors for rapidly quenched metals},
730 <  journal =      prb,
731 <  year =         1992,
732 <  volume =       45,
733 <  pages =        {451-453}
727 > @ARTICLE{Cheung2004,
728 >  author = {D. L. Cheung and S. J. Clark and M. R. Wilson},
729 >  title = {Calculation of flexoelectric coefficients for a nematic liquid crystal
730 >    by atomistic simulation},
731 >  journal = {Journal of Chemical Physics},
732 >  year = {2004},
733 >  volume = {121},
734 >  pages = {9131-9139},
735 >  number = {18},
736 >  month = {Nov 8},
737 >  abstract = {Equilibrium molecular dynamics calculations have been performed for
738 >    the liquid crystal molecule n-4-(trans-4-n-pentylcyclohexyl)benzonitrile
739 >    (PCH5) using a fully atomistic model. Simulation data have been
740 >    obtained for a series of temperatures in the nematic phase. The
741 >    simulation data have been used to calculate the flexoelectric coefficients
742 >    e(s) and e(b) using the linear response formalism of Osipov and
743 >    Nemtsov [M. A. Osipov and V. B. Nemtsov, Sov. Phys. Crstallogr.
744 >    31, 125 (1986)]. The temperature and order parameter dependence
745 >    of e(s) and e(b) are examined, as are separate contributions from
746 >    different intermolecular interactions. Values of e(s) and e(b) calculated
747 >    from simulation are consistent with those found from experiment.
748 >    (C) 2004 American Institute of Physics.},
749 >  annote = {866UM Times Cited:4 Cited References Count:61},
750 >  issn = {0021-9606},
751 >  uri = {<Go to ISI>://000224798900053},
752   }
753  
754 < @Book{pliny,
755 <  author =       {Pliny},
756 <  title =        {Hist. Nat.},
757 <  publisher =    { },
758 <  year =         { },
759 <  volume =       {XXXVI}
754 > @ARTICLE{Cheung2002,
755 >  author = {D. L. Cheung and S. J. Clark and M. R. Wilson},
756 >  title = {Calculation of the rotational viscosity of a nematic liquid crystal},
757 >  journal = {Chemical Physics Letters},
758 >  year = {2002},
759 >  volume = {356},
760 >  pages = {140-146},
761 >  number = {1-2},
762 >  month = {Apr 15},
763 >  abstract = {Equilibrium molecular dynamics calculations have been performed for
764 >    the liquid crystal molecule n-4-(trans-4-npentylcyclohexyl)benzonitrile
765 >    (PCH5) using a fully atomistic model. Simulation data has been obtained
766 >    for a series of temperatures in the nematic phase. The rotational
767 >    viscosity co-efficient gamma(1), has been calculated using the angular
768 >    velocity correlation function of the nematic director, n, the mean
769 >    squared diffusion of n and statistical mechanical methods based
770 >    on the rotational diffusion co-efficient. We find good agreement
771 >    between the first two methods and experimental values. (C) 2002
772 >    Published by Elsevier Science B.V.},
773 >  annote = {547KF Times Cited:8 Cited References Count:31},
774 >  issn = {0009-2614},
775 >  uri = {<Go to ISI>://000175331000020},
776   }
777  
778 < @Article{Anheuser94,
779 <  author =       {K. Anheuser and J.P. Northover},
780 <  title =        {Silver plating of Roman and Celtic coins from Britan - a technical study},
781 <  journal =      {Brit. Num. J.},
782 <  year =         1994,
783 <  volume =       64,
784 <  pages =        22
778 > @ARTICLE{Chin2004,
779 >  author = {S. A. Chin},
780 >  title = {Dynamical multiple-time stepping methods for overcoming resonance
781 >    instabilities},
782 >  journal = {Journal of Chemical Physics},
783 >  year = {2004},
784 >  volume = {120},
785 >  pages = {8-13},
786 >  number = {1},
787 >  month = {Jan 1},
788 >  abstract = {Current molecular dynamics simulations of biomolecules using multiple
789 >    time steps to update the slowly changing force are hampered by instabilities
790 >    beginning at time steps near the half period of the fastest vibrating
791 >    mode. These #resonance# instabilities have became a critical barrier
792 >    preventing the long time simulation of biomolecular dynamics. Attempts
793 >    to tame these instabilities by altering the slowly changing force
794 >    and efforts to damp them out by Langevin dynamics do not address
795 >    the fundamental cause of these instabilities. In this work, we trace
796 >    the instability to the nonanalytic character of the underlying spectrum
797 >    and show that a correct splitting of the Hamiltonian, which renders
798 >    the spectrum analytic, restores stability. The resulting Hamiltonian
799 >    dictates that in addition to updating the momentum due to the slowly
800 >    changing force, one must also update the position with a modified
801 >    mass. Thus multiple-time stepping must be done dynamically. (C)
802 >    2004 American Institute of Physics.},
803 >  annote = {757TK Times Cited:1 Cited References Count:22},
804 >  issn = {0021-9606},
805 >  uri = {<Go to ISI>://000187577400003},
806   }
807  
808 < @Article{Pense92,
809 <  author =       {A. W. Pense},
810 <  title =        {The Decline and Fall of the Roman Denarius},
811 <  journal =      {Mat. Char.},
812 <  year =         1992,
813 <  volume =       29,
814 <  pages =        213
808 > @ARTICLE{Cook2000,
809 >  author = {M. J. Cook and M. R. Wilson},
810 >  title = {Simulation studies of dipole correlation in the isotropic liquid
811 >    phase},
812 >  journal = {Liquid Crystals},
813 >  year = {2000},
814 >  volume = {27},
815 >  pages = {1573-1583},
816 >  number = {12},
817 >  month = {Dec},
818 >  abstract = {The Kirkwood correlation factor g(1) determines the preference for
819 >    local parallel or antiparallel dipole association in the isotropic
820 >    phase. Calamitic mesogens with longitudinal dipole moments and Kirkwood
821 >    factors greater than 1 have an enhanced effective dipole moment
822 >    along the molecular long axis. This leads to higher values of Delta
823 >    epsilon in the nematic phase. This paper describes state-of-the-art
824 >    molecular dynamics simulations of two calamitic mesogens 4-(trans-4-n-pentylcyclohexyl)benzonitrile
825 >    (PCH5) and 4-(trans-4-n-pentylcyclohexyl) chlorobenzene (PCH5-Cl)
826 >    in the isotropic liquid phase using an all-atom force field and
827 >    taking long range electrostatics into account using an Ewald summation.
828 >    Using this methodology, PCH5 is seen to prefer antiparallel dipole
829 >    alignment with a negative g(1) and PCH5-Cl is seen to prefer parallel
830 >    dipole alignment with a positive g(1); this is in accordance with
831 >    experimental dielectric measurements. Analysis of the molecular
832 >    dynamics trajectories allows an assessment of why these molecules
833 >    behave differently.},
834 >  annote = {376BF Times Cited:10 Cited References Count:16},
835 >  issn = {0267-8292},
836 >  uri = {<Go to ISI>://000165437800002},
837   }
838  
839 < @Article{Ngai81,
840 <  author =       {K.~L. Ngai and F.-S. Liu},
841 <  title =        {Dispersive diffusion transport and noise,
842 <                  time-dependent diffusion coefficient, generalized
843 <                  Einstein-Nernst relation, and dispersive
844 <                  diffusion-controlled unimolecular and bimolecular
845 <                  reactions},
846 <  journal =      prb,
847 <  year =         1981,
848 <  volume =       24,
849 <  pages =        {1049-1065}
839 > @ARTICLE{Cui2003,
840 >  author = {B. X. Cui and M. Y. Shen and K. F. Freed},
841 >  title = {Folding and misfolding of the papillomavirus E6 interacting peptide
842 >    E6ap},
843 >  journal = {Proceedings of the National Academy of Sciences of the United States
844 >    of America},
845 >  year = {2003},
846 >  volume = {100},
847 >  pages = {7087-7092},
848 >  number = {12},
849 >  month = {Jun 10},
850 >  abstract = {All-atom Langevin dynamics simulations have been performed to study
851 >    the folding pathways of the 18-residue binding domain fragment E6ap
852 >    of the human papillomavirus E6 interacting peptide. Six independent
853 >    folding trajectories, with a total duration of nearly 2 mus, all
854 >    lead to the same native state in which the E6ap adopts a fluctuating
855 >    a-helix structure in the central portion (Ser-4-Leu-13) but with
856 >    very flexible N and C termini. Simulations starting from different
857 >    core configurations exhibit the E6ap folding dynamics as either
858 >    a two- or three-state folder with an intermediate misfolded state.
859 >    The essential leucine hydrophobic core (Leu-9, Leu-12, and Leu-13)
860 >    is well conserved in the native-state structure but absent in the
861 >    intermediate structure, suggesting that the leucine core is not
862 >    only essential for the binding activity of E6ap but also important
863 >    for the stability of the native structure. The free energy landscape
864 >    reveals a significant barrier between the basins separating the
865 >    native and misfolded states. We also discuss the various underlying
866 >    forces that drive the peptide into its native state.},
867 >  annote = {689LC Times Cited:3 Cited References Count:48},
868 >  issn = {0027-8424},
869 >  uri = {<Go to ISI>://000183493500037},
870   }
871  
872 < @Unpublished{Truhlar00,
873 <  author =       {D.~G. Truhlar and A. Kohen},
874 <  note =         {private correspondence}
872 > @ARTICLE{Denisov2003,
873 >  author = {S. I. Denisov and T. V. Lyutyy and K. N. Trohidou},
874 >  title = {Magnetic relaxation in finite two-dimensional nanoparticle ensembles},
875 >  journal = {Physical Review B},
876 >  year = {2003},
877 >  volume = {67},
878 >  pages = {-},
879 >  number = {1},
880 >  month = {Jan 1},
881 >  abstract = {We study the slow phase of thermally activated magnetic relaxation
882 >    in finite two-dimensional ensembles of dipolar interacting ferromagnetic
883 >    nanoparticles whose easy axes of magnetization are perpendicular
884 >    to the distribution plane. We develop a method to numerically simulate
885 >    the magnetic relaxation for the case that the smallest heights of
886 >    the potential barriers between the equilibrium directions of the
887 >    nanoparticle magnetic moments are much larger than the thermal energy.
888 >    Within this framework, we analyze in detail the role that the correlations
889 >    of the nanoparticle magnetic moments and the finite size of the
890 >    nanoparticle ensemble play in magnetic relaxation.},
891 >  annote = {642XH Times Cited:11 Cited References Count:31},
892 >  issn = {1098-0121},
893 >  uri = {<Go to ISI>://000180830400056},
894   }
895  
896 < @Article{Truhlar78,
897 <  author =       {Donald G. Truhlar},
898 <  title =        {Interpretation of the Activation Energy},
899 <  journal =      {J. Chem. Ed.},
900 <  year =         1978,
901 <  volume =       55,
902 <  pages =        309
896 > @ARTICLE{Derreumaux1998,
897 >  author = {P. Derreumaux and T. Schlick},
898 >  title = {The loop opening/closing motion of the enzyme triosephosphate isomerase},
899 >  journal = {Biophysical Journal},
900 >  year = {1998},
901 >  volume = {74},
902 >  pages = {72-81},
903 >  number = {1},
904 >  month = {Jan},
905 >  abstract = {To explore the origin of the large-scale motion of triosephosphate
906 >    isomerase's flexible loop (residues 166 to 176) at the active site,
907 >    several simulation protocols are employed both for the free enzyme
908 >    in vacuo and for the free enzyme with some solvent modeling: high-temperature
909 >    Langevin dynamics simulations, sampling by a #dynamics##driver#
910 >    approach, and potential-energy surface calculations. Our focus is
911 >    on obtaining the energy barrier to the enzyme's motion and establishing
912 >    the nature of the loop movement. Previous calculations did not determine
913 >    this energy barrier and the effect of solvent on the barrier. High-temperature
914 >    molecular dynamics simulations and crystallographic studies have
915 >    suggested a rigid-body motion with two hinges located at both ends
916 >    of the loop; Brownian dynamics simulations at room temperature pointed
917 >    to a very flexible behavior. The present simulations and analyses
918 >    reveal that although solute/solvent hydrogen bonds play a crucial
919 >    role in lowering the energy along the pathway, there still remains
920 >    a high activation barrier, This finding clearly indicates that,
921 >    if the loop opens and closes in the absence of a substrate at standard
922 >    conditions (e.g., room temperature, appropriate concentration of
923 >    isomerase), the time scale for transition is not in the nanosecond
924 >    but rather the microsecond range. Our results also indicate that
925 >    in the context of spontaneous opening in the free enzyme, the motion
926 >    is of rigid-body type and that the specific interaction between
927 >    residues Ala(176) and Tyr(208) plays a crucial role in the loop
928 >    opening/closing mechanism.},
929 >  annote = {Zl046 Times Cited:30 Cited References Count:29},
930 >  issn = {0006-3495},
931 >  uri = {<Go to ISI>://000073393400009},
932   }
933  
934 < @Book{Tolman27,
935 <  author =       {R. C. Tolman},
936 <  title =        {Statistical Mechanics with Applications to Physics and Chemistry},
937 <  chapter =      {},
938 <  publisher =    {Chemical Catalog Co.},
939 <  address =      {New York},
940 <  year =         1927,
941 <  pages =        {260-270}
934 > @ARTICLE{Dullweber1997,
935 >  author = {A. Dullweber and B. Leimkuhler and R. McLachlan},
936 >  title = {Symplectic splitting methods for rigid body molecular dynamics},
937 >  journal = {Journal of Chemical Physics},
938 >  year = {1997},
939 >  volume = {107},
940 >  pages = {5840-5851},
941 >  number = {15},
942 >  month = {Oct 15},
943 >  abstract = {Rigid body molecular models possess symplectic structure and time-reversal
944 >    symmetry. Standard numerical integration methods destroy both properties,
945 >    introducing nonphysical dynamical behavior such as numerically induced
946 >    dissipative states and drift in the energy during long term simulations.
947 >    This article describes the construction, implementation, and practical
948 >    application of fast explicit symplectic-reversible integrators for
949 >    multiple rigid body molecular simulations, These methods use a reduction
950 >    to Euler equations for the free rigid body, together with a symplectic
951 >    splitting technique. In every time step, the orientational dynamics
952 >    of each rigid body is integrated by a sequence of planar rotations.
953 >    Besides preserving the symplectic and reversible structures of the
954 >    flow, this scheme accurately conserves the total angular momentum
955 >    of a system of interacting rigid bodies. Excellent energy conservation
956 >    fan be obtained relative to traditional methods, especially in long-time
957 >    simulations. The method is implemented in a research code, ORIENT
958 >    and compared with a quaternion/extrapolation scheme for the TIP4P
959 >    model of water. Our experiments show that the symplectic-reversible
960 >    scheme is far superior to the more traditional quaternion method.
961 >    (C) 1997 American Institute of Physics.},
962 >  annote = {Ya587 Times Cited:35 Cited References Count:32},
963 >  issn = {0021-9606},
964 >  uri = {<Go to ISI>://A1997YA58700024},
965   }
966  
967 < @Article{Tolman20,
968 <  author =       {R. C. Tolman},
969 <  title =        {Statistical Mechanics Applied to Chemical Kinetics},
970 <  journal =      jacs,
971 <  year =         1920,
972 <  volume =       42,
973 <  pages =        2506
967 > @ARTICLE{Edwards2005,
968 >  author = {S. A. Edwards and D. R. M. Williams},
969 >  title = {Stretching a single diblock copolymer in a selective solvent: Langevin
970 >    dynamics simulations},
971 >  journal = {Macromolecules},
972 >  year = {2005},
973 >  volume = {38},
974 >  pages = {10590-10595},
975 >  number = {25},
976 >  month = {Dec 13},
977 >  abstract = {Using the Langevin dynamics technique, we have carried out simulations
978 >    of a single-chain flexible diblock copolymer. The polymer consists
979 >    of two blocks of equal length, one very poorly solvated and the
980 >    other close to theta-conditions. We study what happens when such
981 >    a polymer is stretched, for a range of different stretching speeds,
982 >    and correlate our observations with features in the plot of force
983 >    vs extension. We find that at slow speeds this force profile does
984 >    not increase monotonically, in disagreement with earlier predictions,
985 >    and that at high speeds there is a strong dependence on which end
986 >    of the polymer is pulled, as well as a high level of hysteresis.},
987 >  annote = {992EC Times Cited:0 Cited References Count:13},
988 >  issn = {0024-9297},
989 >  uri = {<Go to ISI>://000233866200035},
990   }
991  
992 < @Article{Nagel96,
993 <  author =       {M.D. Ediger and  C.A. Angell and Sidney R. Nagel},
994 <  title =        {Supercooled Liquids and Glasses},
995 <  journal =      jpc,
996 <  year =         1996,
997 <  volume =       100,
998 <  pages =        13200
992 > @ARTICLE{Egberts1988,
993 >  author = {E. Egberts and H. J. C. Berendsen},
994 >  title = {Molecular-Dynamics Simulation of a Smectic Liquid-Crystal with Atomic
995 >    Detail},
996 >  journal = {Journal of Chemical Physics},
997 >  year = {1988},
998 >  volume = {89},
999 >  pages = {3718-3732},
1000 >  number = {6},
1001 >  month = {Sep 15},
1002 >  annote = {Q0188 Times Cited:219 Cited References Count:43},
1003 >  issn = {0021-9606},
1004 >  uri = {<Go to ISI>://A1988Q018800036},
1005   }
1006  
1007 < @InBook{Blumen86,
1008 <  author =       {A. Blumen and J. Klafter and G. Zumofen},
1009 <  editor =       {Luciano Peitronero and E. Tosatti},
1010 <  title =        {Fractals in Physics},
1011 <  chapter =      {Reactions in Disordered Media Modelled by Fractals},
1012 <  publisher =    {North-Holland},
1013 <  year =         1986,
1014 <  series =       {International Symposium on Fractals in Physics},
1015 <  address =      {Amsterdam},
1016 <  pages =        399
1007 > @ARTICLE{Ermak1978,
1008 >  author = {D. L. Ermak and J. A. Mccammon},
1009 >  title = {Brownian Dynamics with Hydrodynamic Interactions},
1010 >  journal = {Journal of Chemical Physics},
1011 >  year = {1978},
1012 >  volume = {69},
1013 >  pages = {1352-1360},
1014 >  number = {4},
1015 >  annote = {Fp216 Times Cited:785 Cited References Count:42},
1016 >  issn = {0021-9606},
1017 >  uri = {<Go to ISI>://A1978FP21600004},
1018   }
1019  
1020 < @Article{Shlesinger84,
1021 <  author =       {M.~F. Shlesinger and E.~W. Montroll},
1022 <  title =        {On the Williams-Watts function of dielectric relaxation},
1023 <  journal =      {Proc. Natl. Acad. Sci. USA},
1024 <  year =         1984,
1025 <  volume =       81,
1026 <  pages =        {1280-1283}
1020 > @ARTICLE{Fennell2004,
1021 >  author = {C. J. Fennell and J. D. Gezelter},
1022 >  title = {On the structural and transport properties of the soft sticky dipole
1023 >    and related single-point water models},
1024 >  journal = {Journal of Chemical Physics},
1025 >  year = {2004},
1026 >  volume = {120},
1027 >  pages = {9175-9184},
1028 >  number = {19},
1029 >  month = {May 15},
1030 >  abstract = {The density maximum and temperature dependence of the self-diffusion
1031 >    constant were investigated for the soft sticky dipole (SSD) water
1032 >    model and two related reparametrizations of this single-point model.
1033 >    A combination of microcanonical and isobaric-isothermal molecular
1034 >    dynamics simulations was used to calculate these properties, both
1035 >    with and without the use of reaction field to handle long-range
1036 >    electrostatics. The isobaric-isothermal simulations of the melting
1037 >    of both ice-I-h and ice-I-c showed a density maximum near 260 K.
1038 >    In most cases, the use of the reaction field resulted in calculated
1039 >    densities which were significantly lower than experimental densities.
1040 >    Analysis of self-diffusion constants shows that the original SSD
1041 >    model captures the transport properties of experimental water very
1042 >    well in both the normal and supercooled liquid regimes. We also
1043 >    present our reparametrized versions of SSD for use both with the
1044 >    reaction field or without any long-range electrostatic corrections.
1045 >    These are called the SSD/RF and SSD/E models, respectively. These
1046 >    modified models were shown to maintain or improve upon the experimental
1047 >    agreement with the structural and transport properties that can
1048 >    be obtained with either the original SSD or the density-corrected
1049 >    version of the original model (SSD1). Additionally, a novel low-density
1050 >    ice structure is presented which appears to be the most stable ice
1051 >    structure for the entire SSD family. (C) 2004 American Institute
1052 >    of Physics.},
1053 >  annote = {816YY Times Cited:5 Cited References Count:39},
1054 >  issn = {0021-9606},
1055 >  uri = {<Go to ISI>://000221146400032},
1056   }
1057  
1058 < @Article{Klafter86,
1059 <  author =       {J. Klafter and M.~F. Shlesinger},
1060 <  title =        {On the relationship among three theories of
1061 <                  relaxation in disordered systems},
1062 <  journal =      {Proc. Natl. Acad. Sci. USA},
1063 <  year =         1986,
1064 <  volume =       83,
1065 <  pages =        {848-851}
1058 > @ARTICLE{Fernandes2002,
1059 >  author = {M. X. Fernandes and J. G. {de la Torre}},
1060 >  title = {Brownian dynamics simulation of rigid particles of arbitrary shape
1061 >    in external fields},
1062 >  journal = {Biophysical Journal},
1063 >  year = {2002},
1064 >  volume = {83},
1065 >  pages = {3039-3048},
1066 >  number = {6},
1067 >  month = {Dec},
1068 >  abstract = {We have developed a Brownian dynamics simulation algorithm to generate
1069 >    Brownian trajectories of an isolated, rigid particle of arbitrary
1070 >    shape in the presence of electric fields or any other external agents.
1071 >    Starting from the generalized diffusion tensor, which can be calculated
1072 >    with the existing HYDRO software, the new program BROWNRIG (including
1073 >    a case-specific subprogram for the external agent) carries out a
1074 >    simulation that is analyzed later to extract the observable dynamic
1075 >    properties. We provide a variety of examples of utilization of this
1076 >    method, which serve as tests of its performance, and also illustrate
1077 >    its applicability. Examples include free diffusion, transport in
1078 >    an electric field, and diffusion in a restricting environment.},
1079 >  annote = {633AD Times Cited:2 Cited References Count:43},
1080 >  issn = {0006-3495},
1081 >  uri = {<Go to ISI>://000180256300012},
1082   }
1083  
1084 < @Article{Li2001,
1085 <  author =   {Z. Li and M. Lieberman and W. Hill},
1086 <  title =    {{\sc xps} and {\sc sers} Study of Silicon Phthalocyanine
1087 <                  Monolayers: umbrella vs. octopus design strategies
1088 <                  for formation of oriented {\sc sam}s},
1089 <  journal =      {Langmuir},
1090 <  year =     2001,
1091 <  volume =       17,
1092 <  pages =        {4887-4894}
1084 > @ARTICLE{Gay1981,
1085 >  author = {J. G. Gay and B. J. Berne},
1086 >  title = {Modification of the Overlap Potential to Mimic a Linear Site-Site
1087 >    Potential},
1088 >  journal = {Journal of Chemical Physics},
1089 >  year = {1981},
1090 >  volume = {74},
1091 >  pages = {3316-3319},
1092 >  number = {6},
1093 >  annote = {Lj347 Times Cited:482 Cited References Count:13},
1094 >  issn = {0021-9606},
1095 >  uri = {<Go to ISI>://A1981LJ34700029},
1096   }
1097  
1098 < @Article{Evans1993,
1099 <  author =       {J.~W. Evans},
1100 <  title =        {Random and Cooperative Sequential Adsorption},
1101 <  journal =      rmp,
1102 <  year =         1993,
1103 <  volume =       65,
1104 <  pages =        {1281-1329}
1098 > @ARTICLE{Gelin1999,
1099 >  author = {M. F. Gelin},
1100 >  title = {Inertial effects in the Brownian dynamics with rigid constraints},
1101 >  journal = {Macromolecular Theory and Simulations},
1102 >  year = {1999},
1103 >  volume = {8},
1104 >  pages = {529-543},
1105 >  number = {6},
1106 >  month = {Nov},
1107 >  abstract = {To investigate the influence of inertial effects on the dynamics of
1108 >    an assembly of beads subjected to rigid constraints and placed in
1109 >    a buffer medium, a convenient method to introduce suitable generalized
1110 >    coordinates is presented. Without any restriction on the nature
1111 >    of the soft forces involved (both stochastic and deterministic),
1112 >    pertinent Langevin equations are derived. Provided that the Brownian
1113 >    forces are Gaussian and Markovian, the corresponding Fokker-Planck
1114 >    equation (FPE) is obtained in the complete phase space of generalized
1115 >    coordinates and momenta. The correct short time behavior for correlation
1116 >    functions (CFs) of generalized coordinates is established, and the
1117 >    diffusion equation with memory (DEM) is deduced from the FPE in
1118 >    the high friction Limit. The DEM is invoked to perform illustrative
1119 >    calculations in two dimensions of the orientational CFs for once
1120 >    broken nonrigid rods immobilized on a surface. These calculations
1121 >    reveal that the CFs under certain conditions exhibit an oscillatory
1122 >    behavior, which is irreproducible within the standard diffusion
1123 >    equation. Several methods are considered for the approximate solution
1124 >    of the DEM, and their application to three dimensional DEMs is discussed.},
1125 >  annote = {257MM Times Cited:2 Cited References Count:82},
1126 >  issn = {1022-1344},
1127 >  uri = {<Go to ISI>://000083785700002},
1128   }
1129  
1130 <
1131 < @Article{Dwyer1977,
1132 <  author =   {D.~J. Dwyer and G.~W. Simmons and R.~P. Wei},
1133 <  title =    {},
1134 <  journal =      {Surf. Sci.},
1135 <  year =     1977,
1136 <  volume =   64,
1347 <  pages =    617
1130 > @BOOK{Goldstein2001,
1131 >  title = {Classical Mechanics},
1132 >  publisher = {Addison Wesley},
1133 >  year = {2001},
1134 >  author = {H. Goldstein and C. Poole and J. Safko},
1135 >  address = {San Francisco},
1136 >  edition = {3rd},
1137   }
1138  
1139 < @Article{Macritche1978,
1140 <  author =   {F. MacRitche},
1141 <  title =    {},
1142 <  journal =      {Adv. Protein Chem.},
1143 <  year =     1978,
1144 <  volume =   32,
1145 <  pages =    283
1139 > @ARTICLE{Gray2003,
1140 >  author = {J. J. Gray and S. Moughon and C. Wang and O. Schueler-Furman and
1141 >    B. Kuhlman and C. A. Rohl and D. Baker},
1142 >  title = {Protein-protein docking with simultaneous optimization of rigid-body
1143 >    displacement and side-chain conformations},
1144 >  journal = {Journal of Molecular Biology},
1145 >  year = {2003},
1146 >  volume = {331},
1147 >  pages = {281-299},
1148 >  number = {1},
1149 >  month = {Aug 1},
1150 >  abstract = {Protein-protein docking algorithms provide a means to elucidate structural
1151 >    details for presently unknown complexes. Here, we present and evaluate
1152 >    a new method to predict protein-protein complexes from the coordinates
1153 >    of the unbound monomer components. The method employs a low-resolution,
1154 >    rigid-body, Monte Carlo search followed by simultaneous optimization
1155 >    of backbone displacement and side-chain conformations using Monte
1156 >    Carlo minimization. Up to 10(5) independent simulations are carried
1157 >    out, and the resulting #decoys# are ranked using an energy function
1158 >    dominated by van der Waals interactions, an implicit solvation model,
1159 >    and an orientation-dependent hydrogen bonding potential. Top-ranking
1160 >    decoys are clustered to select the final predictions. Small-perturbation
1161 >    studies reveal the formation of binding funnels in 42 of 54 cases
1162 >    using coordinates derived from the bound complexes and in 32 of
1163 >    54 cases using independently determined coordinates of one or both
1164 >    monomers. Experimental binding affinities correlate with the calculated
1165 >    score function and explain the predictive success or failure of
1166 >    many targets. Global searches using one or both unbound components
1167 >    predict at least 25% of the native residue-residue contacts in 28
1168 >    of the 32 cases where binding funnels exist. The results suggest
1169 >    that the method may soon be useful for generating models of biologically
1170 >    important complexes from the structures of the isolated components,
1171 >    but they also highlight the challenges that must be met to achieve
1172 >    consistent and accurate prediction of protein-protein interactions.
1173 >    (C) 2003 Elsevier Ltd. All rights reserved.},
1174 >  annote = {704QL Times Cited:48 Cited References Count:60},
1175 >  issn = {0022-2836},
1176 >  uri = {<Go to ISI>://000184351300022},
1177   }
1178  
1179 < @Article{Feder1980,
1180 <  author =   {J. Feder},
1181 <  title =    {},
1182 <  journal =      {J. Theor. Biol.},
1183 <  year =     1980,
1184 <  volume =   87,
1185 <  pages =    237
1179 > @ARTICLE{Greengard1994,
1180 >  author = {L. Greengard},
1181 >  title = {Fast Algorithms for Classical Physics},
1182 >  journal = {Science},
1183 >  year = {1994},
1184 >  volume = {265},
1185 >  pages = {909-914},
1186 >  number = {5174},
1187 >  month = {Aug 12},
1188 >  abstract = {Some of the recently developed fast summation methods that have arisen
1189 >    in scientific computing are described. These methods require an
1190 >    amount of work proportional to N or N log N to evaluate all pairwise
1191 >    interactions in an ensemble of N particles. Traditional methods,
1192 >    by contrast, require an amount of work proportional to N-2. AS a
1193 >    result, large-scale simulations can be carried out using only modest
1194 >    computer resources. In combination with supercomputers, it is possible
1195 >    to address questions that were previously out of reach. Problems
1196 >    from diffusion, gravitation, and wave propagation are considered.},
1197 >  annote = {Pb499 Times Cited:99 Cited References Count:44},
1198 >  issn = {0036-8075},
1199 >  uri = {<Go to ISI>://A1994PB49900031},
1200   }
1201  
1202 < @Article{Ramsden1993,
1203 <  author =   {J.~J. Ramsden},
1204 <  title =    {},
1205 <  journal =      prl,
1206 <  year =     1993,
1207 <  volume =   71,
1208 <  pages =    295
1202 > @ARTICLE{Greengard1987,
1203 >  author = {L. Greengard and V. Rokhlin},
1204 >  title = {A Fast Algorithm for Particle Simulations},
1205 >  journal = {Journal of Computational Physics},
1206 >  year = {1987},
1207 >  volume = {73},
1208 >  pages = {325-348},
1209 >  number = {2},
1210 >  month = {Dec},
1211 >  annote = {L0498 Times Cited:899 Cited References Count:7},
1212 >  issn = {0021-9991},
1213 >  uri = {<Go to ISI>://A1987L049800006},
1214   }
1215  
1216 <
1217 < @Article{Egelhoff1989,
1218 <  author =   {W.~F. Egelhoff and I. Jacob},
1219 <  title =    {},
1220 <  journal =      prl,
1221 <  year =     1989,
1222 <  volume =   62,
1223 <  pages =    921
1216 > @ARTICLE{Hairer1997,
1217 >  author = {E. Hairer and C. Lubich},
1218 >  title = {The life-span of backward error analysis for numerical integrators},
1219 >  journal = {Numerische Mathematik},
1220 >  year = {1997},
1221 >  volume = {76},
1222 >  pages = {441-462},
1223 >  number = {4},
1224 >  month = {Jun},
1225 >  abstract = {Backward error analysis is a useful tool for the study of numerical
1226 >    approximations to ordinary differential equations. The numerical
1227 >    solution is formally interpreted as the exact solution of a perturbed
1228 >    differential equation, given as a formal and usually divergent series
1229 >    in powers of the step size. For a rigorous analysis, this series
1230 >    has to be truncated. In this article we study the influence of this
1231 >    truncation to the difference between the numerical solution and
1232 >    the exact solution of the perturbed differential equation. Results
1233 >    on the long-time behaviour of numerical solutions are obtained in
1234 >    this way. We present applications to the numerical phase portrait
1235 >    near hyperbolic equilibrium points, to asymptotically stable periodic
1236 >    orbits and Hopf bifurcation, and to energy conservation and approximation
1237 >    of invariant tori in Hamiltonian systems.},
1238 >  annote = {Xj488 Times Cited:50 Cited References Count:19},
1239 >  issn = {0029-599X},
1240 >  uri = {<Go to ISI>://A1997XJ48800002},
1241   }
1242  
1243 <
1244 < @Article{Viot1992a,
1245 <  author =   {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1246 <  title =    {RANDOM SEQUENTIAL ADSORPTION OF ANISOTROPIC
1247 <                  PARTICLES 1. JAMMING LIMIT AND ASYMPTOTIC-BEHAVIOR},
1248 <  journal =      jpc,
1249 <  year =     1992,
1250 <  volume =   97,
1251 <  pages =    {5212-5218}
1243 > @ARTICLE{Hao1993,
1244 >  author = {M. H. Hao and M. R. Pincus and S. Rackovsky and H. A. Scheraga},
1245 >  title = {Unfolding and Refolding of the Native Structure of Bovine Pancreatic
1246 >    Trypsin-Inhibitor Studied by Computer-Simulations},
1247 >  journal = {Biochemistry},
1248 >  year = {1993},
1249 >  volume = {32},
1250 >  pages = {9614-9631},
1251 >  number = {37},
1252 >  month = {Sep 21},
1253 >  abstract = {A new procedure for studying the folding and unfolding of proteins,
1254 >    with an application to bovine pancreatic trypsin inhibitor (BPTI),
1255 >    is reported. The unfolding and refolding of the native structure
1256 >    of the protein are characterized by the dimensions of the protein,
1257 >    expressed in terms of the three principal radii of the structure
1258 >    considered as an ellipsoid. A dynamic equation, describing the variations
1259 >    of the principal radii on the unfolding path, and a numerical procedure
1260 >    to solve this equation are proposed. Expanded and distorted conformations
1261 >    are refolded to the native structure by a dimensional-constraint
1262 >    energy minimization procedure. A unique and reproducible unfolding
1263 >    pathway for an intermediate of BPTI lacking the [30,51] disulfide
1264 >    bond is obtained. The resulting unfolded conformations are extended;
1265 >    they contain near-native local structure, but their longest principal
1266 >    radii are more than 2.5 times greater than that of the native structure.
1267 >    The most interesting finding is that the majority of expanded conformations,
1268 >    generated under various conditions, can be refolded closely to the
1269 >    native structure, as measured by the correct overall chain fold,
1270 >    by the rms deviations from the native structure of only 1.9-3.1
1271 >    angstrom, and by the energy differences of about 10 kcal/mol from
1272 >    the native structure. Introduction of the [30,51] disulfide bond
1273 >    at this stage, followed by minimization, improves the closeness
1274 >    of the refolded structures to the native structure, reducing the
1275 >    rms deviations to 0.9-2.0 angstrom. The unique refolding of these
1276 >    expanded structures over such a large conformational space implies
1277 >    that the folding is strongly dictated by the interactions in the
1278 >    amino acid sequence of BPTI. The simulations indicate that, under
1279 >    conditions that favor a compact structure as mimicked by the volume
1280 >    constraints in our algorithm; the expanded conformations have a
1281 >    strong tendency to move toward the native structure; therefore,
1282 >    they probably would be favorable folding intermediates. The results
1283 >    presented here support a general model for protein folding, i.e.,
1284 >    progressive formation of partially folded structural units, followed
1285 >    by collapse to the compact native structure. The general applicability
1286 >    of the procedure is also discussed.},
1287 >  annote = {Ly294 Times Cited:27 Cited References Count:57},
1288 >  issn = {0006-2960},
1289 >  uri = {<Go to ISI>://A1993LY29400014},
1290   }
1291  
1292 < @Article{Viot1992b,
1293 <  author =   {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1294 <  title =    {SATURATION COVERAGE IN RANDOM SEQUENTIAL ADSORPTION
1295 <                  OF VERY ELONGATED PARTICLES},
1296 <  journal =      {Physica A},
1297 <  year =     1992,
1298 <  volume =   191,
1299 <  pages =    {248-252}
1292 > @ARTICLE{Hinsen2000,
1293 >  author = {K. Hinsen and A. J. Petrescu and S. Dellerue and M. C. Bellissent-Funel
1294 >    and G. R. Kneller},
1295 >  title = {Harmonicity in slow protein dynamics},
1296 >  journal = {Chemical Physics},
1297 >  year = {2000},
1298 >  volume = {261},
1299 >  pages = {25-37},
1300 >  number = {1-2},
1301 >  month = {Nov 1},
1302 >  abstract = {The slow dynamics of proteins around its native folded state is usually
1303 >    described by diffusion in a strongly anharmonic potential. In this
1304 >    paper, we try to understand the form and origin of the anharmonicities,
1305 >    with the principal aim of gaining a better understanding of the
1306 >    principal motion types, but also in order to develop more efficient
1307 >    numerical methods for simulating neutron scattering spectra of large
1308 >    proteins. First, we decompose a molecular dynamics (MD) trajectory
1309 >    of 1.5 ns for a C-phycocyanin dimer surrounded by a layer of water
1310 >    into three contributions that we expect to be independent: the global
1311 >    motion of the residues, the rigid-body motion of the sidechains
1312 >    relative to the backbone, and the internal deformations of the sidechains.
1313 >    We show that they are indeed almost independent by verifying the
1314 >    factorization of the incoherent intermediate scattering function.
1315 >    Then, we show that the global residue motions, which include all
1316 >    large-scale backbone motions, can be reproduced by a simple harmonic
1317 >    model which contains two contributions: a short-time vibrational
1318 >    term, described by a standard normal mode calculation in a local
1319 >    minimum, and a long-time diffusive term, described by Brownian motion
1320 >    in an effective harmonic potential. The potential and the friction
1321 >    constants were fitted to the MD data. The major anharmonic contribution
1322 >    to the incoherent intermediate scattering function comes from the
1323 >    rigid-body diffusion of the sidechains. This model can be used to
1324 >    calculate scattering functions for large proteins and for long-time
1325 >    scales very efficiently, and thus provides a useful complement to
1326 >    MD simulations, which are best suited for detailed studies on smaller
1327 >    systems or for shorter time scales. (C) 2000 Elsevier Science B.V.
1328 >    All rights reserved.},
1329 >  annote = {Sp. Iss. SI 368MT Times Cited:16 Cited References Count:31},
1330 >  issn = {0301-0104},
1331 >  uri = {<Go to ISI>://000090121700003},
1332   }
1333  
1334 < @Article{Dobson1987,
1335 <  author =       {B.~W. Dobson},
1336 <  title =        {},
1337 <  journal =      prb,
1338 <  year =         1987,
1339 <  volume =       36,
1340 <  pages =        1068
1334 > @ARTICLE{Ho1992,
1335 >  author = {C. Ho and C. D. Stubbs},
1336 >  title = {Hydration at the Membrane Protein-Lipid Interface},
1337 >  journal = {Biophysical Journal},
1338 >  year = {1992},
1339 >  volume = {63},
1340 >  pages = {897-902},
1341 >  number = {4},
1342 >  month = {Oct},
1343 >  abstract = {Evidence has been found for the existence water at the protein-lipid
1344 >    hydrophobic interface ot the membrane proteins, gramicidin and apocytochrome
1345 >    C, using two related fluorescence spectroscopic approaches. The
1346 >    first approach exploited the fact that the presence of water in
1347 >    the excited state solvent cage of a fluorophore increases the rate
1348 >    of decay. For 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5-hexatrienyl)
1349 >    phenyl]ethyl]carbonyl]-3-sn-PC (DPH-PC), where the fluorophores
1350 >    are located in the hydrophobic core of the lipid bilayer, the introduction
1351 >    of gramicidin reduced the fluorescence lifetime, indicative of an
1352 >    increased presence of water in the bilayer. Since a high protein:lipid
1353 >    ratio was used, the fluorophores were forced to be adjacent to the
1354 >    protein hydrophobic surface, hence the presence of water in this
1355 >    region could be inferred. Cholesterol is known to reduce the water
1356 >    content of lipid bilayers and this effect was maintained at the
1357 >    protein-lipid interface with both gramicidin and apocytochrome C,
1358 >    again suggesting hydration in this region. The second approach was
1359 >    to use the fluorescence enhancement induced by exchanging deuterium
1360 >    oxide (D2O) for H2O. Both the fluorescence intensities of trimethylammonium-DPH,
1361 >    located in the lipid head group region, and of the gramicidin intrinsic
1362 >    tryptophans were greater in a D2O buffer compared with H2O, showing
1363 >    that the fluorophores were exposed to water in the bilayer at the
1364 >    protein-lipid interface. In the presence of cholesterol the fluorescence
1365 >    intensity ratio of D2O to H2O decreased, indicating a removal of
1366 >    water by the cholesterol, in keeping with the lifetime data. Altered
1367 >    hydration at the protein-lipid interface could affect conformation,
1368 >    thereby offering a new route by which membrane protein functioning
1369 >    may be modified.},
1370 >  annote = {Ju251 Times Cited:55 Cited References Count:44},
1371 >  issn = {0006-3495},
1372 >  uri = {<Go to ISI>://A1992JU25100002},
1373   }
1374  
1375 < @Article{Boyer1995,
1376 <  author =       {D. Boyer and P. Viot and G. Tarjus and J. Talbot},
1377 <  title =        {PERCUS-$\mbox{Y}$EVICK-LIKE INTERGRAL EQUATION FOR RANDOM SEQUENTIAL
1378 <                  ADSORPTION},
1379 <  journal =      jcp,
1380 <  year =         1995,
1423 <  volume =       103,
1424 <  pages =        1607
1375 > @BOOK{Hockney1981,
1376 >  title = {Computer Simulation Using Particles},
1377 >  publisher = {McGraw-Hill},
1378 >  year = {1981},
1379 >  author = {R.W. Hockney and J.W. Eastwood},
1380 >  address = {New York},
1381   }
1382  
1383 < @Article{Viot1992c,
1384 <  author =       {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1385 <  title =        {SATURATION COVERAGE OF HIGHLY ELONGATED ANISOTROPIC
1386 <                  PARTICLES},
1387 <  journal =      {Physica A},
1388 <  year =         1992,
1389 <  volume =       191,
1390 <  pages =        {248-252}
1383 > @ARTICLE{Huh2004,
1384 >  author = {Y. Huh and N. M. Cann},
1385 >  title = {Discrimination in isotropic, nematic, and smectic phases of chiral
1386 >    calamitic molecules: A computer simulation study},
1387 >  journal = {Journal of Chemical Physics},
1388 >  year = {2004},
1389 >  volume = {121},
1390 >  pages = {10299-10308},
1391 >  number = {20},
1392 >  month = {Nov 22},
1393 >  abstract = {Racemic fluids of chiral calamitic molecules are investigated with
1394 >    molecular dynamics simulations. In particular, the phase behavior
1395 >    as a function of density is examined for eight racemates. The relationship
1396 >    between chiral discrimination and orientational order in the phase
1397 >    is explored. We find that the transition from the isotropic phase
1398 >    to a liquid crystal phase is accompanied by an increase in chiral
1399 >    discrimination, as measured by differences in radial distributions.
1400 >    Among ordered phases, discrimination is largest for smectic phases
1401 >    with a significant preference for heterochiral contact within the
1402 >    layers. (C) 2004 American Institute of Physics.},
1403 >  annote = {870FJ Times Cited:0 Cited References Count:63},
1404 >  issn = {0021-9606},
1405 >  uri = {<Go to ISI>://000225042700059},
1406   }
1407  
1408 < @Article{Ricci1994,
1409 <  author =       {S.~M. Ricci and J. Talbot and G. Tarjus and P. Viot},
1410 <  title =        {A STRUCTURAL COMPARISON OF RANDOM SEQUENTIAL ADSORPTION AND
1411 <                  EQUILIBRIUM CONFIGURATIONS OF SPHEROCYLINDERS},
1412 <  journal =      jcp,
1413 <  year =         1994,
1414 <  volume =       101,
1415 <  pages =        9164
1408 > @ARTICLE{Izaguirre2001,
1409 >  author = {J. A. Izaguirre and D. P. Catarello and J. M. Wozniak and R. D. Skeel},
1410 >  title = {Langevin stabilization of molecular dynamics},
1411 >  journal = {Journal of Chemical Physics},
1412 >  year = {2001},
1413 >  volume = {114},
1414 >  pages = {2090-2098},
1415 >  number = {5},
1416 >  month = {Feb 1},
1417 >  abstract = {In this paper we show the possibility of using very mild stochastic
1418 >    damping to stabilize long time step integrators for Newtonian molecular
1419 >    dynamics. More specifically, stable and accurate integrations are
1420 >    obtained for damping coefficients that are only a few percent of
1421 >    the natural decay rate of processes of interest, such as the velocity
1422 >    autocorrelation function. Two new multiple time stepping integrators,
1423 >    Langevin Molly (LM) and Brunger-Brooks-Karplus-Molly (BBK-M), are
1424 >    introduced in this paper. Both use the mollified impulse method
1425 >    for the Newtonian term. LM uses a discretization of the Langevin
1426 >    equation that is exact for the constant force, and BBK-M uses the
1427 >    popular Brunger-Brooks-Karplus integrator (BBK). These integrators,
1428 >    along with an extrapolative method called LN, are evaluated across
1429 >    a wide range of damping coefficient values. When large damping coefficients
1430 >    are used, as one would for the implicit modeling of solvent molecules,
1431 >    the method LN is superior, with LM closely following. However, with
1432 >    mild damping of 0.2 ps(-1), LM produces the best results, allowing
1433 >    long time steps of 14 fs in simulations containing explicitly modeled
1434 >    flexible water. With BBK-M and the same damping coefficient, time
1435 >    steps of 12 fs are possible for the same system. Similar results
1436 >    are obtained for a solvated protein-DNA simulation of estrogen receptor
1437 >    ER with estrogen response element ERE. A parallel version of BBK-M
1438 >    runs nearly three times faster than the Verlet-I/r-RESPA (reversible
1439 >    reference system propagator algorithm) when using the largest stable
1440 >    time step on each one, and it also parallelizes well. The computation
1441 >    of diffusion coefficients for flexible water and ER/ERE shows that
1442 >    when mild damping of up to 0.2 ps-1 is used the dynamics are not
1443 >    significantly distorted. (C) 2001 American Institute of Physics.},
1444 >  annote = {397CQ Times Cited:14 Cited References Count:36},
1445 >  issn = {0021-9606},
1446 >  uri = {<Go to ISI>://000166676100020},
1447   }
1448  
1449 < @Article{Semmler1998,
1450 <  author =   {M. Semmler and E.~K. Mann and J. Ricka and M. Borkovec},
1451 <  title =    {Diffusional Deposition of Charged Latex Particles on
1452 <                  Water-Solid Interfaces at Low Ionic Strength},
1453 <  journal =      {Langmuir},
1454 <  year =     1998,
1455 <  volume =   14,
1454 <  pages =    {5127-5132}
1449 > @ARTICLE{Torre1977,
1450 >  author = {Jose Garcia De La Torre, V.A. Bloomfield},
1451 >  title = {Hydrodynamic properties of macromolecular complexes. I. Translation},
1452 >  journal = {Biopolymers},
1453 >  year = {1977},
1454 >  volume = {16},
1455 >  pages = {1747-1763},
1456   }
1457  
1458 < @Article{Solomon1986,
1459 <  author =   {H. Solomon and H. Weiner},
1460 <  title =    {A REVIEW OF THE PACKING PROBLEM},
1461 <  journal =      {Comm. Statistics A},
1462 <  year =     1986,
1463 <  volume =   15,
1464 <  pages =    {2571-2607}
1458 > @ARTICLE{Kane2000,
1459 >  author = {C. Kane and J. E. Marsden and M. Ortiz and M. West},
1460 >  title = {Variational integrators and the Newmark algorithm for conservative
1461 >    and dissipative mechanical systems},
1462 >  journal = {International Journal for Numerical Methods in Engineering},
1463 >  year = {2000},
1464 >  volume = {49},
1465 >  pages = {1295-1325},
1466 >  number = {10},
1467 >  month = {Dec 10},
1468 >  abstract = {The purpose of this work is twofold. First, we demonstrate analytically
1469 >    that the classical Newmark family as well as related integration
1470 >    algorithms are variational in the sense of the Veselov formulation
1471 >    of discrete mechanics. Such variational algorithms are well known
1472 >    to be symplectic and momentum preserving and to often have excellent
1473 >    global energy behaviour. This analytical result is verified through
1474 >    numerical examples and is believed to be one of the primary reasons
1475 >    that this class of algorithms performs so well. Second, we develop
1476 >    algorithms for mechanical systems with forcing, and in particular,
1477 >    for dissipative systems. In this case, we develop integrators that
1478 >    are based on a discretization of the Lagrange d'Alembert principle
1479 >    as well as on a variational formulation of dissipation. It is demonstrated
1480 >    that these types of structured integrators have good numerical behaviour
1481 >    in terms of obtaining the correct amounts by which the energy changes
1482 >    over the integration run. Copyright (C) 2000 John Wiley & Sons,
1483 >    Ltd.},
1484 >  annote = {373CJ Times Cited:30 Cited References Count:41},
1485 >  issn = {0029-5981},
1486 >  uri = {<Go to ISI>://000165270600004},
1487   }
1488  
1489 < @Article{Bonnier1993,
1490 <  author =   {B. Bonnier and M. Hontebeyrie and C. Meyers},
1491 <  title =    {ON THE RANDOM FILLING OF R(D) BY NONOVERLAPPING
1492 <                  D-DIMENSIONAL CUBES},
1493 <  journal =      {Physica A},
1494 <  year =     1993,
1495 <  volume =   198,
1496 <  pages =    {1-10}
1489 > @ARTICLE{Klimov1997,
1490 >  author = {D. K. Klimov and D. Thirumalai},
1491 >  title = {Viscosity dependence of the folding rates of proteins},
1492 >  journal = {Physical Review Letters},
1493 >  year = {1997},
1494 >  volume = {79},
1495 >  pages = {317-320},
1496 >  number = {2},
1497 >  month = {Jul 14},
1498 >  abstract = {The viscosity (eta) dependence of the folding rates for four sequences
1499 >    (the native state of three sequences is a beta sheet, while the
1500 >    fourth forms an alpha helix) is calculated for off-lattice models
1501 >    of proteins. Assuming that the dynamics is given by the Langevin
1502 >    equation, we show that the folding rates increase linearly at low
1503 >    viscosities eta, decrease as 1/eta at large eta, and have a maximum
1504 >    at intermediate values. The Kramers' theory of barrier crossing
1505 >    provides a quantitative fit of the numerical results. By mapping
1506 >    the simulation results to real proteins we estimate that for optimized
1507 >    sequences the time scale for forming a four turn alpha-helix topology
1508 >    is about 500 ns, whereas for beta sheet it is about 10 mu s.},
1509 >  annote = {Xk293 Times Cited:77 Cited References Count:17},
1510 >  issn = {0031-9007},
1511 >  uri = {<Go to ISI>://A1997XK29300035},
1512   }
1513  
1514 < @Book{Frenkel1996,
1515 <  author =   {D. Frenkel and B. Smit},
1516 <  title =    {Understanding Molecular Simulation : From Algorithms
1517 <                  to Applications},
1518 <  publisher =    {Academic Press},
1519 <  year =     1996,
1520 <  address =  {New York}
1521 <
1522 <
1523 < }
1524 <
1525 < @Article{Dullweber1997,
1526 <  author =   {A. Dullweber and B. Leimkuhler and R. McLachlan},
1527 <  title =    {Symplectic splitting methods for rigid body molecular
1528 <                  dynamics},
1529 <  journal =      jcp,
1530 <  year =     1997,
1531 <  volume =   107,
1532 <  number =   15,
1533 <  pages =    {5840-5851}
1534 < }
1535 <
1536 < @Article{Siepmann1998,
1537 <  author =   {M. Martin and J.~I. Siepmann},
1538 <  title =    {Transferable Potentials for Phase Equilibria. 1. United-Atom
1539 <                  Description of n-Alkanes},
1540 <  journal =      jpcB,
1541 <  year =     1998,
1542 <  volume =   102,
1543 <  pages =    {2569-2577}
1544 < }
1545 <
1508 < @Article{Marrink01,
1509 <  author =   {S.~J. Marrink and E. Lindahl and O. Edholm and A.~E. Mark},
1510 <  title =    {Simulations of the Spontaneous Aggregation of Phospholipids
1511 <                  into Bilayers},
1512 <  journal =      jacs,
1513 <  year =     2001,
1514 <  volume =   123,
1515 <  pages =    {8638-8639}
1514 > @ARTICLE{Kol1997,
1515 >  author = {A. Kol and B. B. Laird and B. J. Leimkuhler},
1516 >  title = {A symplectic method for rigid-body molecular simulation},
1517 >  journal = {Journal of Chemical Physics},
1518 >  year = {1997},
1519 >  volume = {107},
1520 >  pages = {2580-2588},
1521 >  number = {7},
1522 >  month = {Aug 15},
1523 >  abstract = {Rigid-body molecular dynamics simulations typically are performed
1524 >    in a quaternion representation. The nonseparable form of the Hamiltonian
1525 >    in quaternions prevents the use of a standard leapfrog (Verlet)
1526 >    integrator, so nonsymplectic Runge-Kutta, multistep, or extrapolation
1527 >    methods are generally used, This is unfortunate since symplectic
1528 >    methods like Verlet exhibit superior energy conservation in long-time
1529 >    integrations. In this article, we describe an alternative method,
1530 >    which we call RSHAKE (for rotation-SHAKE), in which the entire rotation
1531 >    matrix is evolved (using the scheme of McLachlan and Scovel [J.
1532 >    Nonlin. Sci, 16 233 (1995)]) in tandem with the particle positions.
1533 >    We employ a fast approximate Newton solver to preserve the orthogonality
1534 >    of the rotation matrix. We test our method on a system of soft-sphere
1535 >    dipoles and compare with quaternion evolution using a 4th-order
1536 >    predictor-corrector integrator, Although the short-time error of
1537 >    the quaternion algorithm is smaller for fixed time step than that
1538 >    for RSHAKE, the quaternion scheme exhibits an energy drift which
1539 >    is not observed in simulations with RSHAKE, hence a fixed energy
1540 >    tolerance can be achieved by using a larger time step, The superiority
1541 >    of RSHAKE increases with system size. (C) 1997 American Institute
1542 >    of Physics.},
1543 >  annote = {Xq332 Times Cited:11 Cited References Count:18},
1544 >  issn = {0021-9606},
1545 >  uri = {<Go to ISI>://A1997XQ33200046},
1546   }
1547  
1548 < @Article{liu96:new_model,
1549 <  author =   {Y. Liu and T. Ichiye},
1550 <  title =    {Soft sticky dipole potential for liquid water: a new model},
1551 <  journal =      jpc,
1552 <  year =     1996,
1553 <  volume =   100,
1554 <  pages =    {2723-2730}
1548 > @ARTICLE{Lansac2001,
1549 >  author = {Y. Lansac and M. A. Glaser and N. A. Clark},
1550 >  title = {Microscopic structure and dynamics of a partial bilayer smectic liquid
1551 >    crystal},
1552 >  journal = {Physical Review E},
1553 >  year = {2001},
1554 >  volume = {6405},
1555 >  pages = {-},
1556 >  number = {5},
1557 >  month = {Nov},
1558 >  abstract = {Cyanobiphenyls (nCB's) represent a useful and intensively studied
1559 >    class of mesogens. Many of the peculiar properties of nCB's (e.g.,
1560 >    the occurence of the partial bilayer smectic-A(d) phase) are thought
1561 >    to be a manifestation of short-range antiparallel association of
1562 >    neighboring molecules, resulting from strong dipole-dipole interactions
1563 >    between cyano groups. To test and extend existing models of microscopic
1564 >    ordering in nCB's, we carry out large-scale atomistic simulation
1565 >    studies of the microscopic structure and dynamics of the Sm-A(d)
1566 >    phase of 4-octyl-4'-cyanobiphenyl (8CB). We compute a variety of
1567 >    thermodynamic, structural, and dynamical properties for this material,
1568 >    and make a detailed comparison of our results with experimental
1569 >    measurements in order to validate our molecular model. Semiquantitative
1570 >    agreement with experiment is found: the smectic layer spacing and
1571 >    mass density are well reproduced, translational diffusion constants
1572 >    are similar to experiment, but the orientational ordering of alkyl
1573 >    chains is overestimated. This simulation provides a detailed picture
1574 >    of molecular conformation, smectic layer structure, and intermolecular
1575 >    correlations in Sm-A(d) 8CB, and demonstrates that pronounced short-range
1576 >    antiparallel association of molecules arising from dipole-dipole
1577 >    interactions plays a dominant role in determining the molecular-scale
1578 >    structure of 8CB.},
1579 >  annote = {Part 1 496QF Times Cited:10 Cited References Count:60},
1580 >  issn = {1063-651X},
1581 >  uri = {<Go to ISI>://000172406900063},
1582   }
1583  
1584 < @Article{liu96:monte_carlo,
1585 <  author =   {Y. Liu and T. Ichiye},
1586 <  title =    {The static dielectric constant of the soft sticky dipole model of liquid water: $\mbox{Monte Carlo}$ simulation},
1587 <  journal =      {Chemical Physics Letters},
1588 <  year =     1996,
1589 <  volume =   256,
1590 <  pages =    {334-340}
1584 > @ARTICLE{Lansac2003,
1585 >  author = {Y. Lansac and P. K. Maiti and N. A. Clark and M. A. Glaser},
1586 >  title = {Phase behavior of bent-core molecules},
1587 >  journal = {Physical Review E},
1588 >  year = {2003},
1589 >  volume = {67},
1590 >  pages = {-},
1591 >  number = {1},
1592 >  month = {Jan},
1593 >  abstract = {Recently, a new class of smectic liquid crystal phases characterized
1594 >    by the spontaneous formation of macroscopic chiral domains from
1595 >    achiral bent-core molecules has been discovered. We have carried
1596 >    out Monte Carlo simulations of a minimal hard spherocylinder dimer
1597 >    model to investigate the role of excluded volume interactions in
1598 >    determining the phase behavior of bent-core materials and to probe
1599 >    the molecular origins of polar and chiral symmetry breaking. We
1600 >    present the phase diagram of hard spherocylinder dimers of length-diameter
1601 >    ratio of 5 as a function of pressure or density and dimer opening
1602 >    angle psi. With decreasing psi, a transition from a nonpolar to
1603 >    a polar smectic A phase is observed near psi=167degrees, and the
1604 >    nematic phase becomes thermodynamically unstable for psi<135degrees.
1605 >    Free energy calculations indicate that the antipolar smectic A (SmAP(A))
1606 >    phase is more stable than the polar smectic A phase (SmAP(F)). No
1607 >    chiral smectic or biaxial nematic phases were found.},
1608 >  annote = {Part 1 646CM Times Cited:15 Cited References Count:38},
1609 >  issn = {1063-651X},
1610 >  uri = {<Go to ISI>://000181017300042},
1611   }
1612  
1613 < @Article{chandra99:ssd_md,
1614 <  author =   {A. Chandra and T. Ichiye},
1615 <  title =    {Dynamical properties of the soft sticky dipole model of water: Molecular dynamics simulation},
1616 <  journal =      {Journal of Chemical Physics},
1617 <  year =     1999,
1618 <  volume =   111,
1619 <  number =   6,
1543 <  pages =    {2701-2709}
1613 > @BOOK{Leach2001,
1614 >  title = {Molecular Modeling: Principles and Applications},
1615 >  publisher = {Pearson Educated Limited},
1616 >  year = {2001},
1617 >  author = {A. Leach},
1618 >  address = {Harlow, England},
1619 >  edition = {2nd},
1620   }
1621  
1622 < @Book{allen87:csl,
1623 <  author =   {M.~P. Allen and D.~J. Tildesley},
1624 <  title =    {Computer Simulations of Liquids},
1625 <  publisher =    {Oxford University Press},
1626 <  year =     1987,
1627 <  address =  {New York}
1622 > @ARTICLE{Leimkuhler1999,
1623 >  author = {B. Leimkuhler},
1624 >  title = {Reversible adaptive regularization: perturbed Kepler motion and classical
1625 >    atomic trajectories},
1626 >  journal = {Philosophical Transactions of the Royal Society of London Series
1627 >    a-Mathematical Physical and Engineering Sciences},
1628 >  year = {1999},
1629 >  volume = {357},
1630 >  pages = {1101-1133},
1631 >  number = {1754},
1632 >  month = {Apr 15},
1633 >  abstract = {Reversible and adaptive integration methods based on Kustaanheimo-Stiefel
1634 >    regularization and modified Sundman transformations are applied
1635 >    to simulate general perturbed Kepler motion and to compute classical
1636 >    trajectories of atomic systems (e.g. Rydberg atoms). The new family
1637 >    of reversible adaptive regularization methods also conserves angular
1638 >    momentum and exhibits superior energy conservation and numerical
1639 >    stability in long-time integrations. The schemes are appropriate
1640 >    for scattering, for astronomical calculations of escape time and
1641 >    long-term stability, and for classical and semiclassical studies
1642 >    of atomic dynamics. The components of an algorithm for trajectory
1643 >    calculations are described. Numerical experiments illustrate the
1644 >    effectiveness of the reversible approach.},
1645 >  annote = {199EE Times Cited:11 Cited References Count:48},
1646 >  issn = {1364-503X},
1647 >  uri = {<Go to ISI>://000080466800007},
1648   }
1649  
1650 < @Book{leach01:mm,
1651 <  author =   {A. Leach},
1652 <  title =    {Molecular Modeling: Principles and Applications},
1653 <  publisher =    {Pearson Educated Limited},
1654 <  year =     2001,
1655 <  address =  {Harlow, England},
1560 <  edition =  {2nd}
1650 > @BOOK{Leimkuhler2004,
1651 >  title = {Simulating Hamiltonian Dynamics},
1652 >  publisher = {Cambridge University Press},
1653 >  year = {2004},
1654 >  author = {B. Leimkuhler and S. Reich},
1655 >  address = {Cambridge},
1656   }
1657  
1658 <
1659 < @Article{katsaras00,
1660 <  author =   {J. Katsaras and S. Tristram-Nagle and Y. Liu and R.~L. Headrick and E. Fontes and P.~C. Mason and J.~F. Nagle},
1661 <  title =    {Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples},
1662 <  journal =      {Physical Review E},
1663 <  year =     2000,
1664 <  volume =   61,
1665 <  number =   5,
1666 <  pages =    {5668-5677}
1658 > @ARTICLE{Levelut1981,
1659 >  author = {A. M. Levelut and R. J. Tarento and F. Hardouin and M. F. Achard
1660 >    and G. Sigaud},
1661 >  title = {Number of Sa Phases},
1662 >  journal = {Physical Review A},
1663 >  year = {1981},
1664 >  volume = {24},
1665 >  pages = {2180-2186},
1666 >  number = {4},
1667 >  annote = {Ml751 Times Cited:96 Cited References Count:16},
1668 >  issn = {1050-2947},
1669 >  uri = {<Go to ISI>://A1981ML75100057},
1670   }
1671  
1672 < @Article{sengupta00,
1673 <  author =   {K. Sengupta and V.~A. Raghunathan and J. Katsaras},
1674 <  title =    {Novel structural Features of the ripple phase of phospholipids},
1675 <  journal =      {Europhysics Letters},
1676 <  year =     2000,
1677 <  volume =   49,
1678 <  number =   6,
1679 <  pages =    {722-728}
1672 > @ARTICLE{Lieb1982,
1673 >  author = {W. R. Lieb and M. Kovalycsik and R. Mendelsohn},
1674 >  title = {Do Clinical-Levels of General-Anesthetics Affect Lipid Bilayers -
1675 >    Evidence from Raman-Scattering},
1676 >  journal = {Biochimica Et Biophysica Acta},
1677 >  year = {1982},
1678 >  volume = {688},
1679 >  pages = {388-398},
1680 >  number = {2},
1681 >  annote = {Nu461 Times Cited:40 Cited References Count:28},
1682 >  issn = {0006-3002},
1683 >  uri = {<Go to ISI>://A1982NU46100012},
1684   }
1685  
1686 < @Article{venable00,
1687 <  author =   {R.~M. Venable and B.~R. Brooks and R.~W. Pastor},
1688 <  title =    {Molecular dynamics simulations of gel ($L_{\beta I}$) phase lipid bilayers in constant pressure and constant surface area ensembles},
1689 <  journal =      jcp,
1690 <  year =     2000,
1691 <  volume =   112,
1692 <  number =   10,
1693 <  pages =    {4822-4832}
1686 > @ARTICLE{Link1997,
1687 >  author = {D. R. Link and G. Natale and R. Shao and J. E. Maclennan and N. A.
1688 >    Clark and E. Korblova and D. M. Walba},
1689 >  title = {Spontaneous formation of macroscopic chiral domains in a fluid smectic
1690 >    phase of achiral molecules},
1691 >  journal = {Science},
1692 >  year = {1997},
1693 >  volume = {278},
1694 >  pages = {1924-1927},
1695 >  number = {5345},
1696 >  month = {Dec 12},
1697 >  abstract = {A smectic liquid-crystal phase made from achiral molecules with bent
1698 >    cores was found to have fluid layers that exhibit two spontaneous
1699 >    symmetry-breaking instabilities: polar molecular orientational ordering
1700 >    about the layer normal and molecular tilt. These instabilities combine
1701 >    to form a chiral layer structure with a handedness that depends
1702 >    on the sign of the tilt. The bulk states are either antiferroelectric-racemic,
1703 >    with the layer polar direction and handedness alternating in sign
1704 >    from layer to layer, or antiferroelectric-chiral, which is of uniform
1705 >    layer handedness. Both states exhibit an electric field-induced
1706 >    transition from antiferroelectric to ferroelectric.},
1707 >  annote = {Yl002 Times Cited:407 Cited References Count:25},
1708 >  issn = {0036-8075},
1709 >  uri = {<Go to ISI>://A1997YL00200028},
1710   }
1711  
1712 < @Article{lindahl00,
1713 <  author =   {E. Lindahl and O. Edholm},
1714 <  title =    {Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations},
1715 <  journal =      {Biophysical Journal},
1716 <  year =     2000,
1717 <  volume =   79,
1718 <  pages =    {426-433},
1719 <  month =    {July}
1720 < }
1721 <
1722 <
1723 < @Article{saiz02,
1606 <  author =   {L. Saiz and M. Klein},
1607 <  title =    {Electrostatic interactions in a neutral model phospholipid bilayer by molecular dynamics simulations},
1608 <  journal =      jcp,
1609 <  year =     2002,
1610 <  volume =   116,
1611 <  number =   7,
1612 <  pages =    {3052-3057}
1712 > @ARTICLE{Liwo2005,
1713 >  author = {A. Liwo and M. Khalili and H. A. Scheraga},
1714 >  title = {Ab initio simulations of protein folding pathways by molecular dynamics
1715 >    with the united-residue (UNRES) model of polypeptide chains},
1716 >  journal = {Febs Journal},
1717 >  year = {2005},
1718 >  volume = {272},
1719 >  pages = {359-360},
1720 >  month = {Jul},
1721 >  annote = {Suppl. 1 005MG Times Cited:0 Cited References Count:0},
1722 >  issn = {1742-464X},
1723 >  uri = {<Go to ISI>://000234826102043},
1724   }
1725  
1726 < @Article{stevens95,
1727 <  author =   {M.~J. Stevens and G.~S. Grest},
1728 <  title =    {Phase coexistence of a Stockmayer fluid in an aplied field},
1729 <  journal =      {Physical Review E},
1730 <  year =     1995,
1731 <  volume =   51,
1732 <  number =   6,
1733 <  pages =    {5976-5983}
1726 > @ARTICLE{Luty1994,
1727 >  author = {B. A. Luty and M. E. Davis and I. G. Tironi and W. F. Vangunsteren},
1728 >  title = {A Comparison of Particle-Particle, Particle-Mesh and Ewald Methods
1729 >    for Calculating Electrostatic Interactions in Periodic Molecular-Systems},
1730 >  journal = {Molecular Simulation},
1731 >  year = {1994},
1732 >  volume = {14},
1733 >  pages = {11-20},
1734 >  number = {1},
1735 >  abstract = {We compare the Particle-Particle Particle-Mesh (PPPM) and Ewald methods
1736 >    for calculating electrostatic interactions in periodic molecular
1737 >    systems. A brief comparison of the theories shows that the methods
1738 >    are very similar differing mainly in the technique which is used
1739 >    to perform the ''k-space'' or mesh calculation. Because the PPPM
1740 >    utilizes the highly efficient numerical Fast Fourier Transform (FFT)
1741 >    method it requires significantly less computational effort than
1742 >    the Ewald method and scale's almost linearly with system size.},
1743 >  annote = {Qf464 Times Cited:50 Cited References Count:20},
1744 >  issn = {0892-7022},
1745 >  uri = {<Go to ISI>://A1994QF46400002},
1746   }
1747  
1748 < @Article{darden93:pme,
1749 <  author =   {T. Darden and D. York and L. Pedersen},
1750 <  title =    {Particle mesh Ewald: An $N \log N$ method for Ewald sums in large systems},
1751 <  journal =      {Journal of Chemical Physics},
1752 <  year =     1993,
1753 <  volume =   98,
1754 <  number =   12,
1632 <  pages =    {10089-10092}
1748 > @BOOK{Marion1990,
1749 >  title = {Classical Dynamics of Particles and Systems},
1750 >  publisher = {Academic Press},
1751 >  year = {1990},
1752 >  author = {J.~B. Marion},
1753 >  address = {New York},
1754 >  edition = {2rd},
1755   }
1756  
1757 <
1758 <
1759 < @Article{goetz98,
1760 <  author =   {R. Goetz and R. Lipowsky},
1761 <  title =    {Computer simulations of bilayer membranes: Self-assembly and interfacial tension},
1762 <  journal =      {Journal of Chemical Physics},
1763 <  year =     1998,
1764 <  volume =   108,
1765 <  number =   17,
1766 <  pages =    7397
1757 > @ARTICLE{Marsden1998,
1758 >  author = {J. E. Marsden and G. W. Patrick and S. Shkoller},
1759 >  title = {Multisymplectic geometry, variational integrators, and nonlinear
1760 >    PDEs},
1761 >  journal = {Communications in Mathematical Physics},
1762 >  year = {1998},
1763 >  volume = {199},
1764 >  pages = {351-395},
1765 >  number = {2},
1766 >  month = {Dec},
1767 >  abstract = {This paper presents a geometric-variational approach to continuous
1768 >    and discrete mechanics and field theories. Using multisymplectic
1769 >    geometry, we show that the existence of the fundamental geometric
1770 >    structures as well as their preservation along solutions can be
1771 >    obtained directly from the variational principle. In particular,
1772 >    we prove that a unique multisymplectic structure is obtained by
1773 >    taking the derivative of an action function, and use this structure
1774 >    to prove covariant generalizations of conservation of symplecticity
1775 >    and Noether's theorem. Natural discretization schemes for PDEs,
1776 >    which have these important preservation properties, then follow
1777 >    by choosing a discrete action functional. In the case of mechanics,
1778 >    we recover the variational symplectic integrators of Veselov type,
1779 >    while for PDEs we obtain covariant spacetime integrators which conserve
1780 >    the corresponding discrete multisymplectic form as well as the discrete
1781 >    momentum mappings corresponding to symmetries. We show that the
1782 >    usual notion of symplecticity along an infinite-dimensional space
1783 >    of fields can be naturally obtained by making a spacetime split.
1784 >    All of the aspects of our method are demonstrated with a nonlinear
1785 >    sine-Gordon equation, including computational results and a comparison
1786 >    with other discretization schemes.},
1787 >  annote = {154RH Times Cited:88 Cited References Count:36},
1788 >  issn = {0010-3616},
1789 >  uri = {<Go to ISI>://000077902200006},
1790   }
1791  
1792 < @Article{marrink01:undulation,
1793 <  author =   {S.~J. Marrink and A.~E. Mark},
1794 <  title =    {Effect of undulations on surface tension in simulated bilayers},
1795 <  journal =      {Journal of Physical Chemistry B},
1796 <  year =     2001,
1797 <  volume =   105,
1798 <  pages =    {6122-6127}
1792 > @ARTICLE{McLachlan1993,
1793 >  author = {R.~I McLachlan},
1794 >  title = {Explicit Lie-Poisson integration and the Euler equations},
1795 >  journal = {prl},
1796 >  year = {1993},
1797 >  volume = {71},
1798 >  pages = {3043-3046},
1799   }
1800  
1801 < @Article{lindahl00:undulation,
1802 <  author =   {E. Lindahl and O. Edholm},
1803 <  title =    {Mesoscopic undulation and thickness fluctuations in lipid bilayers from molecular dynamics simulation},
1804 <  journal =      {Biophysical Journal},
1805 <  year =     2000,
1806 <  volume =   79,
1807 <  pages =    {426-433}
1801 > @ARTICLE{McLachlan1998a,
1802 >  author = {R. I. McLachlan and G. R. W. Quispel},
1803 >  title = {Generating functions for dynamical systems with symmetries, integrals,
1804 >    and differential invariants},
1805 >  journal = {Physica D},
1806 >  year = {1998},
1807 >  volume = {112},
1808 >  pages = {298-309},
1809 >  number = {1-2},
1810 >  month = {Jan 15},
1811 >  abstract = {We give a survey and some new examples of generating functions for
1812 >    systems with symplectic structure, systems with a first integral,
1813 >    systems that preserve volume, and systems with symmetries and/or
1814 >    time-reversing symmetries. Both ODEs and maps are treated, and we
1815 >    discuss how generating functions may be used in the structure-preserving
1816 >    numerical integration of ODEs with the above properties.},
1817 >  annote = {Yt049 Times Cited:7 Cited References Count:26},
1818 >  issn = {0167-2789},
1819 >  uri = {<Go to ISI>://000071558900021},
1820   }
1821  
1822 < @Article{metropolis:1949,
1823 <  author =   {N. Metropolis and S. Ulam},
1824 <  title =    {The $\mbox{Monte Carlo}$ Method},
1825 <  journal =      {J. Am. Stat. Ass.},
1826 <  year =     1949,
1827 <  volume =   44,
1828 <  pages =    {335-341}
1822 > @ARTICLE{McLachlan1998,
1823 >  author = {R. I. McLachlan and G. R. W. Quispel and G. S. Turner},
1824 >  title = {Numerical integrators that preserve symmetries and reversing symmetries},
1825 >  journal = {Siam Journal on Numerical Analysis},
1826 >  year = {1998},
1827 >  volume = {35},
1828 >  pages = {586-599},
1829 >  number = {2},
1830 >  month = {Apr},
1831 >  abstract = {We consider properties of flows, the relationships between them, and
1832 >    whether numerical integrators can be made to preserve these properties.
1833 >    This is done in the context of automorphisms and antiautomorphisms
1834 >    of a certain group generated by maps associated to vector fields.
1835 >    This new framework unifies several known constructions. We also
1836 >    use the concept of #covariance# of a numerical method with respect
1837 >    to a group of coordinate transformations. The main application is
1838 >    to explore the relationship between spatial symmetries, reversing
1839 >    symmetries, and time symmetry of flows and numerical integrators.},
1840 >  annote = {Zc449 Times Cited:14 Cited References Count:33},
1841 >  issn = {0036-1429},
1842 >  uri = {<Go to ISI>://000072580500010},
1843   }
1844  
1845 < @Article{metropolis:1953,
1846 <  author =   {N. Metropolis and A.~W. Rosenbluth and M.~N. Rosenbluth and A.~H. Teller and E. Teller},
1847 <  title =    {Equation of State Calculations by Fast Computing Machines},
1848 <  journal =      {J. Chem. Phys.},
1849 <  year =     1953,
1850 <  volume =   21,
1851 <  pages =    {1087-1092}
1845 > @ARTICLE{McLachlan2005,
1846 >  author = {R. I. McLachlan and A. Zanna},
1847 >  title = {The discrete Moser-Veselov algorithm for the free rigid body, revisited},
1848 >  journal = {Foundations of Computational Mathematics},
1849 >  year = {2005},
1850 >  volume = {5},
1851 >  pages = {87-123},
1852 >  number = {1},
1853 >  month = {Feb},
1854 >  abstract = {In this paper we revisit the Moser-Veselov description of the free
1855 >    rigid body in body coordinates, which, in the 3 x 3 case, can be
1856 >    implemented as an explicit, second-order, integrable approximation
1857 >    of the continuous solution. By backward error analysis, we study
1858 >    the modified vector field which is integrated exactly by the discrete
1859 >    algorithm. We deduce that the discrete Moser-Veselov (DMV) is well
1860 >    approximated to higher order by time reparametrizations of the continuous
1861 >    equations (modified vector field). We use the modified vector field
1862 >    to scale the initial data of the DMV to improve the order of the
1863 >    approximation and show the equivalence of the DMV and the RATTLE
1864 >    algorithm. Numerical integration with these preprocessed initial
1865 >    data is several orders of magnitude more accurate than the original
1866 >    DMV and RATTLE approach.},
1867 >  annote = {911NS Times Cited:0 Cited References Count:14},
1868 >  issn = {1615-3375},
1869 >  uri = {<Go to ISI>://000228011900003},
1870   }
1871  
1872 < @Article{born:1912,
1873 <  author =   {M. Born and Th. Von~Karman},
1874 <  title =    {Uber Schwingungen in Raumgittern},
1875 <  journal =      {Physik Z.},
1876 <  year =     1912,
1877 <  volume =   13,
1878 <  number =   {297-309}
1872 > @ARTICLE{Memmer2002,
1873 >  author = {R. Memmer},
1874 >  title = {Liquid crystal phases of achiral banana-shaped molecules: a computer
1875 >    simulation study},
1876 >  journal = {Liquid Crystals},
1877 >  year = {2002},
1878 >  volume = {29},
1879 >  pages = {483-496},
1880 >  number = {4},
1881 >  month = {Apr},
1882 >  abstract = {The phase behaviour of achiral banana-shaped molecules was studied
1883 >    by computer simulation. The banana-shaped molecules were described
1884 >    by model intermolecular interactions based on the Gay-Berne potential.
1885 >    The characteristic molecular structure was considered by joining
1886 >    two calamitic Gay-Berne particles through a bond to form a biaxial
1887 >    molecule of point symmetry group C-2v with a suitable bending angle.
1888 >    The dependence on temperature of systems of N=1024 rigid banana-shaped
1889 >    molecules with bending angle phi=140degrees has been studied by
1890 >    means of Monte Carlo simulations in the isobaric-isothermal ensemble
1891 >    (NpT). On cooling an isotropic system, two phase transitions characterized
1892 >    by phase transition enthalpy, entropy and relative volume change
1893 >    have been observed. For the first time by computer simulation of
1894 >    a many-particle system of banana-shaped molecules, at low temperature
1895 >    an untilted smectic phase showing a global phase biaxiality and
1896 >    a spontaneous local polarization in the layers, i.e. a local polar
1897 >    arrangement of the steric dipoles, with an antiferroelectric-like
1898 >    superstructure could be proven, a phase structure which recently
1899 >    has been discovered experimentally. Additionally, at intermediate
1900 >    temperature a nematic-like phase has been proved, whereas close
1901 >    to the transition to the smectic phase hints of a spontaneous achiral
1902 >    symmetry breaking have been determined. Here, in the absence of
1903 >    a layered structure a helical superstructure has been formed. All
1904 >    phases have been characterized by visual representations of selected
1905 >    configurations, scalar and pseudoscalar correlation functions, and
1906 >    order parameters.},
1907 >  annote = {531HT Times Cited:12 Cited References Count:37},
1908 >  issn = {0267-8292},
1909 >  uri = {<Go to ISI>://000174410500001},
1910   }
1911  
1912 < @Book{chandler:1987,
1913 <  author =   {David Chandler},
1914 <  title =    {Introduction to Modern Statistical Mechanics},
1915 <  publisher =    {Oxford University Press},
1916 <  year =     1987
1912 > @ARTICLE{Metropolis1949,
1913 >  author = {N. Metropolis and S. Ulam},
1914 >  title = {The $\mbox{Monte Carlo}$ Method},
1915 >  journal = {J. Am. Stat. Ass.},
1916 >  year = {1949},
1917 >  volume = {44},
1918 >  pages = {335-341},
1919   }
1920  
1921 <
1922 < @Article{pearlman:1995,
1923 <  author =   {David~A. Pearlman and David~A. Case and James~W. Caldwell and Wilson~S. Ross and Thomas~E. Cheatham~III and Steve DeBolt and David Ferguson and George Seibel and Peter Kollman},
1924 <  title =    {{\sc amber}, a package of computer programs for applying molecular mechanics. normal mode analysis, molecular dynamics, and free energy calculations to simulate the structural and energetic properties of molecules},
1925 <  journal =      {Computer Physics Communications},
1926 <  year =     1995,
1927 <  volume =   91,
1928 <  pages =    {1-41}
1921 > @ARTICLE{Mielke2004,
1922 >  author = {S. P. Mielke and W. H. Fink and V. V. Krishnan and N. Gronbech-Jensen
1923 >    and C. J. Benham},
1924 >  title = {Transcription-driven twin supercoiling of a DNA loop: A Brownian
1925 >    dynamics study},
1926 >  journal = {Journal of Chemical Physics},
1927 >  year = {2004},
1928 >  volume = {121},
1929 >  pages = {8104-8112},
1930 >  number = {16},
1931 >  month = {Oct 22},
1932 >  abstract = {The torque generated by RNA polymerase as it tracks along double-stranded
1933 >    DNA can potentially induce long-range structural deformations integral
1934 >    to mechanisms of biological significance in both prokaryotes and
1935 >    eukaryotes. In this paper, we introduce a dynamic computer model
1936 >    for investigating this phenomenon. Duplex DNA is represented as
1937 >    a chain of hydrodynamic beads interacting through potentials of
1938 >    linearly elastic stretching, bending, and twisting, as well as excluded
1939 >    volume. The chain, linear when relaxed, is looped to form two open
1940 >    but topologically constrained subdomains. This permits the dynamic
1941 >    introduction of torsional stress via a centrally applied torque.
1942 >    We simulate by Brownian dynamics the 100 mus response of a 477-base
1943 >    pair B-DNA template to the localized torque generated by the prokaryotic
1944 >    transcription ensemble. Following a sharp rise at early times, the
1945 >    distributed twist assumes a nearly constant value in both subdomains,
1946 >    and a succession of supercoiling deformations occurs as superhelical
1947 >    stress is increasingly partitioned to writhe. The magnitude of writhe
1948 >    surpasses that of twist before also leveling off when the structure
1949 >    reaches mechanical equilibrium with the torsional load. Superhelicity
1950 >    is simultaneously right handed in one subdomain and left handed
1951 >    in the other, as predicted by the #transcription-induced##twin-supercoiled-domain#
1952 >    model [L. F. Liu and J. C. Wang, Proc. Natl. Acad. Sci. U.S.A. 84,
1953 >    7024 (1987)]. The properties of the chain at the onset of writhing
1954 >    agree well with predictions from theory, and the generated stress
1955 >    is ample for driving secondary structural transitions in physiological
1956 >    DNA. (C) 2004 American Institute of Physics.},
1957 >  annote = {861ZF Times Cited:3 Cited References Count:34},
1958 >  issn = {0021-9606},
1959 >  uri = {<Go to ISI>://000224456500064},
1960   }
1961  
1962 < @Book{Goldstein01,
1963 <  author =   {H. Goldstein and C. Poole and J. Safko},
1964 <  title =    {Classical Mechanics},
1965 <  publisher =    {Addison Wesley},
1966 <  year =     2001,
1967 <  address =  {San Francisco},
1968 <  edition =  {3rd}
1962 > @ARTICLE{Naess2001,
1963 >  author = {S. N. Naess and H. M. Adland and A. Mikkelsen and A. Elgsaeter},
1964 >  title = {Brownian dynamics simulation of rigid bodies and segmented polymer
1965 >    chains. Use of Cartesian rotation vectors as the generalized coordinates
1966 >    describing angular orientations},
1967 >  journal = {Physica A},
1968 >  year = {2001},
1969 >  volume = {294},
1970 >  pages = {323-339},
1971 >  number = {3-4},
1972 >  month = {May 15},
1973 >  abstract = {The three Eulerian angles constitute the classical choice of generalized
1974 >    coordinates used to describe the three degrees of rotational freedom
1975 >    of a rigid body, but it has long been known that this choice yields
1976 >    singular equations of motion. The latter is also true when Eulerian
1977 >    angles are used in Brownian dynamics analyses of the angular orientation
1978 >    of single rigid bodies and segmented polymer chains. Starting from
1979 >    kinetic theory we here show that by instead employing the three
1980 >    components of Cartesian rotation vectors as the generalized coordinates
1981 >    describing angular orientation, no singularity appears in the configuration
1982 >    space diffusion equation and the associated Brownian dynamics algorithm.
1983 >    The suitability of Cartesian rotation vectors in Brownian dynamics
1984 >    simulations of segmented polymer chains with spring-like or ball-socket
1985 >    joints is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.},
1986 >  annote = {433TA Times Cited:7 Cited References Count:19},
1987 >  issn = {0378-4371},
1988 >  uri = {<Go to ISI>://000168774800005},
1989   }
1990  
1991 < @Article{Bratko85,
1992 <  author =   {D. Bratko and L. Blum and A. Luzar},
1993 <  title =    {A simple model for the intermolecular potential of water},
1994 <  journal =      jcp,
1995 <  year =     1985,
1996 <  volume =   83,
1997 <  number =   12,
1998 <  pages =    {6367-6370}
1991 > @ARTICLE{Niori1996,
1992 >  author = {T. Niori and T. Sekine and J. Watanabe and T. Furukawa and H. Takezoe},
1993 >  title = {Distinct ferroelectric smectic liquid crystals consisting of banana
1994 >    shaped achiral molecules},
1995 >  journal = {Journal of Materials Chemistry},
1996 >  year = {1996},
1997 >  volume = {6},
1998 >  pages = {1231-1233},
1999 >  number = {7},
2000 >  month = {Jul},
2001 >  abstract = {The synthesis of a banana-shaped molecule is reported and it is found
2002 >    that the smectic phase which it forms is biaxial with the molecules
2003 >    packed in the best,direction into a layer. Because of this characteristic
2004 >    packing, spontaneous polarization appears parallel to the layer
2005 >    and switches on reversal of an applied electric field. This is the
2006 >    first obvious example of ferroelectricity in an achiral smectic
2007 >    phase and is ascribed to the C-2v symmetry of the molecular packing.},
2008 >  annote = {Ux855 Times Cited:447 Cited References Count:18},
2009 >  issn = {0959-9428},
2010 >  uri = {<Go to ISI>://A1996UX85500025},
2011   }
2012  
2013 < @Article{Bratko95,
2014 <  author =   {L. Blum and F. Vericat and D. Bratko},
2015 <  title =    {Towards an analytical model of water: The octupolar model},
2016 <  journal =      jcp,
2017 <  year =     1995,
2018 <  volume =   102,
2019 <  number =   3,
2020 <  pages =    {1461-1462}
2013 > @ARTICLE{Noguchi2002,
2014 >  author = {H. Noguchi and M. Takasu},
2015 >  title = {Structural changes of pulled vesicles: A Brownian dynamics simulation},
2016 >  journal = {Physical Review E},
2017 >  year = {2002},
2018 >  volume = {65},
2019 >  pages = {-},
2020 >  number = {5},
2021 >  month = {may},
2022 >  abstract = {We Studied the structural changes of bilayer vesicles induced by mechanical
2023 >    forces using a Brownian dynamics simulation. Two nanoparticles,
2024 >    which interact repulsively with amphiphilic molecules, are put inside
2025 >    a vesicle. The position of one nanoparticle is fixed, and the other
2026 >    is moved by a constant force as in optical-trapping experiments.
2027 >    First, the pulled vesicle stretches into a pear or tube shape. Then
2028 >    the inner monolayer in the tube-shaped region is deformed, and a
2029 >    cylindrical structure is formed between two vesicles. After stretching
2030 >    the cylindrical region, fission occurs near the moved vesicle. Soon
2031 >    after this the cylindrical region shrinks. The trapping force similar
2032 >    to 100 pN is needed to induce the formation of the cylindrical structure
2033 >    and fission.},
2034 >  annote = {Part 1 568PX Times Cited:5 Cited References Count:39},
2035 >  issn = {1063-651X},
2036 >  uri = {<Go to ISI>://000176552300084},
2037   }
2038  
2039 < @Article{Ichiye03,
2040 <  author =   {M.-L. Tan and J.~T. Fischer and A. Chandra and B.~R. Brooks
2041 <                  and T. Ichiye},
2042 <  title =    {A temperature of maximum density in soft sticky dipole
2043 <                  water},
2044 <  journal =      cpl,
2045 <  year =     2003,
2046 <  volume =   376,
2047 <  pages =    {646-652},
2039 > @ARTICLE{Noguchi2001,
2040 >  author = {H. Noguchi and M. Takasu},
2041 >  title = {Fusion pathways of vesicles: A Brownian dynamics simulation},
2042 >  journal = {Journal of Chemical Physics},
2043 >  year = {2001},
2044 >  volume = {115},
2045 >  pages = {9547-9551},
2046 >  number = {20},
2047 >  month = {Nov 22},
2048 >  abstract = {We studied the fusion dynamics of vesicles using a Brownian dynamics
2049 >    simulation. Amphiphilic molecules spontaneously form vesicles with
2050 >    a bilayer structure. Two vesicles come into contact and form a stalk
2051 >    intermediate, in which a necklike structure only connects the outer
2052 >    monolayers, as predicted by the stalk hypothesis. We have found
2053 >    a new pathway of pore opening from stalks at high temperature: the
2054 >    elliptic stalk bends and contact between the ends of the arc-shaped
2055 >    stalk leads to pore opening. On the other hand, we have clarified
2056 >    that the pore-opening process at low temperature agrees with the
2057 >    modified stalk model: a pore is induced by contact between the inner
2058 >    monolayers inside the stalk. (C) 2001 American Institute of Physics.},
2059 >  annote = {491UW Times Cited:48 Cited References Count:25},
2060 >  issn = {0021-9606},
2061 >  uri = {<Go to ISI>://000172129300049},
2062   }
2063  
2064 <
2065 < @Article{Soper86,
2066 <  author =   {A.~K. Soper and M.~G. Phillips},
2067 <  title =    {A new determination of the structure of water at 298K},
2068 <  journal =      cp,
2069 <  year =     1986,
1755 <  volume =   107,
1756 <  number =   1,
1757 <  pages =    {47-60},
2064 > @BOOK{Olver1986,
2065 >  title = {Applications of Lie groups to differential equatitons},
2066 >  publisher = {Springer},
2067 >  year = {1986},
2068 >  author = {P.J. Olver},
2069 >  address = {New York},
2070   }
2071  
2072 < @Article{plimpton95,
2073 <  author =   {S. Plimpton},
2074 <  title =    {Fast Parallel Algorithms for Short-Range Molecular Dymanics},
2075 <  journal =      {J. Comp. Phys.},
2076 <  year =     1995,
2077 <  volume =   117,
2078 <  pages =    {1-19},
2072 > @ARTICLE{Omelyan1998,
2073 >  author = {I. P. Omelyan},
2074 >  title = {On the numerical integration of motion for rigid polyatomics: The
2075 >    modified quaternion approach},
2076 >  journal = {Computers in Physics},
2077 >  year = {1998},
2078 >  volume = {12},
2079 >  pages = {97-103},
2080 >  number = {1},
2081 >  month = {Jan-Feb},
2082 >  abstract = {A revised version of the quaternion approach for numerical integration
2083 >    of the equations of motion for rigid polyatomic molecules is proposed.
2084 >    The modified approach is based on a formulation of the quaternion
2085 >    dynamics with constraints. This allows one to resolve the rigidity
2086 >    problem rigorously using constraint forces. It is shown that the
2087 >    procedure for preservation of molecular rigidity can be realized
2088 >    particularly simply within the Verlet algorithm in velocity form.
2089 >    We demonstrate that the method presented leads to an improved numerical
2090 >    stability with respect to the usual quaternion rescaling scheme
2091 >    and it is roughly as good as the cumbersome atomic-constraint technique.
2092 >    (C) 1998 American Institute of Physics.},
2093 >  annote = {Yx279 Times Cited:12 Cited References Count:28},
2094 >  issn = {0894-1866},
2095 >  uri = {<Go to ISI>://000072024300025},
2096   }
2097  
2098 < @Article{plimpton93,
2099 <  author =   {S.~J. Plimpton and B.~A. Hendrickson},
2100 <  title =    {Parallel Molecular Dynamics with the Embedded Atom Method},
2101 <  journal =      {MRS Proceedings},
2102 <  year =     1993,
2103 <  volume =   291,
2104 <  pages =    37
2098 > @ARTICLE{Omelyan1998a,
2099 >  author = {I. P. Omelyan},
2100 >  title = {Algorithm for numerical integration of the rigid-body equations of
2101 >    motion},
2102 >  journal = {Physical Review E},
2103 >  year = {1998},
2104 >  volume = {58},
2105 >  pages = {1169-1172},
2106 >  number = {1},
2107 >  month = {Jul},
2108 >  abstract = {An algorithm for numerical integration of the rigid-body equations
2109 >    of motion is proposed. The algorithm uses the leapfrog scheme and
2110 >    the quantities involved are angular velocities and orientational
2111 >    variables that can be expressed in terms of either principal axes
2112 >    or quaternions. Due to specific features of the algorithm, orthonormality
2113 >    and unit norms of the orientational variables are integrals of motion,
2114 >    despite an approximate character of the produced trajectories. It
2115 >    is shown that the method presented appears to be the most efficient
2116 >    among all such algorithms known.},
2117 >  annote = {101XL Times Cited:8 Cited References Count:22},
2118 >  issn = {1063-651X},
2119 >  uri = {<Go to ISI>://000074893400151},
2120   }
2121  
2122 <
2123 < @Article{Ercolessi02,
2124 <  author =   {U. Tartaglino and E. Tosatti and D. Passerone and F. Ercolessi},
2125 <  title =    {Bending strain-driven modification of surface resconstructions: Au(111)},
2126 <  journal =      prb,
2127 <  year =     2002,
2128 <  volume =   65,
2129 <  pages =    241406
2122 > @ARTICLE{Orlandi2006,
2123 >  author = {S. Orlandi and R. Berardi and J. Steltzer and C. Zannoni},
2124 >  title = {A Monte Carlo study of the mesophases formed by polar bent-shaped
2125 >    molecules},
2126 >  journal = {Journal of Chemical Physics},
2127 >  year = {2006},
2128 >  volume = {124},
2129 >  pages = {-},
2130 >  number = {12},
2131 >  month = {Mar 28},
2132 >  abstract = {Liquid crystal phases formed by bent-shaped (or #banana#) molecules
2133 >    are currently of great interest. Here we investigate by Monte Carlo
2134 >    computer simulations the phases formed by rigid banana molecules
2135 >    modeled combining three Gay-Berne sites and containing either one
2136 >    central or two lateral and transversal dipoles. We show that changing
2137 >    the dipole position and orientation has a profound effect on the
2138 >    mesophase stability and molecular organization. In particular, we
2139 >    find a uniaxial nematic phase only for off-center dipolar models
2140 >    and tilted phases only for the one with terminal dipoles. (c) 2006
2141 >    American Institute of Physics.},
2142 >  annote = {028CP Times Cited:0 Cited References Count:42},
2143 >  issn = {0021-9606},
2144 >  uri = {<Go to ISI>://000236464000072},
2145   }
2146  
2147 < @Article{Ercolessi88,
2148 <  author =   {F. Ercolessi  and M. Parrinello  and E. Tosatti},
2149 <  title =    {Simulation of Gold in the Glue Model.},
2150 <  journal =      {Philosophical Magazine A},
2151 <  year =     1988,
2152 <  volume =   58,
2153 <  pages =    {213-226}
2147 > @ARTICLE{Owren1992,
2148 >  author = {B. Owren and M. Zennaro},
2149 >  title = {Derivation of Efficient, Continuous, Explicit Runge-Kutta Methods},
2150 >  journal = {Siam Journal on Scientific and Statistical Computing},
2151 >  year = {1992},
2152 >  volume = {13},
2153 >  pages = {1488-1501},
2154 >  number = {6},
2155 >  month = {Nov},
2156 >  abstract = {Continuous, explicit Runge-Kutta methods with the minimal number of
2157 >    stages are considered. These methods are continuously differentiable
2158 >    if and only if one of the stages is the FSAL evaluation. A characterization
2159 >    of a subclass of these methods is developed for orders 3, 4, and
2160 >    5. It is shown how the free parameters of these methods can be used
2161 >    either to minimize the continuous truncation error coefficients
2162 >    or to maximize the stability region. As a representative for these
2163 >    methods the fifth-order method with minimized error coefficients
2164 >    is chosen, supplied with an error estimation method, and analysed
2165 >    by using the DETEST software. The results are compared with a similar
2166 >    implementation of the Dormand-Prince 5(4) pair with interpolant,
2167 >    showing a significant advantage in the new method for the chosen
2168 >    problems.},
2169 >  annote = {Ju936 Times Cited:25 Cited References Count:20},
2170 >  issn = {0196-5204},
2171 >  uri = {<Go to ISI>://A1992JU93600013},
2172   }
2173  
2174 < @Article{Finnis84,
2175 <  author =   {M.~W Finnis and J.~E. Sinclair },
2176 <  title =    {A Simple Empirical N-Body Potential for Transition-Metals},
2177 <  journal =      {Phil. Mag. A},
2178 <  year =     1984,
2179 <  volume =   50,
2180 <  pages =    {45-55}
2174 > @ARTICLE{Palacios1998,
2175 >  author = {J. L. Garcia-Palacios and F. J. Lazaro},
2176 >  title = {Langevin-dynamics study of the dynamical properties of small magnetic
2177 >    particles},
2178 >  journal = {Physical Review B},
2179 >  year = {1998},
2180 >  volume = {58},
2181 >  pages = {14937-14958},
2182 >  number = {22},
2183 >  month = {Dec 1},
2184 >  abstract = {The stochastic Landau-Lifshitz-Gilbert equation of motion for a classical
2185 >    magnetic moment is numerically solved (properly observing the customary
2186 >    interpretation of it as a Stratonovich stochastic differential equation),
2187 >    in order to study the dynamics of magnetic nanoparticles. The corresponding
2188 >    Langevin-dynamics approach allows for the study of the fluctuating
2189 >    trajectories of individual magnetic moments, where we have encountered
2190 >    remarkable phenomena in the overbarrier rotation process, such as
2191 >    crossing-back or multiple crossing of the potential barrier, rooted
2192 >    in the gyromagnetic nature of the system. Concerning averaged quantities,
2193 >    we study the linear dynamic response of the archetypal ensemble
2194 >    of noninteracting classical magnetic moments with axially symmetric
2195 >    magnetic anisotropy. The results are compared with different analytical
2196 >    expressions used to model the relaxation of nanoparticle ensembles,
2197 >    assessing their accuracy. It has been found that, among a number
2198 >    of heuristic expressions for the linear dynamic susceptibility,
2199 >    only the simple formula proposed by Shliomis and Stepanov matches
2200 >    the coarse features of the susceptibility reasonably. By comparing
2201 >    the numerical results with the asymptotic formula of Storonkin {Sov.
2202 >    Phys. Crystallogr. 30, 489 (1985) [Kristallografiya 30, 841 (1985)]},
2203 >    the effects of the intra-potential-well relaxation modes on the
2204 >    low-temperature longitudinal dynamic response have been assessed,
2205 >    showing their relatively small reflection in the susceptibility
2206 >    curves but their dramatic influence on the phase shifts. Comparison
2207 >    of the numerical results with the exact zero-damping expression
2208 >    for the transverse susceptibility by Garanin, Ishchenko, and Panina
2209 >    {Theor. Math. Phys. (USSR) 82, 169 (1990) [Teor. Mat. Fit. 82, 242
2210 >    (1990)]}, reveals a sizable contribution of the spread of the precession
2211 >    frequencies of the magnetic moment in the anisotropy field to the
2212 >    dynamic response at intermediate-to-high temperatures. [S0163-1829
2213 >    (98)00446-9].},
2214 >  annote = {146XW Times Cited:66 Cited References Count:45},
2215 >  issn = {0163-1829},
2216 >  uri = {<Go to ISI>://000077460000052},
2217   }
2218  
2219 < @Article{FBD86,
2220 <  author =       {S.~M. Foiles and M.~I. Baskes and M.~S. Daw},
2221 <  title =        {Embedded-atom-method functions for the fcc metals
2222 < $\mbox{Cu, Ag, Au, Ni, Pd, Pt}$, and their alloys},
2223 <  journal =      prb,
2224 <  year =         1986,
2225 <  volume =       33,
2226 <  number =       12,
2227 <  pages =        7983
2219 > @ARTICLE{Pastor1988,
2220 >  author = {R. W. Pastor and B. R. Brooks and A. Szabo},
2221 >  title = {An Analysis of the Accuracy of Langevin and Molecular-Dynamics Algorithms},
2222 >  journal = {Molecular Physics},
2223 >  year = {1988},
2224 >  volume = {65},
2225 >  pages = {1409-1419},
2226 >  number = {6},
2227 >  month = {Dec 20},
2228 >  annote = {T1302 Times Cited:61 Cited References Count:26},
2229 >  issn = {0026-8976},
2230 >  uri = {<Go to ISI>://A1988T130200011},
2231   }
2232  
2233 < @Article{johnson89,
2234 <  author =   {R.~A. Johnson},
2235 <  title =    {Alloy models with the embedded-atom method},
2236 <  journal =      prb,
2237 <  year =     1989,
2238 <  volume =   39,
2239 <  number =   17,
2240 <  pages =    12554
2233 > @ARTICLE{Pelzl1999,
2234 >  author = {G. Pelzl and S. Diele and W. Weissflog},
2235 >  title = {Banana-shaped compounds - A new field of liquid crystals},
2236 >  journal = {Advanced Materials},
2237 >  year = {1999},
2238 >  volume = {11},
2239 >  pages = {707-724},
2240 >  number = {9},
2241 >  month = {Jul 5},
2242 >  annote = {220RC Times Cited:313 Cited References Count:49},
2243 >  issn = {0935-9648},
2244 >  uri = {<Go to ISI>://000081680400007},
2245   }
2246  
2247 < @Article{Laird97,
2248 <  author =   {A. Kol and B.~B. Laird and B.~J. Leimkuhler},
2249 <  title =    {A symplectic method for rigid-body molecular simulation},
2250 <  journal =      jcp,
2251 <  year =     1997,
2252 <  volume =   107,
2253 <  number =   7,
2254 <  pages =    {2580-2588}
2247 > @ARTICLE{Perram1985,
2248 >  author = {J. W. Perram and M. S. Wertheim},
2249 >  title = {Statistical-Mechanics of Hard Ellipsoids .1. Overlap Algorithm and
2250 >    the Contact Function},
2251 >  journal = {Journal of Computational Physics},
2252 >  year = {1985},
2253 >  volume = {58},
2254 >  pages = {409-416},
2255 >  number = {3},
2256 >  annote = {Akb93 Times Cited:71 Cited References Count:12},
2257 >  issn = {0021-9991},
2258 >  uri = {<Go to ISI>://A1985AKB9300008},
2259   }
2260  
2261 <
2262 < @Article{hoover85,
2263 <  author =   {W.~G. Hoover},
2264 <  title =    {Canonical dynamics: Equilibrium phase-space distributions},
2265 <  journal =      pra,
2266 <  year =     1985,
2267 <  volume =   31,
1844 <  pages =    1695
2261 > @ARTICLE{Rotne1969,
2262 >  author = {F. Perrin},
2263 >  title = {Variational treatment of hydrodynamic interaction in polymers},
2264 >  journal = {J. Chem. Phys.},
2265 >  year = {1969},
2266 >  volume = {50},
2267 >  pages = {4831¨C4837},
2268   }
2269  
2270 < @Article{Roux91,
2271 <  author =   {B. Roux and M. Karplus},
2272 <  title =    {Ion transport in a Gramicidin-like channel: dynamics and mobility},
2273 <  journal =      jpc,
2274 <  year =     1991,
2275 <  volume =   95,
2276 <  number =   15,
2277 <  pages =    {4856-4868}
2270 > @ARTICLE{Perrin1936,
2271 >  author = {F. Perrin},
2272 >  title = {Mouvement brownien d'un ellipsoid(II). Rotation libre et depolarisation
2273 >    des fluorescences. Translation et diffusion de moleculese ellipsoidales},
2274 >  journal = {J. Phys. Radium},
2275 >  year = {1936},
2276 >  volume = {7},
2277 >  pages = {1-11},
2278   }
2279  
2280 <
2281 < @Article{Marrink94,
2282 <  author =   {S.~J Marrink and H.~J.~C. Berendsen},
2283 <  title =    {Simulation of water transport through a lipid membrane},
2284 <  journal =      jpc,
2285 <  year =     1994,
2286 <  volume =   98,
2287 <  number =   15,
1865 <  pages =    {4155-4168}
2280 > @ARTICLE{Perrin1934,
2281 >  author = {F. Perrin},
2282 >  title = {Mouvement brownien d'un ellipsoid(I). Dispersion dielectrique pour
2283 >    des molecules ellipsoidales},
2284 >  journal = {J. Phys. Radium},
2285 >  year = {1934},
2286 >  volume = {5},
2287 >  pages = {497-511},
2288   }
2289  
2290 <
2291 < @Article{Daw89,
2292 <  author =   {Murray~S. Daw},
2293 <  title =    {Model of metallic cohesion: The embedded-atom method},
2294 <  journal =      {Physical Review B},
2295 <  year =     1989,
2296 <  volume =   39,
2297 <  pages =    {7441-7452}
2290 > @ARTICLE{Petrache1998,
2291 >  author = {H. I. Petrache and S. Tristram-Nagle and J. F. Nagle},
2292 >  title = {Fluid phase structure of EPC and DMPC bilayers},
2293 >  journal = {Chemistry and Physics of Lipids},
2294 >  year = {1998},
2295 >  volume = {95},
2296 >  pages = {83-94},
2297 >  number = {1},
2298 >  month = {Sep},
2299 >  abstract = {X-ray diffraction data taken at high instrumental resolution were
2300 >    obtained for EPC and DMPC under various osmotic pressures, primarily
2301 >    at T = 30 degrees C. The headgroup thickness D-HH was obtained from
2302 >    relative electron density profiles. By using volumetric results
2303 >    and by comparing to gel phase DPPC we obtain areas A(EPC)(F) = 69.4
2304 >    +/- 1.1 Angstrom(2) and A(DMPC)(F) = 59.7 +/- 0.2 Angstrom(2). The
2305 >    analysis also gives estimates for the areal compressibility K-A.
2306 >    The A(F) results lead to other structural results regarding membrane
2307 >    thickness and associated waters. Using the recently determined absolute
2308 >    electrons density profile of DPPC, the AF results also lead to absolute
2309 >    electron density profiles and absolute continuous transforms \F(q)\
2310 >    for EPC and DMPC, Limited measurements of temperature dependence
2311 >    show directly that fluctuations increase with increasing temperature
2312 >    and that a small decrease in bending modulus K-c accounts for the
2313 >    increased water spacing reported by Simon et al. (1995) Biophys.
2314 >    J. 69, 1473-1483. (C) 1998 Elsevier Science Ireland Ltd. All rights
2315 >    reserved.},
2316 >  annote = {130AT Times Cited:98 Cited References Count:39},
2317 >  issn = {0009-3084},
2318 >  uri = {<Go to ISI>://000076497600007},
2319   }
2320  
2321 < @InBook{voter,
2322 <  author =   {A.~F. Voter},
2323 <  editor =   {J.~H. Westbrook and R.~L. Fleischer},
2324 <  title =    {Intermetallic Compounds: Principles and Practice},
2325 <  chapter =      4,
2326 <  publisher =    {John Wiley and Sons Ltd},
2327 <  year =     1995,
2328 <  volume =   1,
1886 <  pages =    77
2321 > @ARTICLE{Powles1973,
2322 >  author = {J.~G. Powles},
2323 >  title = {A general ellipsoid can not always serve as a modle for the rotational
2324 >    diffusion properties of arbitrary shaped rigid molecules},
2325 >  journal = {Advan. Phys.},
2326 >  year = {1973},
2327 >  volume = {22},
2328 >  pages = {1-56},
2329   }
2330  
2331 < @Article{marrink:2002,
2332 <  author =   {S.~J. Marrink and D.~P. Teileman},
2333 <  title =    {Molecular Dynamics Simulation of Spontaneous Membrane Fusion during a Cubic-Hexagonal Phase Transition},
2334 <  journal =      {Biophysical Journal},
2335 <  year =     2002,
2336 <  volume =   83,
2337 <  pages =    {2386-2392}
2331 > @ARTICLE{Recio2004,
2332 >  author = {J. Fernandez-Recio and M. Totrov and R. Abagyan},
2333 >  title = {Identification of protein-protein interaction sites from docking
2334 >    energy landscapes},
2335 >  journal = {Journal of Molecular Biology},
2336 >  year = {2004},
2337 >  volume = {335},
2338 >  pages = {843-865},
2339 >  number = {3},
2340 >  month = {Jan 16},
2341 >  abstract = {Protein recognition is one of the most challenging and intriguing
2342 >    problems in structural biology. Despite all the available structural,
2343 >    sequence and biophysical information about protein-protein complexes,
2344 >    the physico-chemical patterns, if any, that make a protein surface
2345 >    likely to be involved in protein-protein interactions, remain elusive.
2346 >    Here, we apply protein docking simulations and analysis of the interaction
2347 >    energy landscapes to identify protein-protein interaction sites.
2348 >    The new protocol for global docking based on multi-start global
2349 >    energy optimization of an allatom model of the ligand, with detailed
2350 >    receptor potentials and atomic solvation parameters optimized in
2351 >    a training set of 24 complexes, explores the conformational space
2352 >    around the whole receptor without restrictions. The ensembles of
2353 >    the rigid-body docking solutions generated by the simulations were
2354 >    subsequently used to project the docking energy landscapes onto
2355 >    the protein surfaces. We found that highly populated low-energy
2356 >    regions consistently corresponded to actual binding sites. The procedure
2357 >    was validated on a test set of 21 known protein-protein complexes
2358 >    not used in the training set. As much as 81% of the predicted high-propensity
2359 >    patch residues were located correctly in the native interfaces.
2360 >    This approach can guide the design of mutations on the surfaces
2361 >    of proteins, provide geometrical details of a possible interaction,
2362 >    and help to annotate protein surfaces in structural proteomics.
2363 >    (C) 2003 Elsevier Ltd. All rights reserved.},
2364 >  annote = {763GQ Times Cited:21 Cited References Count:59},
2365 >  issn = {0022-2836},
2366 >  uri = {<Go to ISI>://000188066900016},
2367   }
2368  
2369 < @Article{sum:2003,
2370 <  author =   {A.~K. Sum and J.~J. de~Pablo},
2371 <  title =    {Molecular Simulation Study on the influence of Dimethylsulfoxide on the structure of Phospholipid Bilayers},
2372 <  journal =      {Biophysical Journal},
2373 <  year =     2003,
2374 <  volume =   85,
2375 <  pages =    {3636-3645}
2369 > @ARTICLE{Reddy2006,
2370 >  author = {R. A. Reddy and C. Tschierske},
2371 >  title = {Bent-core liquid crystals: polar order, superstructural chirality
2372 >    and spontaneous desymmetrisation in soft matter systems},
2373 >  journal = {Journal of Materials Chemistry},
2374 >  year = {2006},
2375 >  volume = {16},
2376 >  pages = {907-961},
2377 >  number = {10},
2378 >  abstract = {An overview on the recent developments in the field of liquid crystalline
2379 >    bent-core molecules (so-called banana liquid crystals) is given.
2380 >    After some basic issues, dealing with general aspects of the systematisation
2381 >    of the mesophases, development of polar order and chirality in this
2382 >    class of LC systems and explaining some general structure-property
2383 >    relationships, we focus on fascinating new developments in this
2384 >    field, such as modulated, undulated and columnar phases, so-called
2385 >    B7 phases, phase biaxiality, ferroelectric and antiferroelectric
2386 >    polar order in smectic and columnar phases, amplification and switching
2387 >    of chirality and the spontaneous formation of superstructural and
2388 >    supramolecular chirality.},
2389 >  annote = {021NS Times Cited:2 Cited References Count:316},
2390 >  issn = {0959-9428},
2391 >  uri = {<Go to ISI>://000235990500001},
2392   }
2393  
2394 < @Article{gomez:2003,
2395 <  author =   {J.~D. Faraldo-Gomez and G.~R. Smith and M.~S.P. Sansom},
2396 <  title =    {Setting up and optimization of membrane protein simulations},
2397 <  journal =      {Eur. Biophys. J.},
2398 <  year =     2002,
2399 <  volume =   31,
2400 <  pages =    {217-227}
2394 > @ARTICLE{Reich1999,
2395 >  author = {S. Reich},
2396 >  title = {Backward error analysis for numerical integrators},
2397 >  journal = {Siam Journal on Numerical Analysis},
2398 >  year = {1999},
2399 >  volume = {36},
2400 >  pages = {1549-1570},
2401 >  number = {5},
2402 >  month = {Sep 8},
2403 >  abstract = {Backward error analysis has become an important tool for understanding
2404 >    the long time behavior of numerical integration methods. This is
2405 >    true in particular for the integration of Hamiltonian systems where
2406 >    backward error analysis can be used to show that a symplectic method
2407 >    will conserve energy over exponentially long periods of time. Such
2408 >    results are typically based on two aspects of backward error analysis:
2409 >    (i) It can be shown that the modified vector fields have some qualitative
2410 >    properties which they share with the given problem and (ii) an estimate
2411 >    is given for the difference between the best interpolating vector
2412 >    field and the numerical method. These aspects have been investigated
2413 >    recently, for example, by Benettin and Giorgilli in [J. Statist.
2414 >    Phys., 74 (1994), pp. 1117-1143], by Hairer in [Ann. Numer. Math.,
2415 >    1 (1994), pp. 107-132], and by Hairer and Lubich in [Numer. Math.,
2416 >    76 (1997), pp. 441-462]. In this paper we aim at providing a unifying
2417 >    framework and a simplification of the existing results and corresponding
2418 >    proofs. Our approach to backward error analysis is based on a simple
2419 >    recursive definition of the modified vector fields that does not
2420 >    require explicit Taylor series expansion of the numerical method
2421 >    and the corresponding flow maps as in the above-cited works. As
2422 >    an application we discuss the long time integration of chaotic Hamiltonian
2423 >    systems and the approximation of time averages along numerically
2424 >    computed trajectories.},
2425 >  annote = {237HV Times Cited:43 Cited References Count:41},
2426 >  issn = {0036-1429},
2427 >  uri = {<Go to ISI>://000082650600010},
2428   }
2429  
2430 <
2431 < @Article{smondyrev:1999,
2432 <  author =   {A.~M. Smondyrev and M.~L. Berkowitz},
2433 <  title =    {Molecular Dynamics Simulation of {\sc dppc} Bilayer in {\sc dmso}},
2434 <  journal =      {Biophysical Journal},
2435 <  year =     1999,
2436 <  volume =   76,
2437 <  pages =    {2472-2478}
2430 > @ARTICLE{Ros2005,
2431 >  author = {M. B. Ros and J. L. Serrano and M. R. {de la Fuente} and C. L. Folcia},
2432 >  title = {Banana-shaped liquid crystals: a new field to explore},
2433 >  journal = {Journal of Materials Chemistry},
2434 >  year = {2005},
2435 >  volume = {15},
2436 >  pages = {5093-5098},
2437 >  number = {48},
2438 >  abstract = {The recent literature in the field of liquid crystals shows that banana-shaped
2439 >    mesogenic materials represent a bewitching and stimulating field
2440 >    of research that is interesting both academically and in terms of
2441 >    applications. Numerous topics are open to investigation in this
2442 >    area because of the rich phenomenology and new possibilities that
2443 >    these materials offer. The principal concepts in this area are reviewed
2444 >    along with recent results. In addition, new directions to stimulate
2445 >    further research activities are highlighted.},
2446 >  annote = {990XA Times Cited:3 Cited References Count:72},
2447 >  issn = {0959-9428},
2448 >  uri = {<Go to ISI>://000233775500001},
2449   }
2450  
2451 < @Article{nina:2002,
2452 <  author =   {M. Nina and T. Simonson},
2453 <  title =    {Molecular Dynamics of the $\text{tRNA}^{\text{Ala}}$ Acceptor Stem: Comparison between Continuum Reaction Field and Particle-Mesh Ewald Electrostatic Treatments},
2454 <  journal =      {J. Phys. Chem. B},
2455 <  year =     2002,
2456 <  volume =   106,
2457 <  pages =    {3696-3705}
2451 > @ARTICLE{Roy2005,
2452 >  author = {A. Roy and N. V. Madhusudana},
2453 >  title = {A frustrated packing model for the B-6-B-1-SmAP(A) sequence of phases
2454 >    in banana shaped molecules},
2455 >  journal = {European Physical Journal E},
2456 >  year = {2005},
2457 >  volume = {18},
2458 >  pages = {253-258},
2459 >  number = {3},
2460 >  month = {Nov},
2461 >  abstract = {A vast majority of compounds with bent core or banana shaped molecules
2462 >    exhibit the phase sequence B-6-B-1-B-2 as the chain length is increased
2463 >    in a homologous series. The B-6 phase has an intercalated fluid
2464 >    lamellar structure with a layer spacing of half the molecular length.
2465 >    The B-1 phase has a two dimensionally periodic rectangular columnar
2466 >    structure. The B-2 phase has a monolayer fluid lamellar structure
2467 >    with molecules tilted with respect to the layer normal. Neglecting
2468 >    the tilt order of the molecules in the B-2 phase, we have developed
2469 >    a frustrated packing model to describe this phase sequence qualitatively.
2470 >    The model has some analogy with that of the frustrated smectics
2471 >    exhibited by highly polar rod like molecules.},
2472 >  annote = {985FW Times Cited:0 Cited References Count:30},
2473 >  issn = {1292-8941},
2474 >  uri = {<Go to ISI>://000233363300002},
2475   }
2476  
2477 < @Article{norberg:2000,
2478 <  author =   {J. Norberg and L. Nilsson},
2479 <  title =    {On the truncation of Long-Range Electrostatic Interactions in {\sc dna}},
2480 <  journal =      {Biophysical Journal},
2481 <  year =     2000,
2482 <  volume =   79,
2483 <  pages =    {1537-1553}
2477 > @ARTICLE{Ryckaert1977,
2478 >  author = {J. P. Ryckaert and G. Ciccotti and H. J. C. Berendsen},
2479 >  title = {Numerical-Integration of Cartesian Equations of Motion of a System
2480 >    with Constraints - Molecular-Dynamics of N-Alkanes},
2481 >  journal = {Journal of Computational Physics},
2482 >  year = {1977},
2483 >  volume = {23},
2484 >  pages = {327-341},
2485 >  number = {3},
2486 >  annote = {Cz253 Times Cited:3680 Cited References Count:7},
2487 >  issn = {0021-9991},
2488 >  uri = {<Go to ISI>://A1977CZ25300007},
2489   }
2490  
2491 < @Article{patra:2003,
2492 <  author =   {M. Patra and M. Karttunen and M.~T. Hyv\"{o}nen and E. Falk and P. Lindqvist and I. Vattulainen},
2493 <  title =    {Molecular Dynamics Simulations of Lipid Bilayers: Major Artifacts Due to Truncating Electrostatic Interactions},
2494 <  journal =      {Biophysical Journal},
2495 <  year =     2003,
2496 <  volume =   84,
2497 <  pages =    {3636-3645}
2491 > @ARTICLE{Sagui1999,
2492 >  author = {C. Sagui and T. A. Darden},
2493 >  title = {Molecular dynamics simulations of biomolecules: Long-range electrostatic
2494 >    effects},
2495 >  journal = {Annual Review of Biophysics and Biomolecular Structure},
2496 >  year = {1999},
2497 >  volume = {28},
2498 >  pages = {155-179},
2499 >  abstract = {Current computer simulations of biomolecules typically make use of
2500 >    classical molecular dynamics methods, as a very large number (tens
2501 >    to hundreds of thousands) of atoms are involved over timescales
2502 >    of many nanoseconds. The methodology for treating short-range bonded
2503 >    and van der Waals interactions has matured. However, long-range
2504 >    electrostatic interactions still represent a bottleneck in simulations.
2505 >    In this article, we introduce the basic issues for an accurate representation
2506 >    of the relevant electrostatic interactions. In spite of the huge
2507 >    computational time demanded by most biomolecular systems, it is
2508 >    no longer necessary to resort to uncontrolled approximations such
2509 >    as the use of cutoffs. In particular, we discuss the Ewald summation
2510 >    methods, the fast particle mesh methods, and the fast multipole
2511 >    methods. We also review recent efforts to understand the role of
2512 >    boundary conditions in systems with long-range interactions, and
2513 >    conclude with a short perspective on future trends.},
2514 >  annote = {213KJ Times Cited:126 Cited References Count:73},
2515 >  issn = {1056-8700},
2516 >  uri = {<Go to ISI>://000081271400008},
2517   }
2518  
2519 < @Article{marrink04,
2520 <  author =   {S.~J. Marrink and A.~H. de~Vries and A.~E. Mark},
2521 <  title =    {Coarse Grained Model for Semiquantitative Lipid Simulations},
2522 <  journal =      {J. Phys. Chem. B},
2523 <  year =     2004,
2524 <  volume =   108,
2525 <  pages =    {750-760}
2519 > @ARTICLE{Sandu1999,
2520 >  author = {A. Sandu and T. Schlick},
2521 >  title = {Masking resonance artifacts in force-splitting methods for biomolecular
2522 >    simulations by extrapolative Langevin dynamics},
2523 >  journal = {Journal of Computational Physics},
2524 >  year = {1999},
2525 >  volume = {151},
2526 >  pages = {74-113},
2527 >  number = {1},
2528 >  month = {May 1},
2529 >  abstract = {Numerical resonance artifacts have become recognized recently as a
2530 >    limiting factor to increasing the timestep in multiple-timestep
2531 >    (MTS) biomolecular dynamics simulations. At certain timesteps correlated
2532 >    to internal motions (e.g., 5 fs, around half the period of the fastest
2533 >    bond stretch, T-min), visible inaccuracies or instabilities can
2534 >    occur. Impulse-MTS schemes are vulnerable to these resonance errors
2535 >    since large energy pulses are introduced to the governing dynamics
2536 >    equations when the slow forces are evaluated. We recently showed
2537 >    that such resonance artifacts can be masked significantly by applying
2538 >    extrapolative splitting to stochastic dynamics. Theoretical and
2539 >    numerical analyses of force-splitting integrators based on the Verlet
2540 >    discretization are reported here for linear models to explain these
2541 >    observations and to suggest how to construct effective integrators
2542 >    for biomolecular dynamics that balance stability with accuracy.
2543 >    Analyses for Newtonian dynamics demonstrate the severe resonance
2544 >    patterns of the Impulse splitting, with this severity worsening
2545 >    with the outer timestep. Delta t: Constant Extrapolation is generally
2546 >    unstable, but the disturbances do not grow with Delta t. Thus. the
2547 >    stochastic extrapolative combination can counteract generic instabilities
2548 >    and largely alleviate resonances with a sufficiently strong Langevin
2549 >    heat-bath coupling (gamma), estimates for which are derived here
2550 >    based on the fastest and slowest motion periods. These resonance
2551 >    results generally hold for nonlinear test systems: a water tetramer
2552 >    and solvated protein. Proposed related approaches such as Extrapolation/Correction
2553 >    and Midpoint Extrapolation work better than Constant Extrapolation
2554 >    only for timesteps less than T-min/2. An effective extrapolative
2555 >    stochastic approach for biomolecules that balances long-timestep
2556 >    stability with good accuracy for the fast subsystem is then applied
2557 >    to a biomolecule using a three-class partitioning: the medium forces
2558 >    are treated by Midpoint Extrapolation via position Verlet, and the
2559 >    slow forces are incorporated by Constant Extrapolation. The resulting
2560 >    algorithm (LN) performs well on a solvated protein system in terms
2561 >    of thermodynamic properties and yields an order of magnitude speedup
2562 >    with respect to single-timestep Langevin trajectories. Computed
2563 >    spectral density functions also show how the Newtonian modes can
2564 >    be approximated by using a small gamma in the range Of 5-20 ps(-1).
2565 >    (C) 1999 Academic Press.},
2566 >  annote = {194FM Times Cited:14 Cited References Count:32},
2567 >  issn = {0021-9991},
2568 >  uri = {<Go to ISI>://000080181500004},
2569   }
2570  
2571 < @Article{andersen83,
2572 <  author =   {H.~C. Andersen},
2573 <  title =    {{\sc rattle}: A Velocity Version of the Shake Algorithm for Molecular Dynamics Calculations},
2574 <  journal =      {Journal of Computational Physics},
2575 <  year =     1983,
2576 <  volume =   52,
2577 <  pages =    {24-34}
2571 > @ARTICLE{Satoh1996,
2572 >  author = {K. Satoh and S. Mita and S. Kondo},
2573 >  title = {Monte Carlo simulations using the dipolar Gay-Berne model: Effect
2574 >    of terminal dipole moment on mesophase formation},
2575 >  journal = {Chemical Physics Letters},
2576 >  year = {1996},
2577 >  volume = {255},
2578 >  pages = {99-104},
2579 >  number = {1-3},
2580 >  month = {Jun 7},
2581 >  abstract = {The effects of dipole-dipole interaction on mesophase formation are
2582 >    investigated with a Monte Carlo simulation using the dipolar Gay-Berne
2583 >    potential. It is shown that the dipole moment at the end of a molecule
2584 >    causes a shift in the nematic-isotropic transition toward higher
2585 >    temperature and a spread of the temperature range of the nematic
2586 >    phase and that layer structures with various interdigitations are
2587 >    formed in the smectic phase.},
2588 >  annote = {Uq975 Times Cited:32 Cited References Count:33},
2589 >  issn = {0009-2614},
2590 >  uri = {<Go to ISI>://A1996UQ97500017},
2591   }
2592  
2593 < @Article{hura00,
2594 <  author =   {G. Hura and J.~M. Sorenson and R.~M. Glaeser and T. Head-Gordon},
2595 <  title =    {A high-quality x-ray scattering experiment on liquid water at ambient conditions},
2596 <  journal =      {J. Chem. Phys.},
2597 <  year =     2000,
2598 <  volume =   113,
2599 <  pages =    {9140-9148}
2593 > @ARTICLE{Shen2002,
2594 >  author = {M. Y. Shen and K. F. Freed},
2595 >  title = {Long time dynamics of met-enkephalin: Comparison of explicit and
2596 >    implicit solvent models},
2597 >  journal = {Biophysical Journal},
2598 >  year = {2002},
2599 >  volume = {82},
2600 >  pages = {1791-1808},
2601 >  number = {4},
2602 >  month = {Apr},
2603 >  abstract = {Met-enkephalin is one of the smallest opiate peptides. Yet, its dynamical
2604 >    structure and receptor docking mechanism are still not well understood.
2605 >    The conformational dynamics of this neuron peptide in liquid water
2606 >    are studied here by using all-atom molecular dynamics (MID) and
2607 >    implicit water Langevin dynamics (LD) simulations with AMBER potential
2608 >    functions and the three-site transferable intermolecular potential
2609 >    (TIP3P) model for water. To achieve the same simulation length in
2610 >    physical time, the full MID simulations require 200 times as much
2611 >    CPU time as the implicit water LID simulations. The solvent hydrophobicity
2612 >    and dielectric behavior are treated in the implicit solvent LD simulations
2613 >    by using a macroscopic solvation potential, a single dielectric
2614 >    constant, and atomic friction coefficients computed using the accessible
2615 >    surface area method with the TIP3P model water viscosity as determined
2616 >    here from MID simulations for pure TIP3P water. Both the local and
2617 >    the global dynamics obtained from the implicit solvent LD simulations
2618 >    agree very well with those from the explicit solvent MD simulations.
2619 >    The simulations provide insights into the conformational restrictions
2620 >    that are associated with the bioactivity of the opiate peptide dermorphin
2621 >    for the delta-receptor.},
2622 >  annote = {540MH Times Cited:36 Cited References Count:45},
2623 >  issn = {0006-3495},
2624 >  uri = {<Go to ISI>://000174932400010},
2625   }
2626  
2627 <
2628 < @Article{ryckaert77,
2629 <  author =   {J.~P. Ryckaert and G. Ciccotti and H.~J.~C. Berendsen},
2630 <  title =    {Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes},
2631 <  journal =      {Journal of Computational Physics},
2632 <  year =     1977,
2633 <  volume =   23,
2634 <  pages =    {327-341}
2627 > @ARTICLE{Shillcock2005,
2628 >  author = {J. C. Shillcock and R. Lipowsky},
2629 >  title = {Tension-induced fusion of bilayer membranes and vesicles},
2630 >  journal = {Nature Materials},
2631 >  year = {2005},
2632 >  volume = {4},
2633 >  pages = {225-228},
2634 >  number = {3},
2635 >  month = {Mar},
2636 >  annote = {901QJ Times Cited:9 Cited References Count:23},
2637 >  issn = {1476-1122},
2638 >  uri = {<Go to ISI>://000227296700019},
2639   }
2640  
2641 <
2642 < @InBook{fowles99:lagrange,
2643 <  author =   {G.~R. Fowles and G.~L. Cassiday},
2644 <  title =    {Analytical Mechanics},
2645 <  chapter =      10,
2646 <  publisher =    {Saunders College Publishing},
2647 <  year =     1999,
2648 <  edition =  {6th}
2641 > @ARTICLE{Shimada1993,
2642 >  author = {J. Shimada and H. Kaneko and T. Takada},
2643 >  title = {Efficient Calculations of Coulombic Interactions in Biomolecular
2644 >    Simulations with Periodic Boundary-Conditions},
2645 >  journal = {Journal of Computational Chemistry},
2646 >  year = {1993},
2647 >  volume = {14},
2648 >  pages = {867-878},
2649 >  number = {7},
2650 >  month = {Jul},
2651 >  abstract = {To make improved treatments of electrostatic interactions in biomacromolecular
2652 >    simulations, two possibilities are considered. The first is the
2653 >    famous particle-particle and particle-mesh (PPPM) method developed
2654 >    by Hockney and Eastwood, and the second is a new one developed here
2655 >    in their spirit but by the use of the multipole expansion technique
2656 >    suggested by Ladd. It is then numerically found that the new PPPM
2657 >    method gives more accurate results for a two-particle system at
2658 >    small separation of particles. Preliminary numerical examination
2659 >    of the various computational methods for a single configuration
2660 >    of a model BPTI-water system containing about 24,000 particles indicates
2661 >    that both of the PPPM methods give far more accurate values with
2662 >    reasonable computational cost than do the conventional truncation
2663 >    methods. It is concluded the two PPPM methods are nearly comparable
2664 >    in overall performance for the many-particle systems, although the
2665 >    first method has the drawback that the accuracy in the total electrostatic
2666 >    energy is not high for configurations of charged particles randomly
2667 >    generated.},
2668 >  annote = {Lh164 Times Cited:27 Cited References Count:47},
2669 >  issn = {0192-8651},
2670 >  uri = {<Go to ISI>://A1993LH16400011},
2671   }
2672  
2673 < @Article{petrache00,
2674 <  author =   {H.~I. Petrache and S.~W. Dodd and M.~F. Brown},
2675 <  title =    {Area per Lipid and Acyl Length Distributions in Fluid Phosphatidylcholines Determined by $^2\text{H}$ {\sc nmr} Spectroscopy},
2676 <  journal =      {Biophysical Journal},
2677 <  year =     2000,
2678 <  volume =   79,
2679 <  pages =    {3172-3192}
2673 > @ARTICLE{Skeel2002,
2674 >  author = {R. D. Skeel and J. A. Izaguirre},
2675 >  title = {An impulse integrator for Langevin dynamics},
2676 >  journal = {Molecular Physics},
2677 >  year = {2002},
2678 >  volume = {100},
2679 >  pages = {3885-3891},
2680 >  number = {24},
2681 >  month = {Dec 20},
2682 >  abstract = {The best simple method for Newtonian molecular dynamics is indisputably
2683 >    the leapfrog Stormer-Verlet method. The appropriate generalization
2684 >    to simple Langevin dynamics is unclear. An analysis is presented
2685 >    comparing an 'impulse method' (kick; fluctuate; kick), the 1982
2686 >    method of van Gunsteren and Berendsen, and the Brunger-Brooks-Karplus
2687 >    (BBK) method. It is shown how the impulse method and the van Gunsteren-Berendsen
2688 >    methods can be implemented as efficiently as the BBK method. Other
2689 >    considerations suggest that the impulse method is the best basic
2690 >    method for simple Langevin dynamics, with the van Gunsteren-Berendsen
2691 >    method a close contender.},
2692 >  annote = {633RX Times Cited:8 Cited References Count:22},
2693 >  issn = {0026-8976},
2694 >  uri = {<Go to ISI>://000180297200014},
2695   }
2696  
2697 < @Article{egberts88,
2698 <  author =   {E. Egberts and H.~J.~C. Berendsen},
2699 <  title =    {Molecular Dynamics Simulation of a smectic liquid crystal with atomic detail},
2700 <  journal =      {J. Chem. Phys.},
2701 <  year =     1988,
2702 <  volume =   89,
2703 <  pages =    {3718-3732}
2697 > @ARTICLE{Skeel1997,
2698 >  author = {R. D. Skeel and G. H. Zhang and T. Schlick},
2699 >  title = {A family of symplectic integrators: Stability, accuracy, and molecular
2700 >    dynamics applications},
2701 >  journal = {Siam Journal on Scientific Computing},
2702 >  year = {1997},
2703 >  volume = {18},
2704 >  pages = {203-222},
2705 >  number = {1},
2706 >  month = {Jan},
2707 >  abstract = {The following integration methods for special second-order ordinary
2708 >    differential equations are studied: leapfrog, implicit midpoint,
2709 >    trapezoid, Stormer-Verlet, and Cowell-Numerov. We show that all
2710 >    are members, or equivalent to members, of a one-parameter family
2711 >    of schemes. Some methods have more than one common form, and we
2712 >    discuss a systematic enumeration of these forms. We also present
2713 >    a stability and accuracy analysis based on the idea of ''modified
2714 >    equations'' and a proof of symplecticness. It follows that Cowell-Numerov
2715 >    and ''LIM2'' (a method proposed by Zhang and Schlick) are symplectic.
2716 >    A different interpretation of the values used by these integrators
2717 >    leads to higher accuracy and better energy conservation. Hence,
2718 >    we suggest that the straightforward analysis of energy conservation
2719 >    is misleading.},
2720 >  annote = {We981 Times Cited:30 Cited References Count:35},
2721 >  issn = {1064-8275},
2722 >  uri = {<Go to ISI>://A1997WE98100012},
2723   }
2724  
2725 < @Article{Holz00,
2726 <  author =       {M. Holz and S.~R. Heil and A. Sacco},
2727 <  title =        {Temperature-dependent self-diffusion coefficients of
2728 <                  water and six selected molecular liquids for calibration
2729 <                  in accurate $^1${\sc h} {\sc nmr pfg} measurements},
2730 <  journal =      {Phys. Chem. Chem. Phys.},
2731 <  year =         2000,
2732 <  volume =       2,
2733 <  pages =        {4740-4742},
2725 > @ARTICLE{Tao2005,
2726 >  author = {Y. G. Tao and W. K. {den Otter} and J. T. Padding and J. K. G. Dhont
2727 >    and W. J. Briels},
2728 >  title = {Brownian dynamics simulations of the self- and collective rotational
2729 >    diffusion coefficients of rigid long thin rods},
2730 >  journal = {Journal of Chemical Physics},
2731 >  year = {2005},
2732 >  volume = {122},
2733 >  pages = {-},
2734 >  number = {24},
2735 >  month = {Jun 22},
2736 >  abstract = {Recently a microscopic theory for the dynamics of suspensions of long
2737 >    thin rigid rods was presented, confirming and expanding the well-known
2738 >    theory by Doi and Edwards [The Theory of Polymer Dynamics (Clarendon,
2739 >    Oxford, 1986)] and Kuzuu [J. Phys. Soc. Jpn. 52, 3486 (1983)]. Here
2740 >    this theory is put to the test by comparing it against computer
2741 >    simulations. A Brownian dynamics simulation program was developed
2742 >    to follow the dynamics of the rods, with a length over a diameter
2743 >    ratio of 60, on the Smoluchowski time scale. The model accounts
2744 >    for excluded volume interactions between rods, but neglects hydrodynamic
2745 >    interactions. The self-rotational diffusion coefficients D-r(phi)
2746 >    of the rods were calculated by standard methods and by a new, more
2747 >    efficient method based on calculating average restoring torques.
2748 >    Collective decay of orientational order was calculated by means
2749 >    of equilibrium and nonequilibrium simulations. Our results show
2750 >    that, for the currently accessible volume fractions, the decay times
2751 >    in both cases are virtually identical. Moreover, the observed decay
2752 >    of diffusion coefficients with volume fraction is much quicker than
2753 >    predicted by the theory, which is attributed to an oversimplification
2754 >    of dynamic correlations in the theory. (c) 2005 American Institute
2755 >    of Physics.},
2756 >  annote = {943DN Times Cited:3 Cited References Count:26},
2757 >  issn = {0021-9606},
2758 >  uri = {<Go to ISI>://000230332400077},
2759   }
2760  
2761 < @InCollection{zannoni94,
2762 <  author =   {C. Zannoni},
2763 <  title =    {An introduction to the molecular dynamics method and to orientational dynamics in liquid crystals},
2764 <  booktitle =    {The Molecular Dynamics of Liquid Crstals},
2765 <  pages =    {139-169},
2766 <  publisher =    {Kluwer Academic Publishers},
2767 <  year =     1994,
2768 <  editor =   {G.~R. Luckhurst and C.~A. Veracini},
2037 <  chapter =  6
2761 > @BOOK{Tolman1979,
2762 >  title = {The Principles of Statistical Mechanics},
2763 >  publisher = {Dover Publications, Inc.},
2764 >  year = {1979},
2765 >  author = {R.~C. Tolman},
2766 >  address = {New York},
2767 >  chapter = {2},
2768 >  pages = {19-22},
2769   }
2770  
2771 <
2772 < @Article{melchionna93,
2773 <  author =   {S. Melchionna and G. Ciccotti and B.~L. Holian},
2774 <  title =    {Hoover {\sc npt} dynamics for systems varying in shape and size},
2775 <  journal =      {Molecular Physics},
2776 <  year =     1993,
2777 <  volume =   78,
2778 <  pages =    {533-544}
2771 > @ARTICLE{Tu1995,
2772 >  author = {K. Tu and D. J. Tobias and M. L. Klein},
2773 >  title = {Constant pressure and temperature molecular dynamics simulation of
2774 >    a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine
2775 >    bilayer},
2776 >  journal = {Biophysical Journal},
2777 >  year = {1995},
2778 >  volume = {69},
2779 >  pages = {2558-2562},
2780 >  number = {6},
2781 >  month = {Dec},
2782 >  abstract = {We report a constant pressure and temperature molecular dynamics simulation
2783 >    of a fully hydrated liquid crystal (L(alpha) phase bilayer of dipalmitoylphosphatidylcholine
2784 >    at 50 degrees C and 28 water molecules/lipid. We have shown that
2785 >    the bilayer is stable throughout the 1550-ps simulation and have
2786 >    demonstrated convergence of the system dimensions. Several important
2787 >    aspects of the bilayer structure have been investigated and compared
2788 >    favorably with experimental results. For example, the average positions
2789 >    of specific carbon atoms along the bilayer normal agree well with
2790 >    neutron diffraction data, and the electron density profile is in
2791 >    accord with x-ray diffraction results. The hydrocarbon chain deuterium
2792 >    order parameters agree reasonably well with NMR results for the
2793 >    middles of the chains, but the simulation predicts too much order
2794 >    at the chain ends. In spite of the deviations in the order parameters,
2795 >    the hydrocarbon chain packing density appears to be essentially
2796 >    correct, inasmuch as the area/lipid and bilayer thickness are in
2797 >    agreement with the most refined experimental estimates. The deuterium
2798 >    order parameters for the glycerol and choline groups, as well as
2799 >    the phosphorus chemical shift anisotropy, are in qualitative agreement
2800 >    with those extracted from NMR measurements.},
2801 >  annote = {Tv018 Times Cited:108 Cited References Count:34},
2802 >  issn = {0006-3495},
2803 >  uri = {<Go to ISI>://A1995TV01800037},
2804   }
2805  
2806 < @Article{fennell04,
2807 <  author =   {C.~J. Fennell and J.~D. Gezelter},
2808 <  title =    {On the structural and transport properties of the soft sticky dipole(SSD) and related single point water models},
2809 <  journal =      {J. Chem. Phys},
2810 <  year =     {in press 2004}
2806 > @ARTICLE{Tuckerman1992,
2807 >  author = {M. Tuckerman and B. J. Berne and G. J. Martyna},
2808 >  title = {Reversible Multiple Time Scale Molecular-Dynamics},
2809 >  journal = {Journal of Chemical Physics},
2810 >  year = {1992},
2811 >  volume = {97},
2812 >  pages = {1990-2001},
2813 >  number = {3},
2814 >  month = {Aug 1},
2815 >  abstract = {The Trotter factorization of the Liouville propagator is used to generate
2816 >    new reversible molecular dynamics integrators. This strategy is
2817 >    applied to derive reversible reference system propagator algorithms
2818 >    (RESPA) that greatly accelerate simulations of systems with a separation
2819 >    of time scales or with long range forces. The new algorithms have
2820 >    all of the advantages of previous RESPA integrators but are reversible,
2821 >    and more stable than those methods. These methods are applied to
2822 >    a set of paradigmatic systems and are shown to be superior to earlier
2823 >    methods. It is shown how the new RESPA methods are related to predictor-corrector
2824 >    integrators. Finally, we show how these methods can be used to accelerate
2825 >    the integration of the equations of motion of systems with Nose
2826 >    thermostats.},
2827 >  annote = {Je891 Times Cited:680 Cited References Count:19},
2828 >  issn = {0021-9606},
2829 >  uri = {<Go to ISI>://A1992JE89100044},
2830   }
2831  
2832 < @Article{klein01,
2833 <  author =   {J.~C. Shelley andf M.~Y. Shelley and R.~C. Reeder and S. Bandyopadhyay and M.~L. Klein},
2834 <  title =    {A coarse Grain Model for Phospholipid Simulations},
2835 <  journal =      {J. Phys. Chem. B},
2836 <  year =     2001,
2837 <  volume =   105,
2063 <  pages =    {4464-4470}
2832 > @BOOK{Varadarajan1974,
2833 >  title = {Lie groups, Lie algebras, and their representations},
2834 >  publisher = {Prentice-Hall},
2835 >  year = {1974},
2836 >  author = {V.S. Varadarajan},
2837 >  address = {New York},
2838   }
2839  
2840 <
2841 < @Article{marrink03:vesicles,
2842 <  author =   {S.~J. Marrink and A.~E. Mark},
2843 <  title =    {Molecular Dynaimcs Simulation of the Formation, Structure, and Dynamics of Small Phospholipid Vesicles},
2844 <  journal =      {J. Am. Chem. Soc.},
2845 <  year =     2003,
2846 <  volume =   125,
2847 <  pages =    {15233-15242}
2840 > @ARTICLE{Wegener1979,
2841 >  author = {W.~A. Wegener, V.~J. Koester and R.~M. Dowben},
2842 >  title = {A general ellipsoid can not always serve as a modle for the rotational
2843 >    diffusion properties of arbitrary shaped rigid molecules},
2844 >  journal = {Proc. Natl. Acad. Sci.},
2845 >  year = {1979},
2846 >  volume = {76},
2847 >  pages = {6356-6360},
2848 >  number = {12},
2849   }
2850  
2851 < @Book{gamma94,
2852 <  author =       {E. Gamma, R. Helm, R. Johnson and J. Vlissides},
2853 <  title =        {Design Patterns: Elements of Reusable Object-Oriented Software},
2854 <  chapter =      7,
2855 <  publisher =    {Perason Education},
2856 <  year =         1994,
2857 <  address =      {London},
2858 <  pages =        {199-206}
2851 > @ARTICLE{Withers2003,
2852 >  author = {I. M. Withers},
2853 >  title = {Effects of longitudinal quadrupoles on the phase behavior of a Gay-Berne
2854 >    fluid},
2855 >  journal = {Journal of Chemical Physics},
2856 >  year = {2003},
2857 >  volume = {119},
2858 >  pages = {10209-10223},
2859 >  number = {19},
2860 >  month = {Nov 15},
2861 >  abstract = {The effects of longitudinal quadrupole moments on the formation of
2862 >    liquid crystalline phases are studied by means of constant NPT Monte
2863 >    Carlo simulation methods. The popular Gay-Berne model mesogen is
2864 >    used as the reference fluid, which displays the phase sequences
2865 >    isotropic-smectic A-smectic B and isotropic-smectic B at high (T*=2.0)
2866 >    and low (T*=1.5) temperatures, respectively. With increasing quadrupole
2867 >    magnitude the smectic phases are observed to be stabilized with
2868 >    respect to the isotropic liquid, while the smectic B is destabilized
2869 >    with respect to the smectic A. At the lower temperature, a sufficiently
2870 >    large quadrupole magnitude results in the injection of the smectic
2871 >    A phase into the phase sequence and the replacement of the smectic
2872 >    B phase by the tilted smectic J phase. The nematic phase is also
2873 >    injected into the phase sequence at both temperatures considered,
2874 >    and ultimately for sufficiently large quadrupole magnitudes no coherent
2875 >    layered structures were observed. The stabilization of the smectic
2876 >    A phase supports the commonly held belief that, while the inclusion
2877 >    of polar groups is not a prerequisite for the formation of the smectic
2878 >    A phase, quadrupolar interactions help to increase the temperature
2879 >    and pressure range for which the smectic A phase is observed. The
2880 >    quality of the layered structure is worsened with increasing quadrupole
2881 >    magnitude. This behavior, along with the injection of the nematic
2882 >    phase into the phase sequence, indicate that the general tendency
2883 >    of the quadrupolar interactions is to destabilize the layered structure.
2884 >    A pressure dependence upon the smectic layer spacing is observed.
2885 >    This behavior is in much closer agreement with experimental findings
2886 >    than has been observed previously for nonpolar Gay-Berne and hard
2887 >    spherocylinder models. (C) 2003 American Institute of Physics.},
2888 >  annote = {738EF Times Cited:3 Cited References Count:43},
2889 >  issn = {0021-9606},
2890 >  uri = {<Go to ISI>://000186273200027},
2891   }
2892  
2893 < @Book{alexander,
2894 <  author =       {C. Alexander},
2895 <  title =        {A Pattern Language: Towns, Buildings, Construction},
2896 <  publisher =    {Oxford University Press},
2897 <  year =         1987,
2898 <  address =      {New York}
2893 > @ARTICLE{Wolf1999,
2894 >  author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
2895 >  title = {Exact method for the simulation of Coulombic systems by spherically
2896 >    truncated, pairwise r(-1) summation},
2897 >  journal = {Journal of Chemical Physics},
2898 >  year = {1999},
2899 >  volume = {110},
2900 >  pages = {8254-8282},
2901 >  number = {17},
2902 >  month = {May 1},
2903 >  abstract = {Based on a recent result showing that the net Coulomb potential in
2904 >    condensed ionic systems is rather short ranged, an exact and physically
2905 >    transparent method permitting the evaluation of the Coulomb potential
2906 >    by direct summation over the r(-1) Coulomb pair potential is presented.
2907 >    The key observation is that the problems encountered in determining
2908 >    the Coulomb energy by pairwise, spherically truncated r(-1) summation
2909 >    are a direct consequence of the fact that the system summed over
2910 >    is practically never neutral. A simple method is developed that
2911 >    achieves charge neutralization wherever the r(-1) pair potential
2912 >    is truncated. This enables the extraction of the Coulomb energy,
2913 >    forces, and stresses from a spherically truncated, usually charged
2914 >    environment in a manner that is independent of the grouping of the
2915 >    pair terms. The close connection of our approach with the Ewald
2916 >    method is demonstrated and exploited, providing an efficient method
2917 >    for the simulation of even highly disordered ionic systems by direct,
2918 >    pairwise r(-1) summation with spherical truncation at rather short
2919 >    range, i.e., a method which fully exploits the short-ranged nature
2920 >    of the interactions in ionic systems. The method is validated by
2921 >    simulations of crystals, liquids, and interfacial systems, such
2922 >    as free surfaces and grain boundaries. (C) 1999 American Institute
2923 >    of Physics. [S0021-9606(99)51517-1].},
2924 >  annote = {189PD Times Cited:70 Cited References Count:34},
2925 >  issn = {0021-9606},
2926 >  uri = {<Go to ISI>://000079913000008},
2927   }
2928  
2929 < @Article{wilson,
2930 <  author =   {G.~V. Wilson },
2931 <  title =    {Where's the Real Bottleneck in Scientific Computing?},
2932 <  journal =      {American Scientist},
2933 <  year =     2006,
2934 <  volume =   94
2929 > @ARTICLE{Yoshida1990,
2930 >  author = {H. Yoshida},
2931 >  title = {Construction of Higher-Order Symplectic Integrators},
2932 >  journal = {Physics Letters A},
2933 >  year = {1990},
2934 >  volume = {150},
2935 >  pages = {262-268},
2936 >  number = {5-7},
2937 >  month = {Nov 12},
2938 >  annote = {Ej798 Times Cited:492 Cited References Count:9},
2939 >  issn = {0375-9601},
2940 >  uri = {<Go to ISI>://A1990EJ79800009},
2941   }
2942  
2943 < @article{Meineke05,
2944 <        Author = {M.~A. Meineke and C.~F. {Vardeman II} and T. Lin and C.~J. Fennell and J.~D. Gezelter},
2945 <        Date-Modified = {2006-03-05 12:37:31 -0500},
2946 <        Journal = {J. Comp. Chem.},
2947 <        Local-Url = {file://localhost/Users/cfennell/Documents/pdf_files/MyPapers/Meineke_OOPSE_05.pdf},
2948 <        Pages = {252-271},
2949 <        Title = {OOPSE: An Open Source Object-Oriented Parallel Simulation Engine for Molecular Dynamics},
2109 <        Volume = 26,
2110 <        Year = 2005
2943 > @Book{Frenkel1996,
2944 >  author =   {D. Frenkel and B. Smit},
2945 >  title =    {Understanding Molecular Simulation : From Algorithms
2946 >                  to Applications},
2947 >  publisher =    {Academic Press},
2948 >  year =     1996,
2949 >  address =  {New York}
2950   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines