ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/dissertation.bib
(Generate patch)

Comparing trunk/tengDissertation/dissertation.bib (file contents):
Revision 2785 by tim, Mon Apr 24 18:49:32 2006 UTC vs.
Revision 2786 by tim, Sun Jun 4 20:18:07 2006 UTC

# Line 1 | Line 1
1 < @string{jcp = "J. Chem. Phys."}
2 < @string{cpl = "Chem. Phys. Lett."}
3 < @string{jpc = "J. Phys. Chem."}
4 < @string{jpcA = "J. Phys. Chem. A"}
5 < @string{jpcB = "J. Phys. Chem. B"}
6 < @string{cp  = "Chem. Phys."}
7 < @string{acp = "Adv. Chem. Phys."}
8 < @string{pra = "Phys. Rev. A"}
9 < @string{prb = "Phys. Rev. B"}
10 < @string{pre = "Phys. Rev. E"}
11 < @string{prl = "Phys. Rev. Lett."}
12 < @string{rmp = "Rev. Mod. Phys."}
13 < @string{jml = "J. Mol. Liq."}
14 < @string{mp = "Mol. Phys."}
15 < @string{pnas = "Proc. Natl. Acad. Sci. USA"}
16 < @string{jacs = "J. Am. Chem. Soc."}
17 < @string{jmb = "J. Mol. Biol."}
18 <
19 <
20 < @Book{Berne90,
21 <  author =       {B.~J. Berne and R. Pecora},
22 <  title =        {Dynamic Light Scattering},
23 <  publisher =    {Robert E. Krieger Publishing Company, Inc.},
24 <  year =         1990,
25 <  address =      {Malabar, Florida}
26 < }
27 <
28 < @Article{Evans77,
29 <  author =       {D.~J. Evans},
30 <  title =        {On the representation of orientation space},
31 <  journal =      {Mol. Phys.},
32 <  year =         1977,
33 <  volume =       34,
34 <  pages =        {317-325}
35 < }
36 <
37 < @Article{Tuckerman92,
38 <  author =       {M. Tuckerman and B.~J. Berne and G.~J. Martyna},
39 <  title =        {Reversible multiple time scale molecular dynamics},
40 <  journal =      jcp,
41 <  year =         1992,
42 <  volume =       97,
43 <  pages =        {1990-2001}
44 < }
45 <
46 < @Book{Hansen86,
47 <  author =       {J.~P. Hansen and I.~R. McDonald},
48 <  title =        {Theory of Simple Liquids},
49 <  chapter =      7,
50 <  publisher =    {Academic Press},
51 <  year =         1986,
52 <  address =      {London},
53 <  pages =        {199-206}
54 < }
55 <
56 < @Article{Angelani98,
57 <  author =       {L. Angelani and G. Parisi and G. Ruocco and G. Viliani},
58 <  title =        {Connected Network of Minima as a Model Glass: Long
59 <                  Time Dynamics},
60 <  journal =      prl,
61 <  year =         1998,
62 <  volume =       81,
63 <  number =       21,
64 <  pages =        {4648-4651}
65 < }
66 <
67 < @Article{Stillinger82,
68 <  author =       {F.~H. Stillinger and T.~A. Weber},
69 <  title =        {Hidden structure in liquids},
70 <  journal =      pra,
71 <  year =         1982,
72 <  volume =       25,
73 <  number =       2,
74 <  pages =        {978-989}
75 < }
76 <
77 < @Article{Stillinger83,
78 <  author =       {F.~H. Stillinger and T.~A. Weber},
79 <  title =        {Dynamics of structural transitions in liquids},
80 <  journal =      pra,
81 <  year =         1983,
82 <  volume =       28,
83 <  number =       4,
84 <  pages =        {2408-2416}
85 < }
86 <
87 < @Article{Weber84,
88 <  author =       {T.~A. Weber and F.~H. Stillinger},
89 <  title =        {The effect of density on the inherent structure in
90 <                  liquids},
91 <  journal =      jcp,
92 <  year =         1984,
93 <  volume =       80,
94 <  number =       6,
95 <  pages =        {2742-2746}
96 < }
97 <
98 < @Article{Stillinger85,
99 <  author =       {F.~H. Stillinger and T.~A. Weber},
100 <  title =        {Inherent structure theory of liquids in the
101 <                  hard-sphere limit},
102 <  journal =      jcp,
103 <  year =         1985,
104 <  volume =       83,
105 <  number =       9,
106 <  pages =        {4767-4775}
107 < }
108 <
109 < @Article{Stillinger98,
110 <  author =       {S. Sastry and P.~G. Debenedetti and F.~H. Stillinger},
111 <  title =        {Signatures of distinct dynamical regimes in the
112 <                  energy landscape of a glass-forming liquid},
113 <  journal =      {Nature},
114 <  year =         1998,
115 <  volume =       393,
116 <  pages =        {554-557}
117 < }
118 <
119 <
120 < @Article{Parkhurst75a,
121 <  author =       {H.~J. {Parkhurst, Jr.} and J. Jonas},
122 <  title =        {Dense liquids. I. The effect of density and
123 <                  temperature on viscosity of tetramethylsilane and
124 <                  benzene-$\mbox{D}_6$},
125 <  journal =      jcp,
126 <  year =         1975,
127 <  volume =       63,
128 <  number =       6,
129 <  pages =        {2698-2704}
130 < }
131 <
132 < @Article{Parkhurst75b,
133 <  author =       {H.~J. {Parkhurst, Jr.} and J. Jonas},
134 <  title =        {Dense liquids. II. The effect of density and
135 <                  temperature on viscosity of tetramethylsilane and
136 <                  benzene },
137 <  journal =      jcp,
138 <  year =         1975,
139 <  volume =       63,
140 <  number =       6,
141 <  pages =        {2705-2709}
142 < }
143 <
144 < @Article{Forester97,
145 <  author =       {T.~R. Forester and W. Smith and J.~H.~R. Clarke},
146 <  title =        {Antibiotic activity of valinomycin - Molecular
147 <                  dynamics simulations involving the water/membrane
148 <                  interface},
149 <  journal =      {J. Chem. Soc. - Faraday Transactions},
150 <  year =         1997,
151 <  volume =       93,
152 <  pages =        {613-619}
153 < }
154 <
155 < @Article{Tieleman98,
156 <  author =       {D.~P. Tieleman and H.~J.~C. Berendsen},
157 <  title =        {A molecular dynamics study of the pores formed by
158 <                  Escherichia coli OmpF porin in a fully hydrated
159 <                  palmitoyloleoylphosphatidylcholine bilayer},
160 <  journal =      {Biophys. J.},
161 <  year =         1998,
162 <  volume =       74,
163 <  pages =        {2786-2801}
164 < }
165 <
166 < @Article{Cascales98,
167 <  author =       {J.~J.~L. Cascales and J.~G.~H. Cifre and J.~G. de~la~Torre},
168 <  title =        {Anaesthetic mechanism on a model biological
169 <                  membrane: A molecular dynamics simulation study},
170 <  journal =      {J. Phys. Chem. B},
171 <  year =         1998,
172 <  volume =       102,
173 <  pages =        {625-631}
174 < }
175 <
176 < @Article{Bassolino95,
177 <  author =       {D. Bassolino and H.~E. Alper and T.~R. Stouch},
178 <  title =        {MECHANISM OF SOLUTE DIFFUSION THROUGH LIPID
179 <                  BILAYER-MEMBRANES BY MOLECULAR-DYNAMICS SIMULATION},
180 <  journal =      {J. Am. Chem. Soc.},
181 <  year =         1995,
182 <  volume =       117,
183 <  pages =        {4118-4129}
184 < }
185 <
186 < @Article{Alper95,
187 <  author =       {H.~E. Alper and T.~R. Stouch},
188 <  title =        {ORIENTATION AND DIFFUSION OF A DRUG ANALOG IN
189 <                  BIOMEMBRANES - MOLECULAR-DYNAMICS SIMULATIONS},
190 <  journal =      {J. Phys. Chem.},
191 <  year =         1995,
192 <  volume =       99,
193 <  pages =        {5724-5731}
194 < }
195 <
196 < @Article{Sok92,
197 <  author =       {R.~M. Sok and H.~J.~C. Berendsen and W.~F. van~Gunsteren},
198 <  title =        {MOLECULAR-DYNAMICS SIMULATION OF THE TRANSPORT OF
199 <                  SMALL MOLECULES ACROSS A POLYMER MEMBRANE},
200 <  journal =      {J. Chem. Phys.},
201 <  year =         1992,
202 <  volume =       96,
203 <  pages =        {4699-4704}
204 < }
205 <
206 < @Article{Rabani99,
207 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
208 <  title =        {Direct Observation of Stretched-Exponential
209 <                  Relaxation in Low-Temperature Lennard-Jones Systems
210 <                  Using the Cage Correlation Function},
211 <  journal =      prl,
212 <  year =         {1999},
213 <  volume =       82,
214 <  pages =        {3649}
215 < }
216 <
217 < @Article{Rabani97,
218 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
219 <  title =        {Calculating the hopping rate for self-diffusion on
220 <                  rough potential energy surfaces: Cage correlations},
221 <  journal =      {J. Chem. Phys.},
222 <  year =         1997,
223 <  volume =       107,
224 <  pages =        {6867-6876}
225 < }
226 <
227 < @Article{Gezelter99,
228 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
229 <  title =        {Methods for calculating the hopping rate for
230 <                  orientational and spatial diffusion in a molecular
231 <                  liquid: $\mbox{CS}_{2}$},
232 <  journal =      jcp,
233 <  year =         1999,
234 <  volume =       110,
235 <  pages =        3444
236 < }
237 <
238 < @Article{Gezelter98a,
239 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
240 <  title =        {Response to 'Comment on a Critique of the
241 <                  Instantaneous Normal Mode (INM) Approach to
242 <                  Diffusion'},
243 <  journal =      jcp,
244 <  year =         1998,
245 <  volume =       109,
246 <  pages =        4695
247 < }
248 <
249 < @Article{Gezelter97,
250 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
251 <  title =        {Can imaginary instantaneous normal mode frequencies
252 <                  predict barriers to self-diffusion?},
253 <  journal =      jcp,
254 <  year =         1997,
255 <  volume =       107,
256 <  pages =        4618
257 < }
258 <
259 < @Article{Zwanzig83,
260 <  author =       {R. Zwanzig},
261 <  title =        {On the relation between self-diffusion and viscosity
262 <                  of liquids},
263 <  journal =      jcp,
264 <  year =         1983,
265 <  volume =       79,
266 <  pages =        {4507-4508}
267 < }
268 <
269 < @Article{Zwanzig88,
270 <  author =       {R. Zwanzig},
271 <  title =        {Diffusion in rough potential},
272 <  journal =      {Proc. Natl. Acad. Sci. USA},
273 <  year =         1988,
274 <  volume =       85,
275 <  pages =        2029
276 < }
277 <
278 < @Article{Stillinger95,
279 <  author =       {F.~H. Stillinger},
280 <  title =        {A Topographic View of Supercooled Liquids and Glass
281 <                  Formation},
282 <  journal =      {Science},
283 <  year =         1995,
284 <  volume =       267,
285 <  pages =        {1935-1939}
286 < }
287 <
288 < @InCollection{Angell85,
289 <  author =       {C.~A. Angell},
290 <  title =        {unknown},
291 <  booktitle =    {Relaxations in Complex Systems},
292 <  publisher =    {National Technical Information Service,
293 <                  U.S. Department of Commerce},
294 <  year =         1985,
295 <  editor =       {K.~Ngai and G.~B. Wright},
296 <  address =      {Springfield, VA},
297 <  pages =        1
298 < }
299 <
300 < @Article{Bembenek96,
301 <  author =       {S.~D. Bembenek and B.~B. Laird},
302 <  title =        {The role of localization in glasses and supercooled liquids},
303 <  journal =      jcp,
304 <  year =         1996,
305 <  volume =       104,
306 <  pages =        5199
307 < }
308 <
309 < @Article{Sun97,
310 <  author =       {X. Sun and W.~H. Miller},
311 <  title =        {Semiclassical initial value representation for
312 <                  electronically nonadiabatic molecular dynamics},
313 <  journal =      jcp,
314 <  year =         1997,
315 <  volume =       106,
316 <  pages =        6346
317 < }
318 <
319 < @Article{Spath96,
320 <  author =       {B.~W. Spath and W.~H. Miller},
321 <  title =        {SEMICLASSICAL CALCULATION OF CUMULATIVE REACTION
322 <                  PROBABILITIES},
323 <  journal =      jcp,
324 <  year =         1996,
325 <  volume =       104,
326 <  pages =        95
327 < }
328 <
329 < @Book{Warshel91,
330 <  author =       {Arieh Warshel},
331 <  title =        {Computer modeling of chemical reactions in enzymes
332 <                  and solutions},
333 <  publisher =    {Wiley},
334 <  year =         1991,
335 <  address =      {New York}
336 < }
337 <
338 < @Article{Vuilleumier97,
339 <  author =       {Rodolphe Vuilleumier and Daniel Borgis},
340 <  title =        {Molecular Dynamics of an excess proton in water
341 <                  using a non-additive valence bond force field},
342 <  journal =      jpc,
343 <  year =         1997,
344 <  volume =       {in press}
345 < }
346 <
347 < @Article{Kob95a,
348 <  author =       {W. Kob and H.~C. Andersen},
349 <  title =        {Testing mode-coupling theory for a supercooled
350 <                  binary Lennard-Jones mixtures: The van Hove
351 <                  corraltion function},
352 <  journal =      pre,
353 <  year =         1995,
354 <  volume =       51,
355 <  pages =        {4626-4641}
356 < }
357 <
358 < @Article{Kob95b,
359 <  author =       {W. Kob and H.~C. Andersen},
360 <  title =        {Testing mode-coupling theory for a supercooled
361 <                  binary Lennard-Jones mixtures. II. Intermediate
362 <                  scattering function and dynamic susceptibility},
363 <  journal =      pre,
364 <  year =         1995,
365 <  volume =       52,
366 <  pages =        {4134-4153}
367 < }
368 <
369 < @InProceedings{Gotze89,
370 <  author =       "W. G{\"{o}}tze",
371 <  title =        "Aspects of Structural Glass Transitions",
372 <  editor =       "J.~P. Hansen and D. Levesque and J. Zinn-Justin",
373 <  volume =       "I",
374 <  pages =        "287-503",
375 <  booktitle =    "Liquids, Freezing and Glass Transitions",
376 <  year =         1989,
377 <  publisher =    "North-Holland",
378 <  address =      "Amsterdam"
379 < }
380 <
381 < @Article{Sun97a,
382 <  author =       "X. Sun and W.~H. Miller",
383 <  title =        {Mixed semiclassical-classical approaches to the
384 <                  dynamics of complex molecular systems},
385 <  journal =      jcp,
386 <  year =         1997,
387 <  pages =        916
388 < }
389 <
390 < @Article{Keshavamurthy94,
391 <  author =       "S. Keshavamurthy and W.~H. Miller",
392 <  title =        "ivr",
393 <  journal =      cpl,
394 <  year =         1994,
395 <  volume =       218,
396 <  pages =        189
397 < }
398 <
399 < @Article{Billing75,
400 <  author =       "G.~D. Billing",
401 <  title =        "ehrenfest",
402 <  journal =      cpl,
403 <  year =         1975,
404 <  volume =       30,
405 <  pages =        391
406 < }
407 <
408 < @Article{Chang90,
409 <  author =       {Y.-T. Chang and W.~H. Miller},
410 <  title =        {An Empirical Valence Bond Model for Constructing
411 <                  Global Potential Energy Surfaces for Chemical
412 <                  Reactions of Polyatomic Molecular Systems},
413 <  journal =      jpc,
414 <  year =         1990,
415 <  volume =       94,
416 <  pages =        {5884-5888}
417 < }
418 <
419 < @Article{Shor94,
420 <  author =       {P.W. Shor},
421 <  title =        {Algorithms for quantum computation: discrete
422 <                  logarithms and factoring},
423 <  journal =      {Proceedings of the 35th Annual Symposium
424 < on Foundations of Computer Science},
425 <  year =         1994,
426 <  pages =        {124-134}
427 < }
428 <
429 < @Article{Feynman82,
430 <  author =       {R.~P. Feynman},
431 <  title =        {Simulating physics with computers},
432 <  journal =      {Int. J. Theor. Phys.},
433 <  year =         1982,
434 <  volume =       21,
435 <  pages =        {467-488}
436 < }
437 <
438 < @Article{Grover97,
439 <  author =       {L.~K. Grover},
440 <  title =        {Quantum computers can search arbitrarily large
441 <                  databases by a single query},
442 <  journal =      prl,
443 <  year =         1997,
444 <  volume =       79,
445 <  pages =        {4709-4712}
446 < }
447 <
448 < @Article{Chuang98,
449 <  author =       {I. Chuang and N. Gershenfeld and M. Kubinec},
450 <  title =        {Experimental Implementation of Fast Quantum Searching},
451 <  journal =      prl,
452 <  year =         1998,
453 <  volume =       80,
454 <  pages =        {3408-3411}
455 < }
456 <
457 < @Article{Monroe95,
458 <  author =       "C. Monroe and D.~M. Meekhof and B.~E. King and
459 <                  W.~M. Itano and D.~J. Wineland",
460 <  title =        {Demonstration of a fundamental quantum logic gate},
461 <  journal =      prl,
462 <  year =         1995,
463 <  volume =       75,
464 <  pages =        4714
465 < }
466 <
467 < @Article{Lent93,
468 <  author =       "C.~S. Lent and P.~D. Tougaw and W.~Porod and
469 <                  G.~H. Bernstein",
470 <  title =        {Quantum Cellular Automata},
471 <  journal =      {Nanotechnology},
472 <  year =         1993,
473 <  volume =       4,
474 <  pages =        {49-57}
475 < }
476 <
477 < @Article{Barenco95,
478 <  author =       "A. Barenco and C.~H. Bennett and R. Cleve and
479 <                  D.~P. DiVincenzo and N. Margolus and P. Shor and
480 <                  T. Sleator and J.~A. Smolin and H. Weinfurter",
481 <  title =        {elementary gates for quantum computation},
482 <  journal =      {Phys. Rev. A},
483 <  year =         1995,
484 <  volume =       52,
485 <  pages =        {3457-3467}
486 < }
487 <
488 < @Article{Small97,
489 <  author =       {T. Reinot and J.~M. Hayes and G.~J. Small},
490 <  title =        {Electronic dephasing and electron-phonon coupling of
491 <                  aluminum phthalocyanine tetrasulphonate in
492 <                  hyperquenched and annealed glassy films of ethanol
493 <                  and methanol over a broad temperature range},
494 <  journal =      jcp,
495 <  year =         1997,
496 <  volume =       106,
497 <  pages =        {457-466}
498 < }
499 <
500 < @Article{Laflamme96,
501 <  author =       {R. Laflamme and C. Miquel and J.~P. Paz and W.~H. Zurek},
502 <  title =        {A perfect quantum error correcting code: 5 bit code
503 <                  correcting a general 1 qubit error to encode 1 qubit
504 <                  of information},
505 <  journal =      prl,
506 <  year =         1996,
507 <  volume =       98,
508 <  pages =        77
509 < }
510 <
511 < @Article{Shor95,
512 <  author =       {P.~W. Shor},
513 <  title =        {SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY},
514 <  journal =      {Phys. Rev. A},
515 <  year =         1995,
516 <  volume =       52,
517 <  pages =        {2493-2496}
518 < }
519 <
520 < @Article{Calderbank96,
521 <  author =       {A.~R. Calderbank and P.~W. Shor},
522 <  title =        {Good quantum error-correcting codes exist},
523 <  journal =      {Phys. Rev. A},
524 <  year =         1996,
525 <  volume =       54,
526 <  pages =        {1098-1105}
527 < }
528 <
529 < @Article{Steane96,
530 <  author =       {A.~M. Steane},
531 <  title =        {Error correcting codes in quantum theory},
532 <  journal =      prl,
533 <  year =         1996,
534 <  volume =       77,
535 <  pages =        {793-797}
536 < }
537 <
538 < @Article{Gezelter95,
539 <  author =       {J.~D. Gezelter and W.~H. Miller},
540 <  title =        {RESONANT FEATURES IN THE ENERGY-DEPENDENCE OF THE
541 <                  RATE OF KETENE ISOMERIZATION},
542 <  journal =      jcp,
543 <  year =         1995,
544 <  volume =       103,
545 <  pages =        {7868-7876}
546 < }
547 <
548 < @Article{Chakrabarti92,
549 <  author =       {A.~C. Chakrabarti and D.~W. Deamer},
550 <  title =        {PERMEABILITY OF LIPID BILAYERS TO AMINO-ACIDS AND PHOSPHATE},
551 <  journal =      {Biochimica et Biophysica Acta},
552 <  year =         1992,
553 <  volume =       1111,
554 <  pages =        {171-177}
555 < }
556 <
557 < @Article{Paula96,
558 <  author =       {S. Paula and A.~G. Volkov and A.~N. VanHoek and
559 <                  T.~H. Haines and D.~W. Deamer},
560 <  title =        {Permeation of protons, potassium ions, and small
561 <                  polar molecules through phospholipid bilayers as a
562 <                  function of membrane thickness},
563 <  journal =      {Biophys. J.},
564 <  year =         1996,
565 <  volume =       70,
566 <  pages =        {339-348}
567 < }
568 <
569 < @Article{Little96,
570 <  author =       {H.~J. Little},
571 <  title =        {How has molecular pharmacology contributed to our
572 <                  understanding of the mechanism(s) of general
573 <                  anesthesia?},
574 <  journal =      {Pharmacology \& Therapeutics},
575 <  year =         1996,
576 <  volume =       69,
577 <  pages =        {37-58}
578 < }
579 <
580 < @Article{McKinnon92,
581 <  author =       {S.~J. McKinnon and S.~L. Whittenburg and B. Brooks},
582 <  title =        {Nonequilibrium Molecular Dynamics Simulation of
583 <                  Oxygen Diffusion through Hexadecane Monolayers with
584 <                  Varying Concentrations of Cholesterol},
585 <  journal =      jpc,
586 <  year =         1992,
587 <  volume =       96,
588 <  pages =        {10497-10506}
589 < }
590 <
591 < @Article{Venable93,
592 <  author =       {R.~M. Venable and Y. Zhang and B.~J. Hardy and
593 <                  R.~W. Pastor},
594 <  title =        {Molecular Dynamics Simulations of a Lipid Bilayer
595 <                  and of Hexadecane: An Investigation of Membrane Fluidity},
596 <  journal =      {Science},
597 <  year =         1993,
598 <  volume =       262,
599 <  pages =        {223-226}
600 < }
601 <
602 < @Article{Essmann99,
603 <  author =       {U. Essmann and M.~L. Berkowitz},
604 <  title =        {Dynamical properties of phospholipid bilayers from
605 <                  computer simulation},
606 <  journal =      {Biophys. J.},
607 <  year =         1999,
608 <  volume =       76,
609 <  pages =        {2081-2089}
610 < }
611 <
612 < @Article{Tu98,
613 <  author =       {K.~C. Tu and M. Tarek and M.~L. Klein and D. Scharf},
614 <  title =        {Effects of anesthetics on the structure of a
615 <                  phospholipid bilayer: Molecular dynamics
616 <                  investigation of halothane in the hydrated liquid
617 <                  crystal phase of dipalmitoylphosphatidylcholine},
618 <  journal =      {Biophys. J.},
619 <  year =         1998,
620 <  volume =       75,
621 <  pages =        {2123-2134}
622 < }
623 <
624 < @Article{Pomes96,
625 <  author =       {R. Pomes and B. Roux},
626 <  title =        {Structure and dynamics of a proton wire: A
627 <                  theoretical study of H+ translocation along the
628 <                  single-file water chain in the gramicidin a channel},
629 <  journal =      {Biophys. J.},
630 <  year =         1996,
631 <  volume =       71,
632 <  pages =        {19-39}
633 < }
634 <
635 < @Article{Duwez60,
636 <  author =       {P. Duwez and R.~H. Willens and W. {Klement~Jr.}},
637 <  title =        {Continuous Series of Metastable Solid Solutions in
638 <                  Silver-Copper Alloys},
639 <  journal =      {J. Appl. Phys.},
640 <  year =         1960,
641 <  volume =       31,
642 <  pages =        {1136-1137}
643 < }
644 <
645 < @Article{Peker93,
646 <  author =       {A. Peker and W.~L. Johnson},
647 <  title =        {A highly processable metallic-glass -
648 <                  $\mbox{Zr}_{41.2}\mbox{Ti}_{13.8}\mbox{Cu}_{12.5}\mbox{Ni}_{10.0}\mbox{Be}_{22.5}$},
649 <  journal =      {Appl. Phys. Lett.},
650 <  year =         1993,
651 <  volume =       63,
652 <  pages =        {2342-2344}
653 < }
654 <
655 < @Article{ChoiYim97,
656 <  author =       {H. Choi-Yim and W.~L. Johnson},
657 <  title =        {Bulk metallic glass matrix composites},
658 <  journal =      {Appl. Phys. Lett.},
659 <  year =         1997,
660 <  volume =       71,
661 <  pages =        {3808-3810}
662 < }
663 <
664 < @Article{Sun96,
665 <  author =       {X. Sun and S. Schneider and U. Geyer and
666 <                  W.~L. Johnson and M.~A. Nicolet},
667 <  title =        {Oxidation and crystallization of an amorphous
668 <                  $\mbox{Zr}_{60}\mbox{Al}_{15}\mbox{Ni}_{25}$ alloy},
669 <  journal =      {J. Mater. Res.},
670 <  year =         1996,
671 <  volume =       11,
672 <  pages =        {2738-2743}
673 < }
674 <
675 < @Article{Heller93,
676 <  author =       {H. Heller and M. Schaefer and K. Schulten},
677 <  title =        {MOLECULAR DYNAMICS SIMULATION OF A BILAYER OF 200
678 <                  LIPIDS IN THE GEL AND IN THE LIQUID-CRYSTAL PHASES},
679 <  journal =      jpc,
680 <  year =         1993,
681 <  volume =       97,
682 <  pages =        {8343-8360}
683 < }
684 <
685 < @Article{Kushick76,
686 <  author =       {J. Kushick and B.~J. Berne},
687 <  title =        {Computer Simulation of anisotropic molecular fluids},
688 <  journal =      jcp,
689 <  year =         1976,
690 <  volume =       64,
691 <  pages =        {1362-1367}
692 < }
693 <
694 < @Article{Berardi96,
695 <  author =       {R. Berardi and S. Orlandi and C Zannoni},
696 <  title =        {Antiphase structures in polar smectic liquid
697 <                  crystals and their molecular origin},
698 <  journal =      cpl,
699 <  year =         1996,
700 <  volume =       261,
701 <  pages =        {357-362}
702 < }
703 <
704 < @Article{Berardi99,
705 <  author =       {R. Berardi and S. Orlandi and C. Zannoni},
706 <  title =        {Monte Carlo simulations of rod-like Gay-Berne
707 <                  mesogens with transverse dipoles},
708 <  journal =      {Int. J. Mod. Phys. C},
709 <  year =         1999,
710 <  volume =       10,
711 <  pages =        {477-484}
712 < }
713 <
714 < @Article{Pasterny2000,
715 <  author =       {K. Pasterny and E. Gwozdz and A. Brodka},
716 <  title =        {Properties of a model liquid crystal: Polar
717 <                  Gay-Berne particles},
718 <  journal =      {J. Mol. Liq.},
719 <  year =         2000,
720 <  volume =       85,
721 <  pages =        {173-184}
722 < }
723 <
724 < @Article{Jorgensen83,
725 <  author =       {W.~L. Jorgensen and J. Chandrasekhar and
726 <                  J.~D. Madura and R.~W. Impey and M.~L. Klein},
727 <  title =        {COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR
728 <                  SIMULATING LIQUID WATER},
729 <  journal =      jcp,
730 <  year =         1983,
731 <  volume =       79,
732 <  pages =        {926-935}
733 < }
734 <
735 < @Article{Berardi98,
736 <  author =       {R. Berardi and C. Fava and C. Zannoni},
737 <  title =        {A Gay-Berne potential for dissimilar biaxial particles},
738 <  journal =      cpl,
739 <  year =         1998,
740 <  volume =       297,
741 <  pages =        {8-14}
742 < }
743 <
744 < @Article{Luckhurst90,
745 <  author =       {G.~R. Luckhurst and R.~A. Stephens and R.~W. Phippen},
746 <  title =        {Computer simulation studies of anisotropic systems
747 <                  {XIX}. Mesophases formed by the Gay-Berne model mesogen},
748 <  journal =      {Liquid Crystals},
749 <  year =         1990,
750 <  volume =       8,
751 <  pages =        {451-464}
752 < }
753 <
754 < @Article{Gay81,
755 <  author =       {J.~G. Gay and B.~J. Berne},
756 <  title =        {MODIFICATION OF THE OVERLAP POTENTIAL TO MIMIC A
757 <                  LINEAR SITE-SITE POTENTIAL},
758 <  journal =      jcp,
759 <  year =         1981,
760 <  volume =       74,
761 <  pages =        {3316-3319}
762 < }
763 <
764 < @Article{Berne72,
765 <  author =       {B.~J. Berne and P. Pechukas},
766 <  title =        {Gaussian Model Potentials for Molecular Interactions},
767 <  journal =      jcp,
768 <  year =         1972,
769 <  volume =       56,
770 <  pages =        {4213-4216}
771 < }
772 <
773 < @Article{Perram96,
774 <  author =       {J.~W. Perram and J. Rasmussen and E. Praestgaard and
775 <                  J.~L. Lebowitz},
776 <  title =        {Ellipsoid contact potential: Theory and relation to
777 <                  overlap potentials},
778 <  journal =      pre,
779 <  year =         1996,
780 <  volume =       54,
781 <  pages =        {6565-6572}
782 < }
783 <
784 < @Article{Cornell95,
785 <  author =       {W.~D. Cornell and P. Cieplak and C.~I. Bayly and
786 <                  I.~R. Gould and K.~M. {Merz, Jr.} and D.~M. Ferguson
787 <                  and D.~C. Spellmeyer and T. Fox and J.~W. Caldwell
788 <                  and P.~A. Kollman},
789 <  title =        {A second generation force field for the simulation
790 <                  of proteins and nucleic acids},
791 <  journal =      jacs,
792 <  year =         1995,
793 <  volume =       117,
794 <  pages =        {5179-5197}
795 < }
796 <
797 < @Article{Brooks83,
798 <  author =       {B.~R. Brooks and R.~E. Bruccoleri and B.~D. Olafson
799 <                  and D.~J. States and S. Swaminathan and M. Karplus},
800 <  title =        {{\sc charmm}: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations},
801 <  journal =      {J. Comp. Chem.},
802 <  year =         1983,
803 <  volume =       4,
804 <  pages =        {187-217}
805 < }
806 <
807 < @InCollection{MacKerell98,
808 <  author =       {A.~D. {MacKerell, Jr.} and B. Brooks and
809 <                  C.~L. {Brooks III} and L. Nilsson and B. Roux and
810 <                  Y. Won and and M. Karplus},
811 <  title =        {{\sc charmm}: The Energy Function and Its Parameterization
812 <                  with an Overview of the Program},
813 <  booktitle =    {The Encyclopedia of Computational Chemistry},
814 <  pages =        {271-277},
815 <  publisher =    {John Wiley \& Sons},
816 <  year =         1998,
817 <  editor =       {P.~v.~R. {Schleyer, {\it et al.}}},
818 <  volume =       1,
819 <  address =      {New York}
820 < }
821 <
822 < @InCollection{Jorgensen98,
823 <  author =       {W.~L. Jorgensen},
824 <  title =        {OPLS Force Fields},
825 <  booktitle =    {The Encyclopedia of Computational Chemistry},
826 <  pages =        {1986-1989},
827 <  publisher =    {John Wiley \& Sons},
828 <  year =         1998,
829 <  editor =       {P.~v.~R. {Schleyer, {\it et al.}}},
830 <  volume =       3,
831 <  address =      {New York}
832 < }
833 <
834 < @Article{Rabani2000,
835 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
836 <  title =        {Reply to `Comment on ``Direct Observation of
837 <                  Stretched-Exponential Relaxation in Low-Temperature
838 <                  Lennard-Jones Systems Using th eCage Correlation
839 <                  Function'' '},
840 <  journal =      prl,
841 <  year =         2000,
842 <  volume =       85,
843 <  pages =        467
844 < }
845 <
846 < @Book{Cevc87,
847 <  author =       {G. Cevc and D. Marsh},
848 <  title =        {Phospholipid Bilayers},
849 <  publisher =    {John Wiley \& Sons},
850 <  year =         1987,
851 <  address =      {New York}
852 < }
853 <
854 < @Article{Janiak79,
855 <  author =       {M.~J. Janiak and D.~M. Small and G.~G. Shipley},
856 <  title =        {Temperature and Compositional Dependence of the
857 <                  Structure of Hydrated Dimyristoyl Lecithin},
858 <  journal =      {J. Biol. Chem.},
859 <  year =         1979,
860 <  volume =       254,
861 <  pages =        {6068-6078}
862 < }
863 <
864 < @Book{Tobias90,
865 <  author =       {Sheila Tobias},
866 <  title =        {They're not Dumb. They're Different: Stalking the
867 <                  Second Tier},
868 <  publisher =    {Research Corp.},
869 <  year =         1990,
870 <  address =      {Tucson}
871 < }
872 <
873 < @Article{Mazur92,
874 <  author =       {E. Mazur},
875 <  title =        {Qualitative vs. Quantititative Thinking: Are we
876 <                  teaching the right thing? },
877 <  journal =      {Optics and Photonics News},
878 <  year =         1992,
879 <  volume =       3,
880 <  pages =        38
881 < }
882 <
883 < @Book{Mazur97,
884 <  author =       {Eric Mazur},
885 <  title =        {Peer Instruction: A User's Manual},
886 <  publisher =    {Prentice Hall},
887 <  year =         1997,
888 <  address =      {New Jersey}
889 < }
890 <
891 < @Article{Wigner55,
892 <  author =       {E.~P. Wigner},
893 <  title =        {Characteristic Vectors of Bordered Matrices with
894 <                  Infinite Dimensions},
895 <  journal =      {Annals of Mathematics},
896 <  year =         1955,
897 <  volume =       62,
898 <  pages =        {548-564}
899 < }
900 <
901 < @Article{Gaukel98,
902 <  author =       {C. Gaukel and H.~R. Schober},
903 <  title =        {Diffusion Mechanisms in under-cooled Binary Metal
904 <                  Liquids of $\mbox{Zr}_{67}\mbox{Cu}_{33}$},
905 <  journal =      {Solid State Comm.},
906 <  year =         1998,
907 <  volume =       107,
908 <  pages =        {1-5}
909 < }
910 <
911 < @Article{Qi99,
912 <  author =       {Y. Qi and T. \c{C}a\v{g}in and Y.
913 <                  Kimura and W.~A. {Goddard III}},
914 <  title =        {Molecular-dynamics simulations of glass formation
915 <                  and crystallization in binary liquid metals: $\mbox{Cu-Ag}$
916 <                  and $\mbox{Cu-Ni}$},
917 <  journal =      prb,
918 <  year =         1999,
919 <  volume =    59,
920 <  number =    5,
921 <  pages =     {3527-3533}
922 < }
923 <
924 < @Article{Khorunzhy97,
925 <  author =       {A. Khorunzhy and G.~J. Rodgers},
926 <  title =        {Eigenvalue distribution of large dilute random matrices},
927 <  journal =      {J. Math. Phys.},
928 <  year =         1997,
929 <  volume =       38,
930 <  pages =        {3300-3320}
931 < }
932 <
933 < @Article{Rodgers88,
934 <  author =       {G.~J. Rodgers and A. Bray},
935 <  title =        {Density of States of a Sparse Random Matrix},
936 <  journal =      {Phys. Rev. B},
937 <  year =         1988,
938 <  volume =       37,
939 <  pages =        355703562
940 < }
941 <
942 < @Article{Rodgers90,
943 <  author =       {G.~J. Rodgers and C. {De Dominicis}},
944 <  title =        {Density of states of sparse random matrices},
945 <  journal =      {J. Phys. A: Math. Gen.},
946 <  year =         1990,
947 <  volume =       23,
948 <  pages =        {1567-1573}
949 < }
950 <
951 < @InProceedings{Barker80,
952 <  author =       {J.~A. Barker},
953 <  title =        {Reaction field method for polar fluids},
954 <  booktitle =    {The problem of long-range forces in the computer
955 <                  simulation of condensed matter},
956 <  pages =        {45-6},
957 <  year =         1980,
958 <  editor =       {D. Ceperley},
959 <  volume =       9,
960 <  series =       {NRCC Workshop Proceedings}
961 < }
962 <
963 < @Article{Smith82,
964 <  author =       {W. Smith},
965 <  title =        {Point multipoles in the Ewald summation},
966 <  journal =      {CCP5 Quarterly},
967 <  year =         1982,
968 <  volume =       4,
969 <  pages =        {13-25}
970 < }
971 <
972 < @Article{Daw84,
973 <  author =       {M.~S. Daw and M.~I. Baskes},
974 <  title =        {Embedded-atom method: Derivation and application to
975 <                  impurities, surfaces, and other defects in metals},
976 <  journal =      prb,
977 <  year =         1984,
978 <  volume =    29,
979 <  number =    12,
980 <  pages =     {6443-6453}
981 < }
982 <
983 <
984 < @Article{Chen90,
985 <  author =       {A.~P. Sutton and J. Chen},
986 <  title =        {Long-Range $\mbox{Finnis Sinclair}$ Potentials},
987 <  journal =      {Phil. Mag. Lett.},
988 <  year =         1990,
989 <  volume =    61,
990 <  pages =     {139-146}
991 < }
992 <
993 < @Article{Lu97,
994 <  author =       {J. Lu and J.~A. Szpunar},
995 <  title =        {Applications of the embedded-atom method to glass
996 <                  formation and crystallization of liquid and glass
997 <                  transition-metal nickel},
998 <  journal =      {Phil. Mag. A},
999 <  year =         {1997},
1000 <  volume =    {75},
1001 <  pages =        {1057-1066},
1002 < }
1003 <
1004 < @Article{Shlesinger99,
1005 <  author =       {M.~F. Shlesinger and J. Klafter and G. Zumofen},
1006 <  title =        {Above, below, and beyond Brownian motion},
1007 <  journal =      {Am. J. Phys.},
1008 <  year =         1999,
1009 <  volume =       67,
1010 <  pages =        {1253-1259}
1011 < }
1012 <
1013 < @Article{Klafter96,
1014 <  author =       {J. Klafter and M. Shlesinger and G. Zumofen},
1015 <  title =        {Beyond Brownian Motion},
1016 <  journal =      {Physics Today},
1017 <  year =         1996,
1018 <  volume =       49,
1019 <  pages =        {33-39}
1020 < }
1021 <
1022 < @Article{Blumen83,
1023 <  author =       {A. Blumen and J. Klafter and G. Zumofen},
1024 <  title =        {Recombination in amorphous materials as a
1025 <                  continuous-time random-walk problem},
1026 <  journal =      {Phys. Rev. B},
1027 <  year =         1983,
1028 <  volume =       27,
1029 <  pages =        {3429-3435}
1030 < }
1031 <
1032 < @Article{Klafter94,
1033 <  author =       {J. Klafter and G. Zumofen},
1034 <  title =        {Probability Distributions for Continuous-Time Random
1035 <                  Walks with Long Tails},
1036 <  journal =      jpc,
1037 <  year =         1994,
1038 <  volume =       98,
1039 <  pages =        {7366-7370}
1040 < }
1041 <
1042 <
1043 < @Article{Dzugutov92,
1044 <  author =       {M. Dzugutov},
1045 <  title =        {Glass formation in a simple monatomic liquid with
1046 <                  icosahedral inherent local order},
1047 <  journal =      pra,
1048 <  year =         1992,
1049 <  volume =       46,
1050 <  pages =        {R2984-R2987}
1051 < }
1052 <
1053 < @Article{Moore94,
1054 <  author =       {P. Moore and T. Keyes},
1055 <  title =        {Normal Mode Analysis of Liquid $\mbox{CS}_2$: Velocity
1056 <                  Correlation Functions and Self-Diffusion Constants},
1057 <  journal =      jcp,
1058 <  year =         1994,
1059 <  volume =       100,
1060 <  pages =        6709
1061 < }
1062 <
1063 < @Article{Seeley89,
1064 <  author =       {G. Seeley and T. Keyes},
1065 <  title =        {Normal-mode analysis of liquid-state dynamics},
1066 <  journal =      jcp,
1067 <  year =         1989,
1068 <  volume =       91,
1069 <  pages =        {5581-5586}
1070 < }
1071 <
1072 < @Article{Madan90,
1073 <  author =       {B. Madan and T. Keyes and G. Seeley},
1074 <  title =        {Diffusion in supercooled liquids via normal mode
1075 <                  analysis},
1076 <  journal =      jcp,
1077 <  year =         1990,
1078 <  volume =       92,
1079 <  pages =        {7565-7569}
1080 < }
1081 <
1082 < @Article{Madan91,
1083 <  author =       {B. Madan and T. Keyes and G. Seeley},
1084 <  title =        {Normal mode analysis of the velocity correlation
1085 <                  function in supercooled liquids},
1086 <  journal =      jcp,
1087 <  year =         1991,
1088 <  volume =       94,
1089 <  pages =        {6762-6769}
1090 < }
1091 <
1092 < @Article{Buchner92,
1093 <  author =       {M. Buchner, B.~M. Ladanyi and R.~M. Stratt},
1094 <  title =        {The short-time dynamics of molecular
1095 <                  liquids. Instantaneous-normal-mode theory},
1096 <  journal =      jcp,
1097 <  year =         1992,
1098 <  volume =       97,
1099 <  pages =        {8522-8535}
1100 < }
1101 <
1102 < @Article{Wan94,
1103 <  author =       {Yi. Wan and R.~M. Stratt},
1104 <  title =        {Liquid theory for the instantaneous normal modes of
1105 <                  a liquid},
1106 <  journal =      jcp,
1107 <  year =         1994,
1108 <  volume =       100,
1109 <  pages =        {5123-5138}
1110 < }
1111 <
1112 < @article{Stratt95,
1113 <  author =       {R.~M. Stratt},
1114 <  title =        {The instantaneous normal modes of liquids},
1115 <  journal =      {Acc. Chem. Res.},
1116 <  year =         1995,
1117 <  volume =       28,
1118 <  pages =        {201-207}
1119 < }
1120 <
1121 < @Article{Nitzan95,
1122 <  author =       {G.~V. Vijayadamodar and A. Nitzan},
1123 <  title =        {On the application of instantaneous normal mode
1124 <                  analysis to long time dynamics of liquids},
1125 <  journal =      jcp,
1126 <  year =         1995,
1127 <  volume =       103,
1128 <  pages =        {2169-2177}
1129 < }
1130 <
1131 < @Article{Ribeiro98,
1132 <  author =       "M.~C.~C. Ribeiro and P.~A. Madden",
1133 <  title =        "Unstable Modes in Ionic Melts",
1134 <  journal =      jcp,
1135 <  year =         1998,
1136 <  volume =       108,
1137 <  pages =        {3256-3263}
1138 < }
1139 <
1140 < @Article{Keyes98a,
1141 <  author =       {T. Keyes and W.-X. Li and U.~Z{\"{u}}rcher},
1142 <  title =        {Comment on a critique of the instantaneous normal
1143 <                  mode (INM) approach to diffusion
1144 <                  (J. Chem. Phys. {\bf 107}, 4618 (1997))},
1145 <  journal =      jcp,
1146 <  year =         1998,
1147 <  volume =       109,
1148 <  pages =        {4693-4694}
1149 < }
1150 <
1151 < @Article{Alemany98,
1152 <  author =       {M.~M.~G. Alemany and C. Rey and L.~J. Gallego},
1153 <  title =        {Transport coefficients of liquid transition metals:
1154 <                  A computer simulation study using the embedded atom
1155 <                  model},
1156 <  journal =      jcp,
1157 <  year =         1998,
1158 <  volume =       109,
1159 <  pages =        {5175-5176}
1160 < }
1161 <
1162 < @Article{Belonoshko00,
1163 <  author =       {A.~B. Belonoshko and R. Ahuja and O. Eriksson and
1164 <                  B. Johansson},
1165 <  title =        {Quasi ab initio molecular dynamic study of Cu melting},
1166 <  journal =      prb,
1167 <  year =         2000,
1168 <  volume =       61,
1169 <  pages =        {3838-3844}
1170 < }
1171 <
1172 < @Article{Banhart92,
1173 <  author =       {J. Banhart and H. Ebert and R. Kuentzler and
1174 <                  J. Voitl\"{a}nder},
1175 <  title =        {Electronic properties of single-phased metastable
1176 <                  Ag-Cu alloys},
1177 <  journal =      prb,
1178 <  year =         1992,
1179 <  volume =       46,
1180 <  pages =        {9968-9975}
1181 < }
1182 <
1183 < @Article{Wendt78,
1184 <  author =       {H. Wendt and F.~F. Abraham},
1185 <  title =        {},
1186 <  journal =      prl,
1187 <  year =         1978,
1188 <  volume =       41,
1189 <  pages =        1244
1190 < }
1191 <
1192 < @Article{Lewis91,
1193 <  author =       {L.~J. Lewis},
1194 <  title =        {Atomic dynamics through the glass transition},
1195 <  journal =      prb,
1196 <  year =         1991,
1197 <  volume =       44,
1198 <  pages =        {4245-4254}
1199 < }
1200 <
1201 < @Article{Liu92,
1202 <  author =       {R.~S. Liu and D.~W. Qi and S. Wang},
1203 <  title =        {Subpeaks of structure factors for rapidly quenched metals},
1204 <  journal =      prb,
1205 <  year =         1992,
1206 <  volume =       45,
1207 <  pages =        {451-453}
1208 < }
1209 <
1210 < @Book{pliny,
1211 <  author =       {Pliny},
1212 <  title =        {Hist. Nat.},
1213 <  publisher =    { },
1214 <  year =         { },
1215 <  volume =       {XXXVI}
1216 < }
1217 <
1218 < @Article{Anheuser94,
1219 <  author =       {K. Anheuser and J.P. Northover},
1220 <  title =        {Silver plating of Roman and Celtic coins from Britan - a technical study},
1221 <  journal =      {Brit. Num. J.},
1222 <  year =         1994,
1223 <  volume =       64,
1224 <  pages =        22
1225 < }
1226 <
1227 < @Article{Pense92,
1228 <  author =       {A. W. Pense},
1229 <  title =        {The Decline and Fall of the Roman Denarius},
1230 <  journal =      {Mat. Char.},
1231 <  year =         1992,
1232 <  volume =       29,
1233 <  pages =        213
1234 < }
1235 <
1236 < @Article{Ngai81,
1237 <  author =       {K.~L. Ngai and F.-S. Liu},
1238 <  title =        {Dispersive diffusion transport and noise,
1239 <                  time-dependent diffusion coefficient, generalized
1240 <                  Einstein-Nernst relation, and dispersive
1241 <                  diffusion-controlled unimolecular and bimolecular
1242 <                  reactions},
1243 <  journal =      prb,
1244 <  year =         1981,
1245 <  volume =       24,
1246 <  pages =        {1049-1065}
1247 < }
1248 <
1249 < @Unpublished{Truhlar00,
1250 <  author =       {D.~G. Truhlar and A. Kohen},
1251 <  note =         {private correspondence}
1252 < }
1253 <
1254 < @Article{Truhlar78,
1255 <  author =       {Donald G. Truhlar},
1256 <  title =        {Interpretation of the Activation Energy},
1257 <  journal =      {J. Chem. Ed.},
1258 <  year =         1978,
1259 <  volume =       55,
1260 <  pages =        309
1261 < }
1262 <
1263 < @Book{Tolman27,
1264 <  author =       {R. C. Tolman},
1265 <  title =        {Statistical Mechanics with Applications to Physics and Chemistry},
1266 <  chapter =      {},
1267 <  publisher =    {Chemical Catalog Co.},
1268 <  address =      {New York},
1269 <  year =         1927,
1270 <  pages =        {260-270}
1271 < }
1272 <
1273 < @Article{Tolman20,
1274 <  author =       {R. C. Tolman},
1275 <  title =        {Statistical Mechanics Applied to Chemical Kinetics},
1276 <  journal =      jacs,
1277 <  year =         1920,
1278 <  volume =       42,
1279 <  pages =        2506
1280 < }
1281 <
1282 < @Article{Nagel96,
1283 <  author =       {M.D. Ediger and  C.A. Angell and Sidney R. Nagel},
1284 <  title =        {Supercooled Liquids and Glasses},
1285 <  journal =      jpc,
1286 <  year =         1996,
1287 <  volume =       100,
1288 <  pages =        13200
1289 < }
1290 <
1291 < @InBook{Blumen86,
1292 <  author =       {A. Blumen and J. Klafter and G. Zumofen},
1293 <  editor =       {Luciano Peitronero and E. Tosatti},
1294 <  title =        {Fractals in Physics},
1295 <  chapter =      {Reactions in Disordered Media Modelled by Fractals},
1296 <  publisher =    {North-Holland},
1297 <  year =         1986,
1298 <  series =       {International Symposium on Fractals in Physics},
1299 <  address =      {Amsterdam},
1300 <  pages =        399
1301 < }
1302 <
1303 < @Article{Shlesinger84,
1304 <  author =       {M.~F. Shlesinger and E.~W. Montroll},
1305 <  title =        {On the Williams-Watts function of dielectric relaxation},
1306 <  journal =      {Proc. Natl. Acad. Sci. USA},
1307 <  year =         1984,
1308 <  volume =       81,
1309 <  pages =        {1280-1283}
1310 < }
1311 <
1312 < @Article{Klafter86,
1313 <  author =       {J. Klafter and M.~F. Shlesinger},
1314 <  title =        {On the relationship among three theories of
1315 <                  relaxation in disordered systems},
1316 <  journal =      {Proc. Natl. Acad. Sci. USA},
1317 <  year =         1986,
1318 <  volume =       83,
1319 <  pages =        {848-851}
1320 < }
1321 <
1322 < @Article{Li2001,
1323 <  author =   {Z. Li and M. Lieberman and W. Hill},
1324 <  title =    {{\sc xps} and {\sc sers} Study of Silicon Phthalocyanine
1325 <                  Monolayers: umbrella vs. octopus design strategies
1326 <                  for formation of oriented {\sc sam}s},
1327 <  journal =      {Langmuir},
1328 <  year =     2001,
1329 <  volume =       17,
1330 <  pages =        {4887-4894}
1331 < }
1332 <
1333 < @Article{Evans1993,
1334 <  author =       {J.~W. Evans},
1335 <  title =        {Random and Cooperative Sequential Adsorption},
1336 <  journal =      rmp,
1337 <  year =         1993,
1338 <  volume =       65,
1339 <  pages =        {1281-1329}
1340 < }
1341 <
1342 <
1343 < @Article{Dwyer1977,
1344 <  author =   {D.~J. Dwyer and G.~W. Simmons and R.~P. Wei},
1345 <  title =    {},
1346 <  journal =      {Surf. Sci.},
1347 <  year =     1977,
1348 <  volume =   64,
1349 <  pages =    617
1350 < }
1351 <
1352 < @Article{Macritche1978,
1353 <  author =   {F. MacRitche},
1354 <  title =    {},
1355 <  journal =      {Adv. Protein Chem.},
1356 <  year =     1978,
1357 <  volume =   32,
1358 <  pages =    283
1359 < }
1360 <
1361 < @Article{Feder1980,
1362 <  author =   {J. Feder},
1363 <  title =    {},
1364 <  journal =      {J. Theor. Biol.},
1365 <  year =     1980,
1366 <  volume =   87,
1367 <  pages =    237
1368 < }
1369 <
1370 < @Article{Ramsden1993,
1371 <  author =   {J.~J. Ramsden},
1372 <  title =    {},
1373 <  journal =      prl,
1374 <  year =     1993,
1375 <  volume =   71,
1376 <  pages =    295
1377 < }
1378 <
1379 <
1380 < @Article{Egelhoff1989,
1381 <  author =   {W.~F. Egelhoff and I. Jacob},
1382 <  title =    {},
1383 <  journal =      prl,
1384 <  year =     1989,
1385 <  volume =   62,
1386 <  pages =    921
1387 < }
1388 <
1389 <
1390 < @Article{Viot1992a,
1391 <  author =   {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1392 <  title =    {RANDOM SEQUENTIAL ADSORPTION OF ANISOTROPIC
1393 <                  PARTICLES 1. JAMMING LIMIT AND ASYMPTOTIC-BEHAVIOR},
1394 <  journal =      jpc,
1395 <  year =     1992,
1396 <  volume =   97,
1397 <  pages =    {5212-5218}
1398 < }
1399 <
1400 < @Article{Viot1992b,
1401 <  author =   {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1402 <  title =    {SATURATION COVERAGE IN RANDOM SEQUENTIAL ADSORPTION
1403 <                  OF VERY ELONGATED PARTICLES},
1404 <  journal =      {Physica A},
1405 <  year =     1992,
1406 <  volume =   191,
1407 <  pages =    {248-252}
1408 < }
1409 <
1410 < @Article{Dobson1987,
1411 <  author =       {B.~W. Dobson},
1412 <  title =        {},
1413 <  journal =      prb,
1414 <  year =         1987,
1415 <  volume =       36,
1416 <  pages =        1068
1417 < }
1418 <
1419 < @Article{Boyer1995,
1420 <  author =       {D. Boyer and P. Viot and G. Tarjus and J. Talbot},
1421 <  title =        {PERCUS-$\mbox{Y}$EVICK-LIKE INTERGRAL EQUATION FOR RANDOM SEQUENTIAL
1422 <                  ADSORPTION},
1423 <  journal =      jcp,
1424 <  year =         1995,
1425 <  volume =       103,
1426 <  pages =        1607
1427 < }
1428 <
1429 < @Article{Viot1992c,
1430 <  author =       {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1431 <  title =        {SATURATION COVERAGE OF HIGHLY ELONGATED ANISOTROPIC
1432 <                  PARTICLES},
1433 <  journal =      {Physica A},
1434 <  year =         1992,
1435 <  volume =       191,
1436 <  pages =        {248-252}
1437 < }
1438 <
1439 < @Article{Ricci1994,
1440 <  author =       {S.~M. Ricci and J. Talbot and G. Tarjus and P. Viot},
1441 <  title =        {A STRUCTURAL COMPARISON OF RANDOM SEQUENTIAL ADSORPTION AND
1442 <                  EQUILIBRIUM CONFIGURATIONS OF SPHEROCYLINDERS},
1443 <  journal =      jcp,
1444 <  year =         1994,
1445 <  volume =       101,
1446 <  pages =        9164
1447 < }
1448 <
1449 < @Article{Semmler1998,
1450 <  author =   {M. Semmler and E.~K. Mann and J. Ricka and M. Borkovec},
1451 <  title =    {Diffusional Deposition of Charged Latex Particles on
1452 <                  Water-Solid Interfaces at Low Ionic Strength},
1453 <  journal =      {Langmuir},
1454 <  year =     1998,
1455 <  volume =   14,
1456 <  pages =    {5127-5132}
1457 < }
1458 <
1459 < @Article{Solomon1986,
1460 <  author =   {H. Solomon and H. Weiner},
1461 <  title =    {A REVIEW OF THE PACKING PROBLEM},
1462 <  journal =      {Comm. Statistics A},
1463 <  year =     1986,
1464 <  volume =   15,
1465 <  pages =    {2571-2607}
1466 < }
1467 <
1468 < @Article{Bonnier1993,
1469 <  author =   {B. Bonnier and M. Hontebeyrie and C. Meyers},
1470 <  title =    {ON THE RANDOM FILLING OF R(D) BY NONOVERLAPPING
1471 <                  D-DIMENSIONAL CUBES},
1472 <  journal =      {Physica A},
1473 <  year =     1993,
1474 <  volume =   198,
1475 <  pages =    {1-10}
1476 < }
1477 <
1478 < @Book{Frenkel1996,
1479 <  author =   {D. Frenkel and B. Smit},
1480 <  title =    {Understanding Molecular Simulation : From Algorithms
1481 <                  to Applications},
1482 <  publisher =    {Academic Press},
1483 <  year =     1996,
1484 <  address =  {New York}
1485 <
1486 <
1487 < }
1488 <
1489 < @Article{Dullweber1997,
1490 <  author =   {A. Dullweber and B. Leimkuhler and R. McLachlan},
1491 <  title =    {Symplectic splitting methods for rigid body molecular
1492 <                  dynamics},
1493 <  journal =      jcp,
1494 <  year =     1997,
1495 <  volume =   107,
1496 <  number =   15,
1497 <  pages =    {5840-5851}
1498 < }
1499 <
1500 < @Article{Siepmann1998,
1501 <  author =   {M. Martin and J.~I. Siepmann},
1502 <  title =    {Transferable Potentials for Phase Equilibria. 1. United-Atom
1503 <                  Description of n-Alkanes},
1504 <  journal =      jpcB,
1505 <  year =     1998,
1506 <  volume =   102,
1507 <  pages =    {2569-2577}
1508 < }
1509 <
1510 < @Article{Marrink01,
1511 <  author =   {S.~J. Marrink and E. Lindahl and O. Edholm and A.~E. Mark},
1512 <  title =    {Simulations of the Spontaneous Aggregation of Phospholipids
1513 <                  into Bilayers},
1514 <  journal =      jacs,
1515 <  year =     2001,
1516 <  volume =   123,
1517 <  pages =    {8638-8639}
1518 < }
1519 <
1520 < @Article{liu96:new_model,
1521 <  author =   {Y. Liu and T. Ichiye},
1522 <  title =    {Soft sticky dipole potential for liquid water: a new model},
1523 <  journal =      jpc,
1524 <  year =     1996,
1525 <  volume =   100,
1526 <  pages =    {2723-2730}
1527 < }
1528 <
1529 < @Article{liu96:monte_carlo,
1530 <  author =   {Y. Liu and T. Ichiye},
1531 <  title =    {The static dielectric constant of the soft sticky dipole model of liquid water: $\mbox{Monte Carlo}$ simulation},
1532 <  journal =      {Chemical Physics Letters},
1533 <  year =     1996,
1534 <  volume =   256,
1535 <  pages =    {334-340}
1536 < }
1537 <
1538 < @Article{chandra99:ssd_md,
1539 <  author =   {A. Chandra and T. Ichiye},
1540 <  title =    {Dynamical properties of the soft sticky dipole model of water: Molecular dynamics simulation},
1541 <  journal =      {Journal of Chemical Physics},
1542 <  year =     1999,
1543 <  volume =   111,
1544 <  number =   6,
1545 <  pages =    {2701-2709}
1 > This file was created with JabRef 2.0.1.
2 > Encoding: GBK
3 >
4 > @ARTICLE{Torre2003,
5 >  author = {J. G. {de la Torre} and H. E. Sanchez and A. Ortega and J. G. Hernandez
6 >        and M. X. Fernandes and F. G. Diaz and M. C. L. Martinez},
7 >  title = {Calculation of the solution properties of flexible macromolecules:
8 >        methods and applications},
9 >  journal = {European Biophysics Journal with Biophysics Letters},
10 >  year = {2003},
11 >  volume = {32},
12 >  pages = {477-486},
13 >  number = {5},
14 >  month = {Aug},
15 >  abstract = {While the prediction of hydrodynamic properties of rigid particles
16 >        is nowadays feasible using simple and efficient computer programs,
17 >        the calculation of such properties and, in general, the dynamic
18 >        behavior of flexible macromolecules has not reached a similar situation.
19 >        Although the theories are available, usually the computational work
20 >        is done using solutions specific for each problem. We intend to
21 >        develop computer programs that would greatly facilitate the task
22 >        of predicting solution behavior of flexible macromolecules. In this
23 >        paper, we first present an overview of the two approaches that are
24 >        most practical: the Monte Carlo rigid-body treatment, and the Brownian
25 >        dynamics simulation technique. The Monte Carlo procedure is based
26 >        on the calculation of properties for instantaneous conformations
27 >        of the macromolecule that are regarded as if they were instantaneously
28 >        rigid. We describe how a Monte Carlo program can be interfaced to
29 >        the programs in the HYDRO suite for rigid particles, and provide
30 >        an example of such calculation, for a hypothetical particle: a protein
31 >        with two domains connected by a flexible linker. We also describe
32 >        briefly the essentials of Brownian dynamics, and propose a general
33 >        mechanical model that includes several kinds of intramolecular interactions,
34 >        such as bending, internal rotation, excluded volume effects, etc.
35 >        We provide an example of the application of this methodology to
36 >        the dynamics of a semiflexible, wormlike DNA.},
37 >  annote = {724XK Times Cited:6 Cited References Count:64},
38 >  issn = {0175-7571},
39 >  uri = {<Go to ISI>://000185513400011},
40 > }
41 >
42 > @ARTICLE{Alakent2005,
43 >  author = {B. Alakent and M. C. Camurdan and P. Doruker},
44 >  title = {Hierarchical structure of the energy landscape of proteins revisited
45 >        by time series analysis. II. Investigation of explicit solvent effects},
46 >  journal = {Journal of Chemical Physics},
47 >  year = {2005},
48 >  volume = {123},
49 >  pages = {-},
50 >  number = {14},
51 >  month = {Oct 8},
52 >  abstract = {Time series analysis tools are employed on the principal modes obtained
53 >        from the C-alpha trajectories from two independent molecular-dynamics
54 >        simulations of alpha-amylase inhibitor (tendamistat). Fluctuations
55 >        inside an energy minimum (intraminimum motions), transitions between
56 >        minima (interminimum motions), and relaxations in different hierarchical
57 >        energy levels are investigated and compared with those encountered
58 >        in vacuum by using different sampling window sizes and intervals.
59 >        The low-frequency low-indexed mode relationship, established in
60 >        vacuum, is also encountered in water, which shows the reliability
61 >        of the important dynamics information offered by principal components
62 >        analysis in water. It has been shown that examining a short data
63 >        collection period (100 ps) may result in a high population of overdamped
64 >        modes, while some of the low-frequency oscillations (< 10 cm(-1))
65 >        can be captured in water by using a longer data collection period
66 >        (1200 ps). Simultaneous analysis of short and long sampling window
67 >        sizes gives the following picture of the effect of water on protein
68 >        dynamics. Water makes the protein lose its memory: future conformations
69 >        are less dependent on previous conformations due to the lowering
70 >        of energy barriers in hierarchical levels of the energy landscape.
71 >        In short-time dynamics (< 10 ps), damping factors extracted from
72 >        time series model parameters are lowered. For tendamistat, the friction
73 >        coefficient in the Langevin equation is found to be around 40-60
74 >        cm(-1) for the low-indexed modes, compatible with literature. The
75 >        fact that water has increased the friction and that on the other
76 >        hand has lubrication effect at first sight contradicts. However,
77 >        this comes about because water enhances the transitions between
78 >        minima and forces the protein to reduce its already inherent inability
79 >        to maintain oscillations observed in vacuum. Some of the frequencies
80 >        lower than 10 cm(-1) are found to be overdamped, while those higher
81 >        than 20 cm(-1) are slightly increased. As for the long-time dynamics
82 >        in water, it is found that random-walk motion is maintained for
83 >        approximately 200 ps (about five times of that in vacuum) in the
84 >        low-indexed modes, showing the lowering of energy barriers between
85 >        the higher-level minima.},
86 >  annote = {973OH Times Cited:1 Cited References Count:33},
87 >  issn = {0021-9606},
88 >  uri = {<Go to ISI>://000232532000064},
89 > }
90 >
91 > @BOOK{Allen1987,
92 >  title = {Computer Simulations of Liquids},
93 >  publisher = {Oxford University Press},
94 >  year = {1987},
95 >  author = {M.~P. Allen and D.~J. Tildesley},
96 >  address = {New York},
97 > }
98 >
99 > @ARTICLE{Allison1991,
100 >  author = {S. A. Allison},
101 >  title = {A Brownian Dynamics Algorithm for Arbitrary Rigid Bodies - Application
102 >        to Polarized Dynamic Light-Scattering},
103 >  journal = {Macromolecules},
104 >  year = {1991},
105 >  volume = {24},
106 >  pages = {530-536},
107 >  number = {2},
108 >  month = {Jan 21},
109 >  abstract = {A Brownian dynamics algorithm is developed to simulate dynamics experiments
110 >        of rigid macromolecules. It is applied to polarized dynamic light
111 >        scattering from rodlike sturctures and from a model of a DNA fragment
112 >        (762 base pairs). A number of rod cases are examined in which the
113 >        translational anisotropy is increased form zero to a large value.
114 >        Simulated first cumulants as well as amplitudes and lifetimes of
115 >        the dynamic form factor are compared with predictions of analytic
116 >        theories and found to be in very good agreement with them. For DNA
117 >        fragments 762 base pairs in length or longer, translational anisotropy
118 >        does not contribute significantly to dynamic light scattering. In
119 >        a comparison of rigid and flexible simulations on semistiff models
120 >        of this fragment, it is shown directly that flexing contributes
121 >        to the faster decay processes probed by light scattering and that
122 >        the flexible model studies are in good agreement with experiment.},
123 >  annote = {Eu814 Times Cited:8 Cited References Count:32},
124 >  issn = {0024-9297},
125 >  uri = {<Go to ISI>://A1991EU81400029},
126 > }
127 >
128 > @ARTICLE{Auerbach2005,
129 >  author = {A. Auerbach},
130 >  title = {Gating of acetylcholine receptor channels: Brownian motion across
131 >        a broad transition state},
132 >  journal = {Proceedings of the National Academy of Sciences of the United States
133 >        of America},
134 >  year = {2005},
135 >  volume = {102},
136 >  pages = {1408-1412},
137 >  number = {5},
138 >  month = {Feb 1},
139 >  abstract = {Acetylcholine receptor channels (AChRs) are proteins that switch between
140 >        stable #closed# and #open# conformations. In patch clamp recordings,
141 >        diliganded AChR gating appears to be a simple, two-state reaction.
142 >        However, mutagenesis studies indicate that during gating dozens
143 >        of residues across the protein move asynchronously and are organized
144 >        into rigid body gating domains (#blocks#). Moreover, there is an
145 >        upper limit to the apparent channel opening rate constant. These
146 >        observations suggest that the gating reaction has a broad, corrugated
147 >        transition state region, with the maximum opening rate reflecting,
148 >        in part, the mean first-passage time across this ensemble. Simulations
149 >        reveal that a flat, isotropic energy profile for the transition
150 >        state can account for many of the essential features of AChR gating.
151 >        With this mechanism, concerted, local structural transitions that
152 >        occur on the broad transition state ensemble give rise to fractional
153 >        measures of reaction progress (Phi values) determined by rate-equilibrium
154 >        free energy relationship analysis. The results suggest that the
155 >        coarse-grained AChR gating conformational change propagates through
156 >        the protein with dynamics that are governed by the Brownian motion
157 >        of individual gating blocks.},
158 >  annote = {895QF Times Cited:9 Cited References Count:33},
159 >  issn = {0027-8424},
160 >  uri = {<Go to ISI>://000226877300030},
161 > }
162 >
163 > @ARTICLE{Baber1995,
164 >  author = {J. Baber and J. F. Ellena and D. S. Cafiso},
165 >  title = {Distribution of General-Anesthetics in Phospholipid-Bilayers Determined
166 >        Using H-2 Nmr and H-1-H-1 Noe Spectroscopy},
167 >  journal = {Biochemistry},
168 >  year = {1995},
169 >  volume = {34},
170 >  pages = {6533-6539},
171 >  number = {19},
172 >  month = {May 16},
173 >  abstract = {The effect of the general anesthetics halothane, enflurane, and isoflurane
174 >        on hydrocarbon chain packing in palmitoyl(d(31))oleoylphosphatidylcholine
175 >        membranes in the liquid crystalline phase was investigated using
176 >        H-2 NMR. Upon the addition of the anesthetics, the first five methylene
177 >        units near the interface generally show a very small increase in
178 >        segmental order, while segments deeper within the bilayer show a
179 >        small decrease in segmental order. From the H-2 NMR results, the
180 >        chain length for the perdeuterated palmitoyl chain in the absence
181 >        of anesthetic was found to be 12.35 Angstrom. Upon the addition
182 >        of halothane enflurane, or isoflurane, the acyl chain undergoes
183 >        slight contractions of 0.11, 0.20, or 0.16 Angstrom, respectively,
184 >        at 50 mol % anesthetic. A simple model was used to estimate the
185 >        relative amounts of anesthetic located near the interface and deeper
186 >        in the bilayer hydrocarbon region, and only a slight preference
187 >        for an interfacial location was observed. Intermolecular H-1-H-1
188 >        nuclear Overhauser effects (NOEs) were measured between phospholipid
189 >        and halothane protons. These NOEs are consistent with the intramembrane
190 >        location of the anesthetics suggested by the H-2 NMR data. In addition,
191 >        the NOE data indicate that anesthetics prefer the interfacial and
192 >        hydrocarbon regions of the membrane and are not found in high concentrations
193 >        in the phospholipid headgroup.},
194 >  annote = {Qz716 Times Cited:38 Cited References Count:37},
195 >  issn = {0006-2960},
196 >  uri = {<Go to ISI>://A1995QZ71600035},
197 > }
198 >
199 > @ARTICLE{Banerjee2004,
200 >  author = {D. Banerjee and B. C. Bag and S. K. Banik and D. S. Ray},
201 >  title = {Solution of quantum Langevin equation: Approximations, theoretical
202 >        and numerical aspects},
203 >  journal = {Journal of Chemical Physics},
204 >  year = {2004},
205 >  volume = {120},
206 >  pages = {8960-8972},
207 >  number = {19},
208 >  month = {May 15},
209 >  abstract = {Based on a coherent state representation of noise operator and an
210 >        ensemble averaging procedure using Wigner canonical thermal distribution
211 >        for harmonic oscillators, a generalized quantum Langevin equation
212 >        has been recently developed [Phys. Rev. E 65, 021109 (2002); 66,
213 >        051106 (2002)] to derive the equations of motion for probability
214 >        distribution functions in c-number phase-space. We extend the treatment
215 >        to explore several systematic approximation schemes for the solutions
216 >        of the Langevin equation for nonlinear potentials for a wide range
217 >        of noise correlation, strength and temperature down to the vacuum
218 >        limit. The method is exemplified by an analytic application to harmonic
219 >        oscillator for arbitrary memory kernel and with the help of a numerical
220 >        calculation of barrier crossing, in a cubic potential to demonstrate
221 >        the quantum Kramers' turnover and the quantum Arrhenius plot. (C)
222 >        2004 American Institute of Physics.},
223 >  annote = {816YY Times Cited:8 Cited References Count:35},
224 >  issn = {0021-9606},
225 >  uri = {<Go to ISI>://000221146400009},
226 > }
227 >
228 > @ARTICLE{Barth1998,
229 >  author = {E. Barth and T. Schlick},
230 >  title = {Overcoming stability limitations in biomolecular dynamics. I. Combining
231 >        force splitting via extrapolation with Langevin dynamics in LN},
232 >  journal = {Journal of Chemical Physics},
233 >  year = {1998},
234 >  volume = {109},
235 >  pages = {1617-1632},
236 >  number = {5},
237 >  month = {Aug 1},
238 >  abstract = {We present an efficient new method termed LN for propagating biomolecular
239 >        dynamics according to the Langevin equation that arose fortuitously
240 >        upon analysis of the range of harmonic validity of our normal-mode
241 >        scheme LIN. LN combines force linearization with force splitting
242 >        techniques and disposes of LIN'S computationally intensive minimization
243 >        (anharmonic correction) component. Unlike the competitive multiple-timestepping
244 >        (MTS) schemes today-formulated to be symplectic and time-reversible-LN
245 >        merges the slow and fast forces via extrapolation rather than impulses;
246 >        the Langevin heat bath prevents systematic energy drifts. This combination
247 >        succeeds in achieving more significant speedups than these MTS methods
248 >        which are Limited by resonance artifacts to an outer timestep less
249 >        than some integer multiple of half the period of the fastest motion
250 >        (around 4-5 fs for biomolecules). We show that LN achieves very
251 >        good agreement with small-timestep solutions of the Langevin equation
252 >        in terms of thermodynamics (energy means and variances), geometry,
253 >        and dynamics (spectral densities) for two proteins in vacuum and
254 >        a large water system. Significantly, the frequency of updating the
255 >        slow forces extends to 48 fs or more, resulting in speedup factors
256 >        exceeding 10. The implementation of LN in any program that employs
257 >        force-splitting computations is straightforward, with only partial
258 >        second-derivative information required, as well as sparse Hessian/vector
259 >        multiplication routines. The linearization part of LN could even
260 >        be replaced by direct evaluation of the fast components. The application
261 >        of LN to biomolecular dynamics is well suited for configurational
262 >        sampling, thermodynamic, and structural questions. (C) 1998 American
263 >        Institute of Physics.},
264 >  annote = {105HH Times Cited:29 Cited References Count:49},
265 >  issn = {0021-9606},
266 >  uri = {<Go to ISI>://000075066300006},
267 > }
268 >
269 > @ARTICLE{Batcho2001,
270 >  author = {P. F. Batcho and T. Schlick},
271 >  title = {Special stability advantages of position-Verlet over velocity-Verlet
272 >        in multiple-time step integration},
273 >  journal = {Journal of Chemical Physics},
274 >  year = {2001},
275 >  volume = {115},
276 >  pages = {4019-4029},
277 >  number = {9},
278 >  month = {Sep 1},
279 >  abstract = {We present an analysis for a simple two-component harmonic oscillator
280 >        that compares the use of position-Verlet to velocity-Verlet for
281 >        multiple-time step integration. The numerical stability analysis
282 >        based on the impulse-Verlet splitting shows that position-Verlet
283 >        has enhanced stability, in terms of the largest allowable time step,
284 >        for cases where an ample separation of time scales exists. Numerical
285 >        investigations confirm the advantages of the position-Verlet scheme
286 >        when used for the fastest time scales of the system. Applications
287 >        to a biomolecule. a solvated protein, for both Newtonian and Langevin
288 >        dynamics echo these trends over large outer time-step regimes. (C)
289 >        2001 American Institute of Physics.},
290 >  annote = {469KV Times Cited:6 Cited References Count:30},
291 >  issn = {0021-9606},
292 >  uri = {<Go to ISI>://000170813800005},
293 > }
294 >
295 > @ARTICLE{Bates2005,
296 >  author = {M. A. Bates and G. R. Luckhurst},
297 >  title = {Biaxial nematic phases and V-shaped molecules: A Monte Carlo simulation
298 >        study},
299 >  journal = {Physical Review E},
300 >  year = {2005},
301 >  volume = {72},
302 >  pages = {-},
303 >  number = {5},
304 >  month = {Nov},
305 >  abstract = {Inspired by recent claims that compounds composed of V-shaped molecules
306 >        can exhibit the elusive biaxial nematic phase, we have developed
307 >        a generic simulation model for such systems. This contains the features
308 >        of the molecule that are essential to its liquid crystal behavior,
309 >        namely the anisotropies of the two arms and the angle between them.
310 >        The behavior of the model has been investigated using Monte Carlo
311 >        simulations for a wide range of these structural parameters. This
312 >        allows us to establish the relationship between the V-shaped molecule
313 >        and its ability to form a biaxial nematic phase. Of particular importance
314 >        are the criteria of geometry and the relative anisotropy necessary
315 >        for the system to exhibit a Landau point, at which the biaxial nematic
316 >        is formed directly from the isotropic phase. The simulations have
317 >        also been used to determine the orientational order parameters for
318 >        a selection of molecular axes. These are especially important because
319 >        they reveal the phase symmetry and are connected to the experimental
320 >        determination of this. The simulation results show that, whereas
321 >        some positions are extremely sensitive to the phase biaxiality,
322 >        others are totally blind to this.},
323 >  annote = {Part 1 988LQ Times Cited:0 Cited References Count:38},
324 >  issn = {1539-3755},
325 >  uri = {<Go to ISI>://000233603100030},
326 > }
327 >
328 > @ARTICLE{Beard2003,
329 >  author = {D. A. Beard and T. Schlick},
330 >  title = {Unbiased rotational moves for rigid-body dynamics},
331 >  journal = {Biophysical Journal},
332 >  year = {2003},
333 >  volume = {85},
334 >  pages = {2973-2976},
335 >  number = {5},
336 >  month = {Nov 1},
337 >  abstract = {We introduce an unbiased protocol for performing rotational moves
338 >        in rigid-body dynamics simulations. This approach - based on the
339 >        analytic solution for the rotational equations of motion for an
340 >        orthogonal coordinate system at constant angular velocity - removes
341 >        deficiencies that have been largely ignored in Brownian dynamics
342 >        simulations, namely errors for finite rotations that result from
343 >        applying the noncommuting rotational matrices in an arbitrary order.
344 >        Our algorithm should thus replace standard approaches to rotate
345 >        local coordinate frames in Langevin and Brownian dynamics simulations.},
346 >  annote = {736UA Times Cited:0 Cited References Count:11},
347 >  issn = {0006-3495},
348 >  uri = {<Go to ISI>://000186190500018},
349 > }
350 >
351 > @ARTICLE{Beloborodov1998,
352 >  author = {I. S. Beloborodov and V. Y. Orekhov and A. S. Arseniev},
353 >  title = {Effect of coupling between rotational and translational Brownian
354 >        motions on NMR spin relaxation: Consideration using green function
355 >        of rigid body diffusion},
356 >  journal = {Journal of Magnetic Resonance},
357 >  year = {1998},
358 >  volume = {132},
359 >  pages = {328-329},
360 >  number = {2},
361 >  month = {Jun},
362 >  abstract = {Using the Green function of arbitrary rigid Brownian diffusion (Goldstein,
363 >        Biopolymers 33, 409-436, 1993), it was analytically shown that coupling
364 >        between translation and rotation diffusion degrees of freedom does
365 >        not affect the correlation functions relevant to the NMR intramolecular
366 >        relaxation. It follows that spectral densities usually used for
367 >        the anisotropic rotation diffusion (Woessner, J. Chem. Phys. 37,
368 >        647-654, 1962) can be regarded as exact in respect to the rotation-translation
369 >        coupling for the spin system connected with a rigid body. (C) 1998
370 >        Academic Press.},
371 >  annote = {Zu605 Times Cited:2 Cited References Count:6},
372 >  issn = {1090-7807},
373 >  uri = {<Go to ISI>://000074214800017},
374 > }
375 >
376 > @ARTICLE{Berardi1996,
377 >  author = {R. Berardi and S. Orlandi and C. Zannoni},
378 >  title = {Antiphase structures in polar smectic liquid crystals and their molecular
379 >        origin},
380 >  journal = {Chemical Physics Letters},
381 >  year = {1996},
382 >  volume = {261},
383 >  pages = {357-362},
384 >  number = {3},
385 >  month = {Oct 18},
386 >  abstract = {We demonstrate that the overall molecular dipole organization in a
387 >        smectic liquid crystal formed of polar molecules can be strongly
388 >        influenced by the position of the dipole in the molecule. We study
389 >        by large scale Monte Carlo simulations systems of attractive-repulsive
390 >        ''Gay-Berne'' elongated ellipsoids with an axial dipole at the center
391 >        or near the end of the molecule and we show that monolayer smectic
392 >        liquid crystals and modulated antiferroelectric bilayer stripe domains
393 >        similar to the experimentally observed ''antiphase'' structures
394 >        are obtained in the two cases.},
395 >  annote = {Vn637 Times Cited:49 Cited References Count:26},
396 >  issn = {0009-2614},
397 >  uri = {<Go to ISI>://A1996VN63700023},
398 > }
399 >
400 > @ARTICLE{Berkov2005,
401 >  author = {D. V. Berkov and N. L. Gorn},
402 >  title = {Stochastic dynamic simulations of fast remagnetization processes:
403 >        recent advances and applications},
404 >  journal = {Journal of Magnetism and Magnetic Materials},
405 >  year = {2005},
406 >  volume = {290},
407 >  pages = {442-448},
408 >  month = {Apr},
409 >  abstract = {Numerical simulations of fast remagnetization processes using stochastic
410 >        dynamics are widely used to study various magnetic systems. In this
411 >        paper, we first address several crucial methodological problems
412 >        of such simulations: (i) the influence of finite-element discretization
413 >        on simulated dynamics, (ii) choice between Ito and Stratonovich
414 >        stochastic calculi by the solution of micromagnetic stochastic equations
415 >        of motion and (iii) non-trivial correlation properties of the random
416 >        (thermal) field. Next, we discuss several examples to demonstrate
417 >        the great potential of the Langevin dynamics for studying fast remagnetization
418 >        processes in technically relevant applications: we present numerical
419 >        analysis of equilibrium magnon spectra in patterned structures,
420 >        study thermal noise effects on the magnetization dynamics of nanoelements
421 >        in pulsed fields and show some results for a remagnetization dynamics
422 >        induced by a spin-polarized current. (c) 2004 Elsevier B.V. All
423 >        rights reserved.},
424 >  annote = {Part 1 Sp. Iss. SI 922KU Times Cited:2 Cited References Count:25},
425 >  issn = {0304-8853},
426 >  uri = {<Go to ISI>://000228837600109},
427 > }
428 >
429 > @ARTICLE{Berkov2005a,
430 >  author = {D. V. Berkov and N. L. Gorn},
431 >  title = {Magnetization precession due to a spin-polarized current in a thin
432 >        nanoelement: Numerical simulation study},
433 >  journal = {Physical Review B},
434 >  year = {2005},
435 >  volume = {72},
436 >  pages = {-},
437 >  number = {9},
438 >  month = {Sep},
439 >  abstract = {In this paper a detailed numerical study (in frames of the Slonczewski
440 >        formalism) of magnetization oscillations driven by a spin-polarized
441 >        current through a thin elliptical nanoelement is presented. We show
442 >        that a sophisticated micromagnetic model, where a polycrystalline
443 >        structure of a nanoelement is taken into account, can explain qualitatively
444 >        all most important features of the magnetization oscillation spectra
445 >        recently observed experimentally [S. I. Kiselev , Nature 425, 380
446 >        (2003)], namely, existence of several equidistant spectral bands,
447 >        sharp onset and abrupt disappearance of magnetization oscillations
448 >        with increasing current, absence of the out-of-plane regime predicted
449 >        by a macrospin model, and the relation between frequencies of so-called
450 >        small-angle and quasichaotic oscillations. However, a quantitative
451 >        agreement with experimental results (especially concerning the frequency
452 >        of quasichaotic oscillations) could not be achieved in the region
453 >        of reasonable parameter values, indicating that further model refinement
454 >        is necessary for a complete understanding of the spin-driven magnetization
455 >        precession even in this relatively simple experimental situation.},
456 >  annote = {969IT Times Cited:2 Cited References Count:55},
457 >  issn = {1098-0121},
458 >  uri = {<Go to ISI>://000232228500058},
459 > }
460 >
461 > @ARTICLE{Berkov2002,
462 >  author = {D. V. Berkov and N. L. Gorn and P. Gornert},
463 >  title = {Magnetization dynamics in nanoparticle systems: Numerical simulation
464 >        using Langevin dynamics},
465 >  journal = {Physica Status Solidi a-Applied Research},
466 >  year = {2002},
467 >  volume = {189},
468 >  pages = {409-421},
469 >  number = {2},
470 >  month = {Feb 16},
471 >  abstract = {We report on recent progress achieved by the development of numerical
472 >        methods based on the stochastic (Langevin) dynamics applied to systems
473 >        of interacting magnetic nanoparticles. The method enables direct
474 >        simulations of the trajectories of magnetic moments taking into
475 >        account (i) all relevant interactions, (ii) precession dynamics,
476 >        and (iii) temperature fluctuations included via the random (thermal)
477 >        field. We present several novel results obtained using new methods
478 >        developed for the solution of the Langevin equations. In particular,
479 >        we have investigated magnetic nanodots and disordered granular systems
480 >        of single-domain magnetic particles. For the first case we have
481 >        calculated the spectrum and the spatial distribution of spin excitations.
482 >        For the second system the complex ac susceptibility chi(omega, T)
483 >        for various particle concentrations and particle anisotropies were
484 >        computed and compared with numerous experimental results.},
485 >  annote = {526TF Times Cited:4 Cited References Count:37},
486 >  issn = {0031-8965},
487 >  uri = {<Go to ISI>://000174145200026},
488 > }
489 >
490 > @ARTICLE{Bernal1980,
491 >  author = {J.M. Bernal and J. G. {de la Torre}},
492 >  title = {Transport Properties and Hydrodynamic Centers of Rigid Macromolecules
493 >        with Arbitrary Shape},
494 >  journal = {Biopolymers},
495 >  year = {1980},
496 >  volume = {19},
497 >  pages = {751-766},
498 > }
499 >
500 > @ARTICLE{Brunger1984,
501 >  author = {A. Brunger and C. L. Brooks and M. Karplus},
502 >  title = {Stochastic Boundary-Conditions for Molecular-Dynamics Simulations
503 >        of St2 Water},
504 >  journal = {Chemical Physics Letters},
505 >  year = {1984},
506 >  volume = {105},
507 >  pages = {495-500},
508 >  number = {5},
509 >  annote = {Sm173 Times Cited:143 Cited References Count:22},
510 >  issn = {0009-2614},
511 >  uri = {<Go to ISI>://A1984SM17300007},
512 > }
513 >
514 > @ARTICLE{Camp1999,
515 >  author = {P. J. Camp and M. P. Allen and A. J. Masters},
516 >  title = {Theory and computer simulation of bent-core molecules},
517 >  journal = {Journal of Chemical Physics},
518 >  year = {1999},
519 >  volume = {111},
520 >  pages = {9871-9881},
521 >  number = {21},
522 >  month = {Dec 1},
523 >  abstract = {Fluids of hard bent-core molecules have been studied using theory
524 >        and computer simulation. The molecules are composed of two hard
525 >        spherocylinders, with length-to-breadth ratio L/D, joined by their
526 >        ends at an angle 180 degrees - gamma. For L/D = 2 and gamma = 0,10,20
527 >        degrees, the simulations show isotropic, nematic, smectic, and solid
528 >        phases. For L/D = 2 and gamma = 30 degrees, only isotropic, nematic,
529 >        and solid phases are in evidence, which suggests that there is a
530 >        nematic-smectic-solid triple point at an angle in the range 20 degrees
531 >        < gamma < 30 degrees. In all of the orientationally ordered fluid
532 >        phases the order is purely uniaxial. For gamma = 10 degrees and
533 >        20 degrees, at the studied densities, the solid is also uniaxially
534 >        ordered, whilst for gamma = 30 degrees the solid layers are biaxially
535 >        ordered. For L/D = 2 and gamma = 60 degrees and 90 degrees we find
536 >        no spontaneous orientational ordering. This is shown to be due to
537 >        the interlocking of dimer pairs which precludes alignment. We find
538 >        similar results for L/D = 9.5 and gamma = 72 degrees, where an isotropic-biaxial
539 >        nematic transition is predicted by Onsager theory. Simulations in
540 >        the biaxial nematic phase show it to be at least mechanically stable
541 >        with respect to the isotropic phase, however. We have compared the
542 >        quasi-exact simulation results in the isotropic phase with the predicted
543 >        equations of state from three theories: the virial expansion containing
544 >        the second and third virial coefficients; the Parsons-Lee equation
545 >        of state; an application of Wertheim's theory of associating fluids
546 >        in the limit of infinite attractive association energy. For all
547 >        of the molecule elongations and geometries we have simulated, the
548 >        Wertheim theory proved to be the most accurate. Interestingly, the
549 >        isotropic equation of state is virtually independent of the dimer
550 >        bond angle-a feature that is also reflected in the lack of variation
551 >        with angle of the calculated second and third virial coefficients.
552 >        (C) 1999 American Institute of Physics. [S0021-9606(99)50445-5].},
553 >  annote = {255TC Times Cited:24 Cited References Count:38},
554 >  issn = {0021-9606},
555 >  uri = {<Go to ISI>://000083685400056},
556 > }
557 >
558 > @ARTICLE{Care2005,
559 >  author = {C. M. Care and D. J. Cleaver},
560 >  title = {Computer simulation of liquid crystals},
561 >  journal = {Reports on Progress in Physics},
562 >  year = {2005},
563 >  volume = {68},
564 >  pages = {2665-2700},
565 >  number = {11},
566 >  month = {Nov},
567 >  abstract = {A review is presented of molecular and mesoscopic computer simulations
568 >        of liquid crystalline systems. Molecular simulation approaches applied
569 >        to such systems are described, and the key findings for bulk phase
570 >        behaviour are reported. Following this, recently developed lattice
571 >        Boltzmann approaches to the mesoscale modelling of nemato-dynanics
572 >        are reviewed. This paper concludes with a discussion of possible
573 >        areas for future development in this field.},
574 >  annote = {989TU Times Cited:2 Cited References Count:258},
575 >  issn = {0034-4885},
576 >  uri = {<Go to ISI>://000233697600004},
577 > }
578 >
579 > @ARTICLE{Carrasco1999,
580 >  author = {B. Carrasco and J. G. {de la Torre}},
581 >  title = {Hydrodynamic properties of rigid particles: Comparison of different
582 >        modeling and computational procedures},
583 >  journal = {Biophysical Journal},
584 >  year = {1999},
585 >  volume = {76},
586 >  pages = {3044-3057},
587 >  number = {6},
588 >  month = {Jun},
589 >  abstract = {The hydrodynamic properties of rigid particles are calculated from
590 >        models composed of spherical elements (beads) using theories developed
591 >        by Kirkwood, Bloomfield, and their coworkers. Bead models have usually
592 >        been built in such a way that the beads fill the volume occupied
593 >        by the particles. Sometimes the beads are few and of varying sizes
594 >        (bead models in the strict sense), and other times there are many
595 >        small beads (filling models). Because hydrodynamic friction takes
596 >        place at the molecular surface, another possibility is to use shell
597 >        models, as originally proposed by Bloomfield. In this work, we have
598 >        developed procedures to build models of the various kinds, and we
599 >        describe the theory and methods for calculating their hydrodynamic
600 >        properties, including approximate methods that may be needed to
601 >        treat models with a very large number of elements. By combining
602 >        the various possibilities of model building and hydrodynamic calculation,
603 >        several strategies can be designed. We have made a quantitative
604 >        comparison of the performance of the various strategies by applying
605 >        them to some test cases, for which the properties are known a priori.
606 >        We provide guidelines and computational tools for bead modeling.},
607 >  annote = {200TT Times Cited:46 Cited References Count:57},
608 >  issn = {0006-3495},
609 >  uri = {<Go to ISI>://000080556700016},
610 > }
611 >
612 > @ARTICLE{Chandra1999,
613 >  author = {A. Chandra and T. Ichiye},
614 >  title = {Dynamical properties of the soft sticky dipole model of water: Molecular
615 >        dynamics simulations},
616 >  journal = {Journal of Chemical Physics},
617 >  year = {1999},
618 >  volume = {111},
619 >  pages = {2701-2709},
620 >  number = {6},
621 >  month = {Aug 8},
622 >  abstract = {Dynamical properties of the soft sticky dipole (SSD) model of water
623 >        are calculated by means of molecular dynamics simulations. Since
624 >        this is not a simple point model, the forces and torques arising
625 >        from the SSD potential are derived here. Simulations are carried
626 >        out in the microcanonical ensemble employing the Ewald method for
627 >        the electrostatic interactions. Various time correlation functions
628 >        and dynamical quantities associated with the translational and rotational
629 >        motion of water molecules are evaluated and compared with those
630 >        of two other commonly used models of liquid water, namely the transferable
631 >        intermolecular potential-three points (TIP3P) and simple point charge/extended
632 >        (SPC/E) models, and also with experiments. The dynamical properties
633 >        of the SSD water model are found to be in good agreement with the
634 >        experimental results and appear to be better than the TIP3P and
635 >        SPC/E models in most cases, as has been previously shown for its
636 >        thermodynamic, structural, and dielectric properties. Also, molecular
637 >        dynamics simulations of the SSD model are found to run much faster
638 >        than TIP3P, SPC/E, and other multisite models. (C) 1999 American
639 >        Institute of Physics. [S0021-9606(99)51430-X].},
640 >  annote = {221EN Times Cited:14 Cited References Count:66},
641 >  issn = {0021-9606},
642 >  uri = {<Go to ISI>://000081711200038},
643   }
644  
645 < @Book{allen87:csl,
646 <  author =   {M.~P. Allen and D.~J. Tildesley},
647 <  title =    {Computer Simulations of Liquids},
648 <  publisher =    {Oxford University Press},
649 <  year =     1987,
650 <  address =  {New York}
645 > @ARTICLE{Cheung2004,
646 >  author = {D. L. Cheung and S. J. Clark and M. R. Wilson},
647 >  title = {Calculation of flexoelectric coefficients for a nematic liquid crystal
648 >        by atomistic simulation},
649 >  journal = {Journal of Chemical Physics},
650 >  year = {2004},
651 >  volume = {121},
652 >  pages = {9131-9139},
653 >  number = {18},
654 >  month = {Nov 8},
655 >  abstract = {Equilibrium molecular dynamics calculations have been performed for
656 >        the liquid crystal molecule n-4-(trans-4-n-pentylcyclohexyl)benzonitrile
657 >        (PCH5) using a fully atomistic model. Simulation data have been
658 >        obtained for a series of temperatures in the nematic phase. The
659 >        simulation data have been used to calculate the flexoelectric coefficients
660 >        e(s) and e(b) using the linear response formalism of Osipov and
661 >        Nemtsov [M. A. Osipov and V. B. Nemtsov, Sov. Phys. Crstallogr.
662 >        31, 125 (1986)]. The temperature and order parameter dependence
663 >        of e(s) and e(b) are examined, as are separate contributions from
664 >        different intermolecular interactions. Values of e(s) and e(b) calculated
665 >        from simulation are consistent with those found from experiment.
666 >        (C) 2004 American Institute of Physics.},
667 >  annote = {866UM Times Cited:4 Cited References Count:61},
668 >  issn = {0021-9606},
669 >  uri = {<Go to ISI>://000224798900053},
670   }
671  
672 < @Book{leach01:mm,
673 <  author =   {A. Leach},
674 <  title =    {Molecular Modeling: Principles and Applications},
675 <  publisher =    {Pearson Educated Limited},
676 <  year =     2001,
677 <  address =  {Harlow, England},
678 <  edition =  {2nd}
672 > @ARTICLE{Cheung2002,
673 >  author = {D. L. Cheung and S. J. Clark and M. R. Wilson},
674 >  title = {Calculation of the rotational viscosity of a nematic liquid crystal},
675 >  journal = {Chemical Physics Letters},
676 >  year = {2002},
677 >  volume = {356},
678 >  pages = {140-146},
679 >  number = {1-2},
680 >  month = {Apr 15},
681 >  abstract = {Equilibrium molecular dynamics calculations have been performed for
682 >        the liquid crystal molecule n-4-(trans-4-npentylcyclohexyl)benzonitrile
683 >        (PCH5) using a fully atomistic model. Simulation data has been obtained
684 >        for a series of temperatures in the nematic phase. The rotational
685 >        viscosity co-efficient gamma(1), has been calculated using the angular
686 >        velocity correlation function of the nematic director, n, the mean
687 >        squared diffusion of n and statistical mechanical methods based
688 >        on the rotational diffusion co-efficient. We find good agreement
689 >        between the first two methods and experimental values. (C) 2002
690 >        Published by Elsevier Science B.V.},
691 >  annote = {547KF Times Cited:8 Cited References Count:31},
692 >  issn = {0009-2614},
693 >  uri = {<Go to ISI>://000175331000020},
694   }
695  
696 <
697 < @Article{katsaras00,
698 <  author =   {J. Katsaras and S. Tristram-Nagle and Y. Liu and R.~L. Headrick and E. Fontes and P.~C. Mason and J.~F. Nagle},
699 <  title =    {Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples},
700 <  journal =      {Physical Review E},
701 <  year =     2000,
702 <  volume =   61,
703 <  number =   5,
704 <  pages =    {5668-5677}
696 > @ARTICLE{Chin2004,
697 >  author = {S. A. Chin},
698 >  title = {Dynamical multiple-time stepping methods for overcoming resonance
699 >        instabilities},
700 >  journal = {Journal of Chemical Physics},
701 >  year = {2004},
702 >  volume = {120},
703 >  pages = {8-13},
704 >  number = {1},
705 >  month = {Jan 1},
706 >  abstract = {Current molecular dynamics simulations of biomolecules using multiple
707 >        time steps to update the slowly changing force are hampered by instabilities
708 >        beginning at time steps near the half period of the fastest vibrating
709 >        mode. These #resonance# instabilities have became a critical barrier
710 >        preventing the long time simulation of biomolecular dynamics. Attempts
711 >        to tame these instabilities by altering the slowly changing force
712 >        and efforts to damp them out by Langevin dynamics do not address
713 >        the fundamental cause of these instabilities. In this work, we trace
714 >        the instability to the nonanalytic character of the underlying spectrum
715 >        and show that a correct splitting of the Hamiltonian, which renders
716 >        the spectrum analytic, restores stability. The resulting Hamiltonian
717 >        dictates that in addition to updating the momentum due to the slowly
718 >        changing force, one must also update the position with a modified
719 >        mass. Thus multiple-time stepping must be done dynamically. (C)
720 >        2004 American Institute of Physics.},
721 >  annote = {757TK Times Cited:1 Cited References Count:22},
722 >  issn = {0021-9606},
723 >  uri = {<Go to ISI>://000187577400003},
724   }
725  
726 < @Article{sengupta00,
727 <  author =   {K. Sengupta and V.~A. Raghunathan and J. Katsaras},
728 <  title =    {Novel structural Features of the ripple phase of phospholipids},
729 <  journal =      {Europhysics Letters},
730 <  year =     2000,
731 <  volume =   49,
732 <  number =   6,
733 <  pages =    {722-728}
726 > @ARTICLE{Cook2000,
727 >  author = {M. J. Cook and M. R. Wilson},
728 >  title = {Simulation studies of dipole correlation in the isotropic liquid
729 >        phase},
730 >  journal = {Liquid Crystals},
731 >  year = {2000},
732 >  volume = {27},
733 >  pages = {1573-1583},
734 >  number = {12},
735 >  month = {Dec},
736 >  abstract = {The Kirkwood correlation factor g(1) determines the preference for
737 >        local parallel or antiparallel dipole association in the isotropic
738 >        phase. Calamitic mesogens with longitudinal dipole moments and Kirkwood
739 >        factors greater than 1 have an enhanced effective dipole moment
740 >        along the molecular long axis. This leads to higher values of Delta
741 >        epsilon in the nematic phase. This paper describes state-of-the-art
742 >        molecular dynamics simulations of two calamitic mesogens 4-(trans-4-n-pentylcyclohexyl)benzonitrile
743 >        (PCH5) and 4-(trans-4-n-pentylcyclohexyl) chlorobenzene (PCH5-Cl)
744 >        in the isotropic liquid phase using an all-atom force field and
745 >        taking long range electrostatics into account using an Ewald summation.
746 >        Using this methodology, PCH5 is seen to prefer antiparallel dipole
747 >        alignment with a negative g(1) and PCH5-Cl is seen to prefer parallel
748 >        dipole alignment with a positive g(1); this is in accordance with
749 >        experimental dielectric measurements. Analysis of the molecular
750 >        dynamics trajectories allows an assessment of why these molecules
751 >        behave differently.},
752 >  annote = {376BF Times Cited:10 Cited References Count:16},
753 >  issn = {0267-8292},
754 >  uri = {<Go to ISI>://000165437800002},
755   }
756  
757 < @Article{venable00,
758 <  author =   {R.~M. Venable and B.~R. Brooks and R.~W. Pastor},
759 <  title =    {Molecular dynamics simulations of gel ($L_{\beta I}$) phase lipid bilayers in constant pressure and constant surface area ensembles},
760 <  journal =      jcp,
761 <  year =     2000,
762 <  volume =   112,
763 <  number =   10,
764 <  pages =    {4822-4832}
757 > @ARTICLE{Cui2003,
758 >  author = {B. X. Cui and M. Y. Shen and K. F. Freed},
759 >  title = {Folding and misfolding of the papillomavirus E6 interacting peptide
760 >        E6ap},
761 >  journal = {Proceedings of the National Academy of Sciences of the United States
762 >        of America},
763 >  year = {2003},
764 >  volume = {100},
765 >  pages = {7087-7092},
766 >  number = {12},
767 >  month = {Jun 10},
768 >  abstract = {All-atom Langevin dynamics simulations have been performed to study
769 >        the folding pathways of the 18-residue binding domain fragment E6ap
770 >        of the human papillomavirus E6 interacting peptide. Six independent
771 >        folding trajectories, with a total duration of nearly 2 mus, all
772 >        lead to the same native state in which the E6ap adopts a fluctuating
773 >        a-helix structure in the central portion (Ser-4-Leu-13) but with
774 >        very flexible N and C termini. Simulations starting from different
775 >        core configurations exhibit the E6ap folding dynamics as either
776 >        a two- or three-state folder with an intermediate misfolded state.
777 >        The essential leucine hydrophobic core (Leu-9, Leu-12, and Leu-13)
778 >        is well conserved in the native-state structure but absent in the
779 >        intermediate structure, suggesting that the leucine core is not
780 >        only essential for the binding activity of E6ap but also important
781 >        for the stability of the native structure. The free energy landscape
782 >        reveals a significant barrier between the basins separating the
783 >        native and misfolded states. We also discuss the various underlying
784 >        forces that drive the peptide into its native state.},
785 >  annote = {689LC Times Cited:3 Cited References Count:48},
786 >  issn = {0027-8424},
787 >  uri = {<Go to ISI>://000183493500037},
788   }
789  
790 < @Article{lindahl00,
791 <  author =   {E. Lindahl and O. Edholm},
792 <  title =    {Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations},
793 <  journal =      {Biophysical Journal},
794 <  year =     2000,
795 <  volume =   79,
796 <  pages =    {426-433},
797 <  month =    {July}
790 > @ARTICLE{Denisov2003,
791 >  author = {S. I. Denisov and T. V. Lyutyy and K. N. Trohidou},
792 >  title = {Magnetic relaxation in finite two-dimensional nanoparticle ensembles},
793 >  journal = {Physical Review B},
794 >  year = {2003},
795 >  volume = {67},
796 >  pages = {-},
797 >  number = {1},
798 >  month = {Jan 1},
799 >  abstract = {We study the slow phase of thermally activated magnetic relaxation
800 >        in finite two-dimensional ensembles of dipolar interacting ferromagnetic
801 >        nanoparticles whose easy axes of magnetization are perpendicular
802 >        to the distribution plane. We develop a method to numerically simulate
803 >        the magnetic relaxation for the case that the smallest heights of
804 >        the potential barriers between the equilibrium directions of the
805 >        nanoparticle magnetic moments are much larger than the thermal energy.
806 >        Within this framework, we analyze in detail the role that the correlations
807 >        of the nanoparticle magnetic moments and the finite size of the
808 >        nanoparticle ensemble play in magnetic relaxation.},
809 >  annote = {642XH Times Cited:11 Cited References Count:31},
810 >  issn = {1098-0121},
811 >  uri = {<Go to ISI>://000180830400056},
812   }
813  
814 <
815 < @Article{saiz02,
816 <  author =   {L. Saiz and M. Klein},
817 <  title =    {Electrostatic interactions in a neutral model phospholipid bilayer by molecular dynamics simulations},
818 <  journal =      jcp,
819 <  year =     2002,
820 <  volume =   116,
821 <  number =   7,
822 <  pages =    {3052-3057}
814 > @ARTICLE{Derreumaux1998,
815 >  author = {P. Derreumaux and T. Schlick},
816 >  title = {The loop opening/closing motion of the enzyme triosephosphate isomerase},
817 >  journal = {Biophysical Journal},
818 >  year = {1998},
819 >  volume = {74},
820 >  pages = {72-81},
821 >  number = {1},
822 >  month = {Jan},
823 >  abstract = {To explore the origin of the large-scale motion of triosephosphate
824 >        isomerase's flexible loop (residues 166 to 176) at the active site,
825 >        several simulation protocols are employed both for the free enzyme
826 >        in vacuo and for the free enzyme with some solvent modeling: high-temperature
827 >        Langevin dynamics simulations, sampling by a #dynamics##driver#
828 >        approach, and potential-energy surface calculations. Our focus is
829 >        on obtaining the energy barrier to the enzyme's motion and establishing
830 >        the nature of the loop movement. Previous calculations did not determine
831 >        this energy barrier and the effect of solvent on the barrier. High-temperature
832 >        molecular dynamics simulations and crystallographic studies have
833 >        suggested a rigid-body motion with two hinges located at both ends
834 >        of the loop; Brownian dynamics simulations at room temperature pointed
835 >        to a very flexible behavior. The present simulations and analyses
836 >        reveal that although solute/solvent hydrogen bonds play a crucial
837 >        role in lowering the energy along the pathway, there still remains
838 >        a high activation barrier, This finding clearly indicates that,
839 >        if the loop opens and closes in the absence of a substrate at standard
840 >        conditions (e.g., room temperature, appropriate concentration of
841 >        isomerase), the time scale for transition is not in the nanosecond
842 >        but rather the microsecond range. Our results also indicate that
843 >        in the context of spontaneous opening in the free enzyme, the motion
844 >        is of rigid-body type and that the specific interaction between
845 >        residues Ala(176) and Tyr(208) plays a crucial role in the loop
846 >        opening/closing mechanism.},
847 >  annote = {Zl046 Times Cited:30 Cited References Count:29},
848 >  issn = {0006-3495},
849 >  uri = {<Go to ISI>://000073393400009},
850   }
851  
852 < @Article{stevens95,
853 <  author =   {M.~J. Stevens and G.~S. Grest},
854 <  title =    {Phase coexistence of a Stockmayer fluid in an aplied field},
855 <  journal =      {Physical Review E},
856 <  year =     1995,
857 <  volume =   51,
858 <  number =   6,
859 <  pages =    {5976-5983}
852 > @ARTICLE{Dullweber1997,
853 >  author = {A. Dullweber and B. Leimkuhler and R. McLachlan},
854 >  title = {Symplectic splitting methods for rigid body molecular dynamics},
855 >  journal = {Journal of Chemical Physics},
856 >  year = {1997},
857 >  volume = {107},
858 >  pages = {5840-5851},
859 >  number = {15},
860 >  month = {Oct 15},
861 >  abstract = {Rigid body molecular models possess symplectic structure and time-reversal
862 >        symmetry. Standard numerical integration methods destroy both properties,
863 >        introducing nonphysical dynamical behavior such as numerically induced
864 >        dissipative states and drift in the energy during long term simulations.
865 >        This article describes the construction, implementation, and practical
866 >        application of fast explicit symplectic-reversible integrators for
867 >        multiple rigid body molecular simulations, These methods use a reduction
868 >        to Euler equations for the free rigid body, together with a symplectic
869 >        splitting technique. In every time step, the orientational dynamics
870 >        of each rigid body is integrated by a sequence of planar rotations.
871 >        Besides preserving the symplectic and reversible structures of the
872 >        flow, this scheme accurately conserves the total angular momentum
873 >        of a system of interacting rigid bodies. Excellent energy conservation
874 >        fan be obtained relative to traditional methods, especially in long-time
875 >        simulations. The method is implemented in a research code, ORIENT
876 >        and compared with a quaternion/extrapolation scheme for the TIP4P
877 >        model of water. Our experiments show that the symplectic-reversible
878 >        scheme is far superior to the more traditional quaternion method.
879 >        (C) 1997 American Institute of Physics.},
880 >  annote = {Ya587 Times Cited:35 Cited References Count:32},
881 >  issn = {0021-9606},
882 >  uri = {<Go to ISI>://A1997YA58700024},
883   }
884  
885 < @Article{darden93:pme,
886 <  author =   {T. Darden and D. York and L. Pedersen},
887 <  title =    {Particle mesh Ewald: An $N \log N$ method for Ewald sums in large systems},
888 <  journal =      {Journal of Chemical Physics},
889 <  year =     1993,
890 <  volume =   98,
891 <  number =   12,
892 <  pages =    {10089-10092}
885 > @ARTICLE{Edwards2005,
886 >  author = {S. A. Edwards and D. R. M. Williams},
887 >  title = {Stretching a single diblock copolymer in a selective solvent: Langevin
888 >        dynamics simulations},
889 >  journal = {Macromolecules},
890 >  year = {2005},
891 >  volume = {38},
892 >  pages = {10590-10595},
893 >  number = {25},
894 >  month = {Dec 13},
895 >  abstract = {Using the Langevin dynamics technique, we have carried out simulations
896 >        of a single-chain flexible diblock copolymer. The polymer consists
897 >        of two blocks of equal length, one very poorly solvated and the
898 >        other close to theta-conditions. We study what happens when such
899 >        a polymer is stretched, for a range of different stretching speeds,
900 >        and correlate our observations with features in the plot of force
901 >        vs extension. We find that at slow speeds this force profile does
902 >        not increase monotonically, in disagreement with earlier predictions,
903 >        and that at high speeds there is a strong dependence on which end
904 >        of the polymer is pulled, as well as a high level of hysteresis.},
905 >  annote = {992EC Times Cited:0 Cited References Count:13},
906 >  issn = {0024-9297},
907 >  uri = {<Go to ISI>://000233866200035},
908   }
909  
910 <
911 <
912 < @Article{goetz98,
913 <  author =   {R. Goetz and R. Lipowsky},
914 <  title =    {Computer simulations of bilayer membranes: Self-assembly and interfacial tension},
915 <  journal =      {Journal of Chemical Physics},
916 <  year =     1998,
917 <  volume =   108,
918 <  number =   17,
919 <  pages =    7397
910 > @ARTICLE{Egberts1988,
911 >  author = {E. Egberts and H. J. C. Berendsen},
912 >  title = {Molecular-Dynamics Simulation of a Smectic Liquid-Crystal with Atomic
913 >        Detail},
914 >  journal = {Journal of Chemical Physics},
915 >  year = {1988},
916 >  volume = {89},
917 >  pages = {3718-3732},
918 >  number = {6},
919 >  month = {Sep 15},
920 >  annote = {Q0188 Times Cited:219 Cited References Count:43},
921 >  issn = {0021-9606},
922 >  uri = {<Go to ISI>://A1988Q018800036},
923   }
924  
925 < @Article{marrink01:undulation,
926 <  author =   {S.~J. Marrink and A.~E. Mark},
927 <  title =    {Effect of undulations on surface tension in simulated bilayers},
928 <  journal =      {Journal of Physical Chemistry B},
929 <  year =     2001,
930 <  volume =   105,
931 <  pages =    {6122-6127}
925 > @ARTICLE{Ermak1978,
926 >  author = {D. L. Ermak and J. A. Mccammon},
927 >  title = {Brownian Dynamics with Hydrodynamic Interactions},
928 >  journal = {Journal of Chemical Physics},
929 >  year = {1978},
930 >  volume = {69},
931 >  pages = {1352-1360},
932 >  number = {4},
933 >  annote = {Fp216 Times Cited:785 Cited References Count:42},
934 >  issn = {0021-9606},
935 >  uri = {<Go to ISI>://A1978FP21600004},
936   }
937  
938 < @Article{lindahl00:undulation,
939 <  author =   {E. Lindahl and O. Edholm},
940 <  title =    {Mesoscopic undulation and thickness fluctuations in lipid bilayers from molecular dynamics simulation},
941 <  journal =      {Biophysical Journal},
942 <  year =     2000,
943 <  volume =   79,
944 <  pages =    {426-433}
938 > @ARTICLE{Fennell2004,
939 >  author = {C. J. Fennell and J. D. Gezelter},
940 >  title = {On the structural and transport properties of the soft sticky dipole
941 >        and related single-point water models},
942 >  journal = {Journal of Chemical Physics},
943 >  year = {2004},
944 >  volume = {120},
945 >  pages = {9175-9184},
946 >  number = {19},
947 >  month = {May 15},
948 >  abstract = {The density maximum and temperature dependence of the self-diffusion
949 >        constant were investigated for the soft sticky dipole (SSD) water
950 >        model and two related reparametrizations of this single-point model.
951 >        A combination of microcanonical and isobaric-isothermal molecular
952 >        dynamics simulations was used to calculate these properties, both
953 >        with and without the use of reaction field to handle long-range
954 >        electrostatics. The isobaric-isothermal simulations of the melting
955 >        of both ice-I-h and ice-I-c showed a density maximum near 260 K.
956 >        In most cases, the use of the reaction field resulted in calculated
957 >        densities which were significantly lower than experimental densities.
958 >        Analysis of self-diffusion constants shows that the original SSD
959 >        model captures the transport properties of experimental water very
960 >        well in both the normal and supercooled liquid regimes. We also
961 >        present our reparametrized versions of SSD for use both with the
962 >        reaction field or without any long-range electrostatic corrections.
963 >        These are called the SSD/RF and SSD/E models, respectively. These
964 >        modified models were shown to maintain or improve upon the experimental
965 >        agreement with the structural and transport properties that can
966 >        be obtained with either the original SSD or the density-corrected
967 >        version of the original model (SSD1). Additionally, a novel low-density
968 >        ice structure is presented which appears to be the most stable ice
969 >        structure for the entire SSD family. (C) 2004 American Institute
970 >        of Physics.},
971 >  annote = {816YY Times Cited:5 Cited References Count:39},
972 >  issn = {0021-9606},
973 >  uri = {<Go to ISI>://000221146400032},
974   }
975  
976 < @Article{metropolis:1949,
977 <  author =   {N. Metropolis and S. Ulam},
978 <  title =    {The $\mbox{Monte Carlo}$ Method},
979 <  journal =      {J. Am. Stat. Ass.},
980 <  year =     1949,
981 <  volume =   44,
982 <  pages =    {335-341}
976 > @ARTICLE{Fernandes2002,
977 >  author = {M. X. Fernandes and J. G. {de la Torre}},
978 >  title = {Brownian dynamics simulation of rigid particles of arbitrary shape
979 >        in external fields},
980 >  journal = {Biophysical Journal},
981 >  year = {2002},
982 >  volume = {83},
983 >  pages = {3039-3048},
984 >  number = {6},
985 >  month = {Dec},
986 >  abstract = {We have developed a Brownian dynamics simulation algorithm to generate
987 >        Brownian trajectories of an isolated, rigid particle of arbitrary
988 >        shape in the presence of electric fields or any other external agents.
989 >        Starting from the generalized diffusion tensor, which can be calculated
990 >        with the existing HYDRO software, the new program BROWNRIG (including
991 >        a case-specific subprogram for the external agent) carries out a
992 >        simulation that is analyzed later to extract the observable dynamic
993 >        properties. We provide a variety of examples of utilization of this
994 >        method, which serve as tests of its performance, and also illustrate
995 >        its applicability. Examples include free diffusion, transport in
996 >        an electric field, and diffusion in a restricting environment.},
997 >  annote = {633AD Times Cited:2 Cited References Count:43},
998 >  issn = {0006-3495},
999 >  uri = {<Go to ISI>://000180256300012},
1000   }
1001  
1002 < @Article{metropolis:1953,
1003 <  author =   {N. Metropolis and A.~W. Rosenbluth and M.~N. Rosenbluth and A.~H. Teller and E. Teller},
1004 <  title =    {Equation of State Calculations by Fast Computing Machines},
1005 <  journal =      {J. Chem. Phys.},
1006 <  year =     1953,
1007 <  volume =   21,
1008 <  pages =    {1087-1092}
1002 > @ARTICLE{Gay1981,
1003 >  author = {J. G. Gay and B. J. Berne},
1004 >  title = {Modification of the Overlap Potential to Mimic a Linear Site-Site
1005 >        Potential},
1006 >  journal = {Journal of Chemical Physics},
1007 >  year = {1981},
1008 >  volume = {74},
1009 >  pages = {3316-3319},
1010 >  number = {6},
1011 >  annote = {Lj347 Times Cited:482 Cited References Count:13},
1012 >  issn = {0021-9606},
1013 >  uri = {<Go to ISI>://A1981LJ34700029},
1014   }
1015  
1016 < @Article{born:1912,
1017 <  author =   {M. Born and Th. Von~Karman},
1018 <  title =    {Uber Schwingungen in Raumgittern},
1019 <  journal =      {Physik Z.},
1020 <  year =     1912,
1021 <  volume =   13,
1022 <  number =   {297-309}
1016 > @ARTICLE{Gelin1999,
1017 >  author = {M. F. Gelin},
1018 >  title = {Inertial effects in the Brownian dynamics with rigid constraints},
1019 >  journal = {Macromolecular Theory and Simulations},
1020 >  year = {1999},
1021 >  volume = {8},
1022 >  pages = {529-543},
1023 >  number = {6},
1024 >  month = {Nov},
1025 >  abstract = {To investigate the influence of inertial effects on the dynamics of
1026 >        an assembly of beads subjected to rigid constraints and placed in
1027 >        a buffer medium, a convenient method to introduce suitable generalized
1028 >        coordinates is presented. Without any restriction on the nature
1029 >        of the soft forces involved (both stochastic and deterministic),
1030 >        pertinent Langevin equations are derived. Provided that the Brownian
1031 >        forces are Gaussian and Markovian, the corresponding Fokker-Planck
1032 >        equation (FPE) is obtained in the complete phase space of generalized
1033 >        coordinates and momenta. The correct short time behavior for correlation
1034 >        functions (CFs) of generalized coordinates is established, and the
1035 >        diffusion equation with memory (DEM) is deduced from the FPE in
1036 >        the high friction Limit. The DEM is invoked to perform illustrative
1037 >        calculations in two dimensions of the orientational CFs for once
1038 >        broken nonrigid rods immobilized on a surface. These calculations
1039 >        reveal that the CFs under certain conditions exhibit an oscillatory
1040 >        behavior, which is irreproducible within the standard diffusion
1041 >        equation. Several methods are considered for the approximate solution
1042 >        of the DEM, and their application to three dimensional DEMs is discussed.},
1043 >  annote = {257MM Times Cited:2 Cited References Count:82},
1044 >  issn = {1022-1344},
1045 >  uri = {<Go to ISI>://000083785700002},
1046   }
1047  
1048 < @Book{chandler:1987,
1049 <  author =   {David Chandler},
1050 <  title =    {Introduction to Modern Statistical Mechanics},
1051 <  publisher =    {Oxford University Press},
1052 <  year =     1987
1048 > @BOOK{Goldstein2001,
1049 >  title = {Classical Mechanics},
1050 >  publisher = {Addison Wesley},
1051 >  year = {2001},
1052 >  author = {H. Goldstein and C. Poole and J. Safko},
1053 >  address = {San Francisco},
1054 >  edition = {3rd},
1055   }
1056  
1057 <
1058 < @Article{pearlman:1995,
1059 <  author =   {David~A. Pearlman and David~A. Case and James~W. Caldwell and Wilson~S. Ross and Thomas~E. Cheatham~III and Steve DeBolt and David Ferguson and George Seibel and Peter Kollman},
1060 <  title =    {{\sc amber}, a package of computer programs for applying molecular mechanics. normal mode analysis, molecular dynamics, and free energy calculations to simulate the structural and energetic properties of molecules},
1061 <  journal =      {Computer Physics Communications},
1062 <  year =     1995,
1063 <  volume =   91,
1064 <  pages =    {1-41}
1065 < }
1066 <
1067 < @Book{Goldstein01,
1068 <  author =   {H. Goldstein and C. Poole and J. Safko},
1069 <  title =    {Classical Mechanics},
1070 <  publisher =    {Addison Wesley},
1071 <  year =     2001,
1072 <  address =  {San Francisco},
1073 <  edition =  {3rd}
1057 > @ARTICLE{Gray2003,
1058 >  author = {J. J. Gray and S. Moughon and C. Wang and O. Schueler-Furman and
1059 >        B. Kuhlman and C. A. Rohl and D. Baker},
1060 >  title = {Protein-protein docking with simultaneous optimization of rigid-body
1061 >        displacement and side-chain conformations},
1062 >  journal = {Journal of Molecular Biology},
1063 >  year = {2003},
1064 >  volume = {331},
1065 >  pages = {281-299},
1066 >  number = {1},
1067 >  month = {Aug 1},
1068 >  abstract = {Protein-protein docking algorithms provide a means to elucidate structural
1069 >        details for presently unknown complexes. Here, we present and evaluate
1070 >        a new method to predict protein-protein complexes from the coordinates
1071 >        of the unbound monomer components. The method employs a low-resolution,
1072 >        rigid-body, Monte Carlo search followed by simultaneous optimization
1073 >        of backbone displacement and side-chain conformations using Monte
1074 >        Carlo minimization. Up to 10(5) independent simulations are carried
1075 >        out, and the resulting #decoys# are ranked using an energy function
1076 >        dominated by van der Waals interactions, an implicit solvation model,
1077 >        and an orientation-dependent hydrogen bonding potential. Top-ranking
1078 >        decoys are clustered to select the final predictions. Small-perturbation
1079 >        studies reveal the formation of binding funnels in 42 of 54 cases
1080 >        using coordinates derived from the bound complexes and in 32 of
1081 >        54 cases using independently determined coordinates of one or both
1082 >        monomers. Experimental binding affinities correlate with the calculated
1083 >        score function and explain the predictive success or failure of
1084 >        many targets. Global searches using one or both unbound components
1085 >        predict at least 25% of the native residue-residue contacts in 28
1086 >        of the 32 cases where binding funnels exist. The results suggest
1087 >        that the method may soon be useful for generating models of biologically
1088 >        important complexes from the structures of the isolated components,
1089 >        but they also highlight the challenges that must be met to achieve
1090 >        consistent and accurate prediction of protein-protein interactions.
1091 >        (C) 2003 Elsevier Ltd. All rights reserved.},
1092 >  annote = {704QL Times Cited:48 Cited References Count:60},
1093 >  issn = {0022-2836},
1094 >  uri = {<Go to ISI>://000184351300022},
1095   }
1096  
1097 < @Article{Bratko85,
1098 <  author =   {D. Bratko and L. Blum and A. Luzar},
1099 <  title =    {A simple model for the intermolecular potential of water},
1100 <  journal =      jcp,
1101 <  year =     1985,
1102 <  volume =   83,
1103 <  number =   12,
1104 <  pages =    {6367-6370}
1097 > @ARTICLE{Hao1993,
1098 >  author = {M. H. Hao and M. R. Pincus and S. Rackovsky and H. A. Scheraga},
1099 >  title = {Unfolding and Refolding of the Native Structure of Bovine Pancreatic
1100 >        Trypsin-Inhibitor Studied by Computer-Simulations},
1101 >  journal = {Biochemistry},
1102 >  year = {1993},
1103 >  volume = {32},
1104 >  pages = {9614-9631},
1105 >  number = {37},
1106 >  month = {Sep 21},
1107 >  abstract = {A new procedure for studying the folding and unfolding of proteins,
1108 >        with an application to bovine pancreatic trypsin inhibitor (BPTI),
1109 >        is reported. The unfolding and refolding of the native structure
1110 >        of the protein are characterized by the dimensions of the protein,
1111 >        expressed in terms of the three principal radii of the structure
1112 >        considered as an ellipsoid. A dynamic equation, describing the variations
1113 >        of the principal radii on the unfolding path, and a numerical procedure
1114 >        to solve this equation are proposed. Expanded and distorted conformations
1115 >        are refolded to the native structure by a dimensional-constraint
1116 >        energy minimization procedure. A unique and reproducible unfolding
1117 >        pathway for an intermediate of BPTI lacking the [30,51] disulfide
1118 >        bond is obtained. The resulting unfolded conformations are extended;
1119 >        they contain near-native local structure, but their longest principal
1120 >        radii are more than 2.5 times greater than that of the native structure.
1121 >        The most interesting finding is that the majority of expanded conformations,
1122 >        generated under various conditions, can be refolded closely to the
1123 >        native structure, as measured by the correct overall chain fold,
1124 >        by the rms deviations from the native structure of only 1.9-3.1
1125 >        angstrom, and by the energy differences of about 10 kcal/mol from
1126 >        the native structure. Introduction of the [30,51] disulfide bond
1127 >        at this stage, followed by minimization, improves the closeness
1128 >        of the refolded structures to the native structure, reducing the
1129 >        rms deviations to 0.9-2.0 angstrom. The unique refolding of these
1130 >        expanded structures over such a large conformational space implies
1131 >        that the folding is strongly dictated by the interactions in the
1132 >        amino acid sequence of BPTI. The simulations indicate that, under
1133 >        conditions that favor a compact structure as mimicked by the volume
1134 >        constraints in our algorithm; the expanded conformations have a
1135 >        strong tendency to move toward the native structure; therefore,
1136 >        they probably would be favorable folding intermediates. The results
1137 >        presented here support a general model for protein folding, i.e.,
1138 >        progressive formation of partially folded structural units, followed
1139 >        by collapse to the compact native structure. The general applicability
1140 >        of the procedure is also discussed.},
1141 >  annote = {Ly294 Times Cited:27 Cited References Count:57},
1142 >  issn = {0006-2960},
1143 >  uri = {<Go to ISI>://A1993LY29400014},
1144   }
1145  
1146 < @Article{Bratko95,
1147 <  author =   {L. Blum and F. Vericat and D. Bratko},
1148 <  title =    {Towards an analytical model of water: The octupolar model},
1149 <  journal =      jcp,
1150 <  year =     1995,
1151 <  volume =   102,
1152 <  number =   3,
1153 <  pages =    {1461-1462}
1146 > @ARTICLE{Hinsen2000,
1147 >  author = {K. Hinsen and A. J. Petrescu and S. Dellerue and M. C. Bellissent-Funel
1148 >        and G. R. Kneller},
1149 >  title = {Harmonicity in slow protein dynamics},
1150 >  journal = {Chemical Physics},
1151 >  year = {2000},
1152 >  volume = {261},
1153 >  pages = {25-37},
1154 >  number = {1-2},
1155 >  month = {Nov 1},
1156 >  abstract = {The slow dynamics of proteins around its native folded state is usually
1157 >        described by diffusion in a strongly anharmonic potential. In this
1158 >        paper, we try to understand the form and origin of the anharmonicities,
1159 >        with the principal aim of gaining a better understanding of the
1160 >        principal motion types, but also in order to develop more efficient
1161 >        numerical methods for simulating neutron scattering spectra of large
1162 >        proteins. First, we decompose a molecular dynamics (MD) trajectory
1163 >        of 1.5 ns for a C-phycocyanin dimer surrounded by a layer of water
1164 >        into three contributions that we expect to be independent: the global
1165 >        motion of the residues, the rigid-body motion of the sidechains
1166 >        relative to the backbone, and the internal deformations of the sidechains.
1167 >        We show that they are indeed almost independent by verifying the
1168 >        factorization of the incoherent intermediate scattering function.
1169 >        Then, we show that the global residue motions, which include all
1170 >        large-scale backbone motions, can be reproduced by a simple harmonic
1171 >        model which contains two contributions: a short-time vibrational
1172 >        term, described by a standard normal mode calculation in a local
1173 >        minimum, and a long-time diffusive term, described by Brownian motion
1174 >        in an effective harmonic potential. The potential and the friction
1175 >        constants were fitted to the MD data. The major anharmonic contribution
1176 >        to the incoherent intermediate scattering function comes from the
1177 >        rigid-body diffusion of the sidechains. This model can be used to
1178 >        calculate scattering functions for large proteins and for long-time
1179 >        scales very efficiently, and thus provides a useful complement to
1180 >        MD simulations, which are best suited for detailed studies on smaller
1181 >        systems or for shorter time scales. (C) 2000 Elsevier Science B.V.
1182 >        All rights reserved.},
1183 >  annote = {Sp. Iss. SI 368MT Times Cited:16 Cited References Count:31},
1184 >  issn = {0301-0104},
1185 >  uri = {<Go to ISI>://000090121700003},
1186   }
1187  
1188 < @Article{Ichiye03,
1189 <  author =   {M.-L. Tan and J.~T. Fischer and A. Chandra and B.~R. Brooks
1190 <                  and T. Ichiye},
1191 <  title =    {A temperature of maximum density in soft sticky dipole
1192 <                  water},
1193 <  journal =      cpl,
1194 <  year =     2003,
1195 <  volume =   376,
1196 <  pages =    {646-652},
1188 > @ARTICLE{Ho1992,
1189 >  author = {C. Ho and C. D. Stubbs},
1190 >  title = {Hydration at the Membrane Protein-Lipid Interface},
1191 >  journal = {Biophysical Journal},
1192 >  year = {1992},
1193 >  volume = {63},
1194 >  pages = {897-902},
1195 >  number = {4},
1196 >  month = {Oct},
1197 >  abstract = {Evidence has been found for the existence water at the protein-lipid
1198 >        hydrophobic interface ot the membrane proteins, gramicidin and apocytochrome
1199 >        C, using two related fluorescence spectroscopic approaches. The
1200 >        first approach exploited the fact that the presence of water in
1201 >        the excited state solvent cage of a fluorophore increases the rate
1202 >        of decay. For 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5-hexatrienyl)
1203 >        phenyl]ethyl]carbonyl]-3-sn-PC (DPH-PC), where the fluorophores
1204 >        are located in the hydrophobic core of the lipid bilayer, the introduction
1205 >        of gramicidin reduced the fluorescence lifetime, indicative of an
1206 >        increased presence of water in the bilayer. Since a high protein:lipid
1207 >        ratio was used, the fluorophores were forced to be adjacent to the
1208 >        protein hydrophobic surface, hence the presence of water in this
1209 >        region could be inferred. Cholesterol is known to reduce the water
1210 >        content of lipid bilayers and this effect was maintained at the
1211 >        protein-lipid interface with both gramicidin and apocytochrome C,
1212 >        again suggesting hydration in this region. The second approach was
1213 >        to use the fluorescence enhancement induced by exchanging deuterium
1214 >        oxide (D2O) for H2O. Both the fluorescence intensities of trimethylammonium-DPH,
1215 >        located in the lipid head group region, and of the gramicidin intrinsic
1216 >        tryptophans were greater in a D2O buffer compared with H2O, showing
1217 >        that the fluorophores were exposed to water in the bilayer at the
1218 >        protein-lipid interface. In the presence of cholesterol the fluorescence
1219 >        intensity ratio of D2O to H2O decreased, indicating a removal of
1220 >        water by the cholesterol, in keeping with the lifetime data. Altered
1221 >        hydration at the protein-lipid interface could affect conformation,
1222 >        thereby offering a new route by which membrane protein functioning
1223 >        may be modified.},
1224 >  annote = {Ju251 Times Cited:55 Cited References Count:44},
1225 >  issn = {0006-3495},
1226 >  uri = {<Go to ISI>://A1992JU25100002},
1227   }
1228  
1229 <
1230 < @Article{Soper86,
1231 <  author =   {A.~K. Soper and M.~G. Phillips},
1232 <  title =    {A new determination of the structure of water at 298K},
1233 <  journal =      cp,
1234 <  year =     1986,
1235 <  volume =   107,
1236 <  number =   1,
1237 <  pages =    {47-60},
1229 > @ARTICLE{Huh2004,
1230 >  author = {Y. Huh and N. M. Cann},
1231 >  title = {Discrimination in isotropic, nematic, and smectic phases of chiral
1232 >        calamitic molecules: A computer simulation study},
1233 >  journal = {Journal of Chemical Physics},
1234 >  year = {2004},
1235 >  volume = {121},
1236 >  pages = {10299-10308},
1237 >  number = {20},
1238 >  month = {Nov 22},
1239 >  abstract = {Racemic fluids of chiral calamitic molecules are investigated with
1240 >        molecular dynamics simulations. In particular, the phase behavior
1241 >        as a function of density is examined for eight racemates. The relationship
1242 >        between chiral discrimination and orientational order in the phase
1243 >        is explored. We find that the transition from the isotropic phase
1244 >        to a liquid crystal phase is accompanied by an increase in chiral
1245 >        discrimination, as measured by differences in radial distributions.
1246 >        Among ordered phases, discrimination is largest for smectic phases
1247 >        with a significant preference for heterochiral contact within the
1248 >        layers. (C) 2004 American Institute of Physics.},
1249 >  annote = {870FJ Times Cited:0 Cited References Count:63},
1250 >  issn = {0021-9606},
1251 >  uri = {<Go to ISI>://000225042700059},
1252   }
1253  
1254 < @Article{plimpton95,
1255 <  author =   {S. Plimpton},
1256 <  title =    {Fast Parallel Algorithms for Short-Range Molecular Dymanics},
1257 <  journal =      {J. Comp. Phys.},
1258 <  year =     1995,
1259 <  volume =   117,
1260 <  pages =    {1-19},
1254 > @ARTICLE{Izaguirre2001,
1255 >  author = {J. A. Izaguirre and D. P. Catarello and J. M. Wozniak and R. D. Skeel},
1256 >  title = {Langevin stabilization of molecular dynamics},
1257 >  journal = {Journal of Chemical Physics},
1258 >  year = {2001},
1259 >  volume = {114},
1260 >  pages = {2090-2098},
1261 >  number = {5},
1262 >  month = {Feb 1},
1263 >  abstract = {In this paper we show the possibility of using very mild stochastic
1264 >        damping to stabilize long time step integrators for Newtonian molecular
1265 >        dynamics. More specifically, stable and accurate integrations are
1266 >        obtained for damping coefficients that are only a few percent of
1267 >        the natural decay rate of processes of interest, such as the velocity
1268 >        autocorrelation function. Two new multiple time stepping integrators,
1269 >        Langevin Molly (LM) and Brunger-Brooks-Karplus-Molly (BBK-M), are
1270 >        introduced in this paper. Both use the mollified impulse method
1271 >        for the Newtonian term. LM uses a discretization of the Langevin
1272 >        equation that is exact for the constant force, and BBK-M uses the
1273 >        popular Brunger-Brooks-Karplus integrator (BBK). These integrators,
1274 >        along with an extrapolative method called LN, are evaluated across
1275 >        a wide range of damping coefficient values. When large damping coefficients
1276 >        are used, as one would for the implicit modeling of solvent molecules,
1277 >        the method LN is superior, with LM closely following. However, with
1278 >        mild damping of 0.2 ps(-1), LM produces the best results, allowing
1279 >        long time steps of 14 fs in simulations containing explicitly modeled
1280 >        flexible water. With BBK-M and the same damping coefficient, time
1281 >        steps of 12 fs are possible for the same system. Similar results
1282 >        are obtained for a solvated protein-DNA simulation of estrogen receptor
1283 >        ER with estrogen response element ERE. A parallel version of BBK-M
1284 >        runs nearly three times faster than the Verlet-I/r-RESPA (reversible
1285 >        reference system propagator algorithm) when using the largest stable
1286 >        time step on each one, and it also parallelizes well. The computation
1287 >        of diffusion coefficients for flexible water and ER/ERE shows that
1288 >        when mild damping of up to 0.2 ps-1 is used the dynamics are not
1289 >        significantly distorted. (C) 2001 American Institute of Physics.},
1290 >  annote = {397CQ Times Cited:14 Cited References Count:36},
1291 >  issn = {0021-9606},
1292 >  uri = {<Go to ISI>://000166676100020},
1293   }
1294  
1295 < @Article{plimpton93,
1296 <  author =   {S.~J. Plimpton and B.~A. Hendrickson},
1297 <  title =    {Parallel Molecular Dynamics with the Embedded Atom Method},
1298 <  journal =      {MRS Proceedings},
1299 <  year =     1993,
1300 <  volume =   291,
1301 <  pages =    37
1295 > @ARTICLE{Gray2003,
1296 >  author = {J.~J Gray,S. Moughon, C. Wang },
1297 >  title = {Protein-protein docking with simultaneous optimization of rigid-body
1298 >        displacement and side-chain conformations},
1299 >  journal = {jmb},
1300 >  year = {2003},
1301 >  volume = {331},
1302 >  pages = {281-299},
1303   }
1304  
1305 <
1306 < @Article{Ercolessi02,
1307 <  author =   {U. Tartaglino and E. Tosatti and D. Passerone and F. Ercolessi},
1308 <  title =    {Bending strain-driven modification of surface resconstructions: Au(111)},
1309 <  journal =      prb,
1310 <  year =     2002,
1311 <  volume =   65,
1312 <  pages =    241406
1305 > @ARTICLE{Klimov1997,
1306 >  author = {D. K. Klimov and D. Thirumalai},
1307 >  title = {Viscosity dependence of the folding rates of proteins},
1308 >  journal = {Physical Review Letters},
1309 >  year = {1997},
1310 >  volume = {79},
1311 >  pages = {317-320},
1312 >  number = {2},
1313 >  month = {Jul 14},
1314 >  abstract = {The viscosity (eta) dependence of the folding rates for four sequences
1315 >        (the native state of three sequences is a beta sheet, while the
1316 >        fourth forms an alpha helix) is calculated for off-lattice models
1317 >        of proteins. Assuming that the dynamics is given by the Langevin
1318 >        equation, we show that the folding rates increase linearly at low
1319 >        viscosities eta, decrease as 1/eta at large eta, and have a maximum
1320 >        at intermediate values. The Kramers' theory of barrier crossing
1321 >        provides a quantitative fit of the numerical results. By mapping
1322 >        the simulation results to real proteins we estimate that for optimized
1323 >        sequences the time scale for forming a four turn alpha-helix topology
1324 >        is about 500 ns, whereas for beta sheet it is about 10 mu s.},
1325 >  annote = {Xk293 Times Cited:77 Cited References Count:17},
1326 >  issn = {0031-9007},
1327 >  uri = {<Go to ISI>://A1997XK29300035},
1328   }
1329  
1330 < @Article{Ercolessi88,
1331 <  author =   {F. Ercolessi  and M. Parrinello  and E. Tosatti},
1332 <  title =    {Simulation of Gold in the Glue Model.},
1333 <  journal =      {Philosophical Magazine A},
1334 <  year =     1988,
1335 <  volume =   58,
1336 <  pages =    {213-226}
1330 > @ARTICLE{Lansac2001,
1331 >  author = {Y. Lansac and M. A. Glaser and N. A. Clark},
1332 >  title = {Microscopic structure and dynamics of a partial bilayer smectic liquid
1333 >        crystal},
1334 >  journal = {Physical Review E},
1335 >  year = {2001},
1336 >  volume = {6405},
1337 >  pages = {-},
1338 >  number = {5},
1339 >  month = {Nov},
1340 >  abstract = {Cyanobiphenyls (nCB's) represent a useful and intensively studied
1341 >        class of mesogens. Many of the peculiar properties of nCB's (e.g.,
1342 >        the occurence of the partial bilayer smectic-A(d) phase) are thought
1343 >        to be a manifestation of short-range antiparallel association of
1344 >        neighboring molecules, resulting from strong dipole-dipole interactions
1345 >        between cyano groups. To test and extend existing models of microscopic
1346 >        ordering in nCB's, we carry out large-scale atomistic simulation
1347 >        studies of the microscopic structure and dynamics of the Sm-A(d)
1348 >        phase of 4-octyl-4'-cyanobiphenyl (8CB). We compute a variety of
1349 >        thermodynamic, structural, and dynamical properties for this material,
1350 >        and make a detailed comparison of our results with experimental
1351 >        measurements in order to validate our molecular model. Semiquantitative
1352 >        agreement with experiment is found: the smectic layer spacing and
1353 >        mass density are well reproduced, translational diffusion constants
1354 >        are similar to experiment, but the orientational ordering of alkyl
1355 >        chains is overestimated. This simulation provides a detailed picture
1356 >        of molecular conformation, smectic layer structure, and intermolecular
1357 >        correlations in Sm-A(d) 8CB, and demonstrates that pronounced short-range
1358 >        antiparallel association of molecules arising from dipole-dipole
1359 >        interactions plays a dominant role in determining the molecular-scale
1360 >        structure of 8CB.},
1361 >  annote = {Part 1 496QF Times Cited:10 Cited References Count:60},
1362 >  issn = {1063-651X},
1363 >  uri = {<Go to ISI>://000172406900063},
1364   }
1365  
1366 < @Article{Finnis84,
1367 <  author =   {M.~W Finnis and J.~E. Sinclair },
1368 <  title =    {A Simple Empirical N-Body Potential for Transition-Metals},
1369 <  journal =      {Phil. Mag. A},
1370 <  year =     1984,
1371 <  volume =   50,
1372 <  pages =    {45-55}
1366 > @ARTICLE{Lansac2003,
1367 >  author = {Y. Lansac and P. K. Maiti and N. A. Clark and M. A. Glaser},
1368 >  title = {Phase behavior of bent-core molecules},
1369 >  journal = {Physical Review E},
1370 >  year = {2003},
1371 >  volume = {67},
1372 >  pages = {-},
1373 >  number = {1},
1374 >  month = {Jan},
1375 >  abstract = {Recently, a new class of smectic liquid crystal phases characterized
1376 >        by the spontaneous formation of macroscopic chiral domains from
1377 >        achiral bent-core molecules has been discovered. We have carried
1378 >        out Monte Carlo simulations of a minimal hard spherocylinder dimer
1379 >        model to investigate the role of excluded volume interactions in
1380 >        determining the phase behavior of bent-core materials and to probe
1381 >        the molecular origins of polar and chiral symmetry breaking. We
1382 >        present the phase diagram of hard spherocylinder dimers of length-diameter
1383 >        ratio of 5 as a function of pressure or density and dimer opening
1384 >        angle psi. With decreasing psi, a transition from a nonpolar to
1385 >        a polar smectic A phase is observed near psi=167degrees, and the
1386 >        nematic phase becomes thermodynamically unstable for psi<135degrees.
1387 >        Free energy calculations indicate that the antipolar smectic A (SmAP(A))
1388 >        phase is more stable than the polar smectic A phase (SmAP(F)). No
1389 >        chiral smectic or biaxial nematic phases were found.},
1390 >  annote = {Part 1 646CM Times Cited:15 Cited References Count:38},
1391 >  issn = {1063-651X},
1392 >  uri = {<Go to ISI>://000181017300042},
1393   }
1394  
1395 < @Article{FBD86,
1396 <  author =       {S.~M. Foiles and M.~I. Baskes and M.~S. Daw},
1397 <  title =        {Embedded-atom-method functions for the fcc metals
1398 < $\mbox{Cu, Ag, Au, Ni, Pd, Pt}$, and their alloys},
1399 <  journal =      prb,
1400 <  year =         1986,
1401 <  volume =       33,
1815 <  number =       12,
1816 <  pages =        7983
1395 > @BOOK{Leach2001,
1396 >  title = {Molecular Modeling: Principles and Applications},
1397 >  publisher = {Pearson Educated Limited},
1398 >  year = {2001},
1399 >  author = {A. Leach},
1400 >  address = {Harlow, England},
1401 >  edition = {2nd},
1402   }
1403  
1404 < @Article{johnson89,
1405 <  author =   {R.~A. Johnson},
1406 <  title =    {Alloy models with the embedded-atom method},
1407 <  journal =      prb,
1408 <  year =     1989,
1409 <  volume =   39,
1825 <  number =   17,
1826 <  pages =    12554
1404 > @BOOK{Leimkuhler2004,
1405 >  title = {Simulating Hamiltonian Dynamics},
1406 >  publisher = {Cambridge University Press},
1407 >  year = {2004},
1408 >  author = {B. Leimkuhler and S. Reich},
1409 >  address = {Cambridge},
1410   }
1411  
1412 < @Article{Laird97,
1413 <  author =   {A. Kol and B.~B. Laird and B.~J. Leimkuhler},
1414 <  title =    {A symplectic method for rigid-body molecular simulation},
1415 <  journal =      jcp,
1416 <  year =     1997,
1417 <  volume =   107,
1418 <  number =   7,
1419 <  pages =    {2580-2588}
1412 > @ARTICLE{Levelut1981,
1413 >  author = {A. M. Levelut and R. J. Tarento and F. Hardouin and M. F. Achard
1414 >        and G. Sigaud},
1415 >  title = {Number of Sa Phases},
1416 >  journal = {Physical Review A},
1417 >  year = {1981},
1418 >  volume = {24},
1419 >  pages = {2180-2186},
1420 >  number = {4},
1421 >  annote = {Ml751 Times Cited:96 Cited References Count:16},
1422 >  issn = {1050-2947},
1423 >  uri = {<Go to ISI>://A1981ML75100057},
1424   }
1425  
1426 <
1427 < @Article{hoover85,
1428 <  author =   {W.~G. Hoover},
1429 <  title =    {Canonical dynamics: Equilibrium phase-space distributions},
1430 <  journal =      pra,
1431 <  year =     1985,
1432 <  volume =   31,
1433 <  pages =    1695
1426 > @ARTICLE{Lieb1982,
1427 >  author = {W. R. Lieb and M. Kovalycsik and R. Mendelsohn},
1428 >  title = {Do Clinical-Levels of General-Anesthetics Affect Lipid Bilayers -
1429 >        Evidence from Raman-Scattering},
1430 >  journal = {Biochimica Et Biophysica Acta},
1431 >  year = {1982},
1432 >  volume = {688},
1433 >  pages = {388-398},
1434 >  number = {2},
1435 >  annote = {Nu461 Times Cited:40 Cited References Count:28},
1436 >  issn = {0006-3002},
1437 >  uri = {<Go to ISI>://A1982NU46100012},
1438   }
1439  
1440 < @Article{Roux91,
1441 <  author =   {B. Roux and M. Karplus},
1442 <  title =    {Ion transport in a Gramicidin-like channel: dynamics and mobility},
1443 <  journal =      jpc,
1444 <  year =     1991,
1445 <  volume =   95,
1446 <  number =   15,
1447 <  pages =    {4856-4868}
1440 > @ARTICLE{Link1997,
1441 >  author = {D. R. Link and G. Natale and R. Shao and J. E. Maclennan and N. A.
1442 >        Clark and E. Korblova and D. M. Walba},
1443 >  title = {Spontaneous formation of macroscopic chiral domains in a fluid smectic
1444 >        phase of achiral molecules},
1445 >  journal = {Science},
1446 >  year = {1997},
1447 >  volume = {278},
1448 >  pages = {1924-1927},
1449 >  number = {5345},
1450 >  month = {Dec 12},
1451 >  abstract = {A smectic liquid-crystal phase made from achiral molecules with bent
1452 >        cores was found to have fluid layers that exhibit two spontaneous
1453 >        symmetry-breaking instabilities: polar molecular orientational ordering
1454 >        about the layer normal and molecular tilt. These instabilities combine
1455 >        to form a chiral layer structure with a handedness that depends
1456 >        on the sign of the tilt. The bulk states are either antiferroelectric-racemic,
1457 >        with the layer polar direction and handedness alternating in sign
1458 >        from layer to layer, or antiferroelectric-chiral, which is of uniform
1459 >        layer handedness. Both states exhibit an electric field-induced
1460 >        transition from antiferroelectric to ferroelectric.},
1461 >  annote = {Yl002 Times Cited:407 Cited References Count:25},
1462 >  issn = {0036-8075},
1463 >  uri = {<Go to ISI>://A1997YL00200028},
1464   }
1465  
1466 <
1467 < @Article{Marrink94,
1468 <  author =   {S.~J Marrink and H.~J.~C. Berendsen},
1469 <  title =    {Simulation of water transport through a lipid membrane},
1470 <  journal =      jpc,
1471 <  year =     1994,
1472 <  volume =   98,
1473 <  number =   15,
1474 <  pages =    {4155-4168}
1466 > @ARTICLE{Liwo2005,
1467 >  author = {A. Liwo and M. Khalili and H. A. Scheraga},
1468 >  title = {Ab initio simulations of protein folding pathways by molecular dynamics
1469 >        with the united-residue (UNRES) model of polypeptide chains},
1470 >  journal = {Febs Journal},
1471 >  year = {2005},
1472 >  volume = {272},
1473 >  pages = {359-360},
1474 >  month = {Jul},
1475 >  annote = {Suppl. 1 005MG Times Cited:0 Cited References Count:0},
1476 >  issn = {1742-464X},
1477 >  uri = {<Go to ISI>://000234826102043},
1478   }
1479  
1480 <
1481 < @Article{Daw89,
1482 <  author =   {Murray~S. Daw},
1483 <  title =    {Model of metallic cohesion: The embedded-atom method},
1484 <  journal =      {Physical Review B},
1485 <  year =     1989,
1486 <  volume =   39,
1877 <  pages =    {7441-7452}
1480 > @BOOK{Marion1990,
1481 >  title = {Classical Dynamics of Particles and Systems},
1482 >  publisher = {Academic Press},
1483 >  year = {1990},
1484 >  author = {J.~B. Marion},
1485 >  address = {New York},
1486 >  edition = {2rd},
1487   }
1488  
1489 < @InBook{voter,
1490 <  author =   {A.~F. Voter},
1491 <  editor =   {J.~H. Westbrook and R.~L. Fleischer},
1492 <  title =    {Intermetallic Compounds: Principles and Practice},
1493 <  chapter =      4,
1494 <  publisher =    {John Wiley and Sons Ltd},
1495 <  year =     1995,
1887 <  volume =   1,
1888 <  pages =    77
1489 > @ARTICLE{McLachlan1993,
1490 >  author = {R.~I McLachlan},
1491 >  title = {Explicit Lie-Poisson integration and the Euler equations},
1492 >  journal = {prl},
1493 >  year = {1993},
1494 >  volume = {71},
1495 >  pages = {3043-3046},
1496   }
1497  
1498 < @Article{marrink:2002,
1499 <  author =   {S.~J. Marrink and D.~P. Teileman},
1500 <  title =    {Molecular Dynamics Simulation of Spontaneous Membrane Fusion during a Cubic-Hexagonal Phase Transition},
1501 <  journal =      {Biophysical Journal},
1502 <  year =     2002,
1503 <  volume =   83,
1504 <  pages =    {2386-2392}
1498 > @ARTICLE{McLachlan2005,
1499 >  author = {R. I. McLachlan and A. Zanna},
1500 >  title = {The discrete Moser-Veselov algorithm for the free rigid body, revisited},
1501 >  journal = {Foundations of Computational Mathematics},
1502 >  year = {2005},
1503 >  volume = {5},
1504 >  pages = {87-123},
1505 >  number = {1},
1506 >  month = {Feb},
1507 >  abstract = {In this paper we revisit the Moser-Veselov description of the free
1508 >        rigid body in body coordinates, which, in the 3 x 3 case, can be
1509 >        implemented as an explicit, second-order, integrable approximation
1510 >        of the continuous solution. By backward error analysis, we study
1511 >        the modified vector field which is integrated exactly by the discrete
1512 >        algorithm. We deduce that the discrete Moser-Veselov (DMV) is well
1513 >        approximated to higher order by time reparametrizations of the continuous
1514 >        equations (modified vector field). We use the modified vector field
1515 >        to scale the initial data of the DMV to improve the order of the
1516 >        approximation and show the equivalence of the DMV and the RATTLE
1517 >        algorithm. Numerical integration with these preprocessed initial
1518 >        data is several orders of magnitude more accurate than the original
1519 >        DMV and RATTLE approach.},
1520 >  annote = {911NS Times Cited:0 Cited References Count:14},
1521 >  issn = {1615-3375},
1522 >  uri = {<Go to ISI>://000228011900003},
1523   }
1524  
1525 < @Article{sum:2003,
1526 <  author =   {A.~K. Sum and J.~J. de~Pablo},
1527 <  title =    {Molecular Simulation Study on the influence of Dimethylsulfoxide on the structure of Phospholipid Bilayers},
1528 <  journal =      {Biophysical Journal},
1529 <  year =     2003,
1530 <  volume =   85,
1531 <  pages =    {3636-3645}
1525 > @ARTICLE{Memmer2002,
1526 >  author = {R. Memmer},
1527 >  title = {Liquid crystal phases of achiral banana-shaped molecules: a computer
1528 >        simulation study},
1529 >  journal = {Liquid Crystals},
1530 >  year = {2002},
1531 >  volume = {29},
1532 >  pages = {483-496},
1533 >  number = {4},
1534 >  month = {Apr},
1535 >  abstract = {The phase behaviour of achiral banana-shaped molecules was studied
1536 >        by computer simulation. The banana-shaped molecules were described
1537 >        by model intermolecular interactions based on the Gay-Berne potential.
1538 >        The characteristic molecular structure was considered by joining
1539 >        two calamitic Gay-Berne particles through a bond to form a biaxial
1540 >        molecule of point symmetry group C-2v with a suitable bending angle.
1541 >        The dependence on temperature of systems of N=1024 rigid banana-shaped
1542 >        molecules with bending angle phi=140degrees has been studied by
1543 >        means of Monte Carlo simulations in the isobaric-isothermal ensemble
1544 >        (NpT). On cooling an isotropic system, two phase transitions characterized
1545 >        by phase transition enthalpy, entropy and relative volume change
1546 >        have been observed. For the first time by computer simulation of
1547 >        a many-particle system of banana-shaped molecules, at low temperature
1548 >        an untilted smectic phase showing a global phase biaxiality and
1549 >        a spontaneous local polarization in the layers, i.e. a local polar
1550 >        arrangement of the steric dipoles, with an antiferroelectric-like
1551 >        superstructure could be proven, a phase structure which recently
1552 >        has been discovered experimentally. Additionally, at intermediate
1553 >        temperature a nematic-like phase has been proved, whereas close
1554 >        to the transition to the smectic phase hints of a spontaneous achiral
1555 >        symmetry breaking have been determined. Here, in the absence of
1556 >        a layered structure a helical superstructure has been formed. All
1557 >        phases have been characterized by visual representations of selected
1558 >        configurations, scalar and pseudoscalar correlation functions, and
1559 >        order parameters.},
1560 >  annote = {531HT Times Cited:12 Cited References Count:37},
1561 >  issn = {0267-8292},
1562 >  uri = {<Go to ISI>://000174410500001},
1563   }
1564  
1565 < @Article{gomez:2003,
1566 <  author =   {J.~D. Faraldo-Gomez and G.~R. Smith and M.~S.P. Sansom},
1567 <  title =    {Setting up and optimization of membrane protein simulations},
1568 <  journal =      {Eur. Biophys. J.},
1569 <  year =     2002,
1570 <  volume =   31,
1571 <  pages =    {217-227}
1565 > @ARTICLE{Metropolis1949,
1566 >  author = {N. Metropolis and S. Ulam},
1567 >  title = {The $\mbox{Monte Carlo}$ Method},
1568 >  journal = {J. Am. Stat. Ass.},
1569 >  year = {1949},
1570 >  volume = {44},
1571 >  pages = {335-341},
1572   }
1573  
1574 <
1575 < @Article{smondyrev:1999,
1576 <  author =   {A.~M. Smondyrev and M.~L. Berkowitz},
1577 <  title =    {Molecular Dynamics Simulation of {\sc dppc} Bilayer in {\sc dmso}},
1578 <  journal =      {Biophysical Journal},
1579 <  year =     1999,
1580 <  volume =   76,
1581 <  pages =    {2472-2478}
1574 > @ARTICLE{Mielke2004,
1575 >  author = {S. P. Mielke and W. H. Fink and V. V. Krishnan and N. Gronbech-Jensen
1576 >        and C. J. Benham},
1577 >  title = {Transcription-driven twin supercoiling of a DNA loop: A Brownian
1578 >        dynamics study},
1579 >  journal = {Journal of Chemical Physics},
1580 >  year = {2004},
1581 >  volume = {121},
1582 >  pages = {8104-8112},
1583 >  number = {16},
1584 >  month = {Oct 22},
1585 >  abstract = {The torque generated by RNA polymerase as it tracks along double-stranded
1586 >        DNA can potentially induce long-range structural deformations integral
1587 >        to mechanisms of biological significance in both prokaryotes and
1588 >        eukaryotes. In this paper, we introduce a dynamic computer model
1589 >        for investigating this phenomenon. Duplex DNA is represented as
1590 >        a chain of hydrodynamic beads interacting through potentials of
1591 >        linearly elastic stretching, bending, and twisting, as well as excluded
1592 >        volume. The chain, linear when relaxed, is looped to form two open
1593 >        but topologically constrained subdomains. This permits the dynamic
1594 >        introduction of torsional stress via a centrally applied torque.
1595 >        We simulate by Brownian dynamics the 100 mus response of a 477-base
1596 >        pair B-DNA template to the localized torque generated by the prokaryotic
1597 >        transcription ensemble. Following a sharp rise at early times, the
1598 >        distributed twist assumes a nearly constant value in both subdomains,
1599 >        and a succession of supercoiling deformations occurs as superhelical
1600 >        stress is increasingly partitioned to writhe. The magnitude of writhe
1601 >        surpasses that of twist before also leveling off when the structure
1602 >        reaches mechanical equilibrium with the torsional load. Superhelicity
1603 >        is simultaneously right handed in one subdomain and left handed
1604 >        in the other, as predicted by the #transcription-induced##twin-supercoiled-domain#
1605 >        model [L. F. Liu and J. C. Wang, Proc. Natl. Acad. Sci. U.S.A. 84,
1606 >        7024 (1987)]. The properties of the chain at the onset of writhing
1607 >        agree well with predictions from theory, and the generated stress
1608 >        is ample for driving secondary structural transitions in physiological
1609 >        DNA. (C) 2004 American Institute of Physics.},
1610 >  annote = {861ZF Times Cited:3 Cited References Count:34},
1611 >  issn = {0021-9606},
1612 >  uri = {<Go to ISI>://000224456500064},
1613   }
1614  
1615 < @Article{nina:2002,
1616 <  author =   {M. Nina and T. Simonson},
1617 <  title =    {Molecular Dynamics of the $\text{tRNA}^{\text{Ala}}$ Acceptor Stem: Comparison between Continuum Reaction Field and Particle-Mesh Ewald Electrostatic Treatments},
1618 <  journal =      {J. Phys. Chem. B},
1619 <  year =     2002,
1620 <  volume =   106,
1621 <  pages =    {3696-3705}
1615 > @ARTICLE{Naess2001,
1616 >  author = {S. N. Naess and H. M. Adland and A. Mikkelsen and A. Elgsaeter},
1617 >  title = {Brownian dynamics simulation of rigid bodies and segmented polymer
1618 >        chains. Use of Cartesian rotation vectors as the generalized coordinates
1619 >        describing angular orientations},
1620 >  journal = {Physica A},
1621 >  year = {2001},
1622 >  volume = {294},
1623 >  pages = {323-339},
1624 >  number = {3-4},
1625 >  month = {May 15},
1626 >  abstract = {The three Eulerian angles constitute the classical choice of generalized
1627 >        coordinates used to describe the three degrees of rotational freedom
1628 >        of a rigid body, but it has long been known that this choice yields
1629 >        singular equations of motion. The latter is also true when Eulerian
1630 >        angles are used in Brownian dynamics analyses of the angular orientation
1631 >        of single rigid bodies and segmented polymer chains. Starting from
1632 >        kinetic theory we here show that by instead employing the three
1633 >        components of Cartesian rotation vectors as the generalized coordinates
1634 >        describing angular orientation, no singularity appears in the configuration
1635 >        space diffusion equation and the associated Brownian dynamics algorithm.
1636 >        The suitability of Cartesian rotation vectors in Brownian dynamics
1637 >        simulations of segmented polymer chains with spring-like or ball-socket
1638 >        joints is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.},
1639 >  annote = {433TA Times Cited:7 Cited References Count:19},
1640 >  issn = {0378-4371},
1641 >  uri = {<Go to ISI>://000168774800005},
1642   }
1643  
1644 < @Article{norberg:2000,
1645 <  author =   {J. Norberg and L. Nilsson},
1646 <  title =    {On the truncation of Long-Range Electrostatic Interactions in {\sc dna}},
1647 <  journal =      {Biophysical Journal},
1648 <  year =     2000,
1649 <  volume =   79,
1650 <  pages =    {1537-1553}
1644 > @ARTICLE{Niori1996,
1645 >  author = {T. Niori and T. Sekine and J. Watanabe and T. Furukawa and H. Takezoe},
1646 >  title = {Distinct ferroelectric smectic liquid crystals consisting of banana
1647 >        shaped achiral molecules},
1648 >  journal = {Journal of Materials Chemistry},
1649 >  year = {1996},
1650 >  volume = {6},
1651 >  pages = {1231-1233},
1652 >  number = {7},
1653 >  month = {Jul},
1654 >  abstract = {The synthesis of a banana-shaped molecule is reported and it is found
1655 >        that the smectic phase which it forms is biaxial with the molecules
1656 >        packed in the best,direction into a layer. Because of this characteristic
1657 >        packing, spontaneous polarization appears parallel to the layer
1658 >        and switches on reversal of an applied electric field. This is the
1659 >        first obvious example of ferroelectricity in an achiral smectic
1660 >        phase and is ascribed to the C-2v symmetry of the molecular packing.},
1661 >  annote = {Ux855 Times Cited:447 Cited References Count:18},
1662 >  issn = {0959-9428},
1663 >  uri = {<Go to ISI>://A1996UX85500025},
1664   }
1665  
1666 < @Article{patra:2003,
1667 <  author =   {M. Patra and M. Karttunen and M.~T. Hyv\"{o}nen and E. Falk and P. Lindqvist and I. Vattulainen},
1668 <  title =    {Molecular Dynamics Simulations of Lipid Bilayers: Major Artifacts Due to Truncating Electrostatic Interactions},
1669 <  journal =      {Biophysical Journal},
1670 <  year =     2003,
1671 <  volume =   84,
1672 <  pages =    {3636-3645}
1666 > @ARTICLE{Noguchi2002,
1667 >  author = {H. Noguchi and M. Takasu},
1668 >  title = {Structural changes of pulled vesicles: A Brownian dynamics simulation},
1669 >  journal = {Physical Review E},
1670 >  year = {2002},
1671 >  volume = {65},
1672 >  pages = {-},
1673 >  number = {5},
1674 >  month = {may},
1675 >  abstract = {We Studied the structural changes of bilayer vesicles induced by mechanical
1676 >        forces using a Brownian dynamics simulation. Two nanoparticles,
1677 >        which interact repulsively with amphiphilic molecules, are put inside
1678 >        a vesicle. The position of one nanoparticle is fixed, and the other
1679 >        is moved by a constant force as in optical-trapping experiments.
1680 >        First, the pulled vesicle stretches into a pear or tube shape. Then
1681 >        the inner monolayer in the tube-shaped region is deformed, and a
1682 >        cylindrical structure is formed between two vesicles. After stretching
1683 >        the cylindrical region, fission occurs near the moved vesicle. Soon
1684 >        after this the cylindrical region shrinks. The trapping force similar
1685 >        to 100 pN is needed to induce the formation of the cylindrical structure
1686 >        and fission.},
1687 >  annote = {Part 1 568PX Times Cited:5 Cited References Count:39},
1688 >  issn = {1063-651X},
1689 >  uri = {<Go to ISI>://000176552300084},
1690   }
1691  
1692 < @Article{marrink04,
1693 <  author =   {S.~J. Marrink and A.~H. de~Vries and A.~E. Mark},
1694 <  title =    {Coarse Grained Model for Semiquantitative Lipid Simulations},
1695 <  journal =      {J. Phys. Chem. B},
1696 <  year =     2004,
1697 <  volume =   108,
1698 <  pages =    {750-760}
1692 > @ARTICLE{Noguchi2001,
1693 >  author = {H. Noguchi and M. Takasu},
1694 >  title = {Fusion pathways of vesicles: A Brownian dynamics simulation},
1695 >  journal = {Journal of Chemical Physics},
1696 >  year = {2001},
1697 >  volume = {115},
1698 >  pages = {9547-9551},
1699 >  number = {20},
1700 >  month = {Nov 22},
1701 >  abstract = {We studied the fusion dynamics of vesicles using a Brownian dynamics
1702 >        simulation. Amphiphilic molecules spontaneously form vesicles with
1703 >        a bilayer structure. Two vesicles come into contact and form a stalk
1704 >        intermediate, in which a necklike structure only connects the outer
1705 >        monolayers, as predicted by the stalk hypothesis. We have found
1706 >        a new pathway of pore opening from stalks at high temperature: the
1707 >        elliptic stalk bends and contact between the ends of the arc-shaped
1708 >        stalk leads to pore opening. On the other hand, we have clarified
1709 >        that the pore-opening process at low temperature agrees with the
1710 >        modified stalk model: a pore is induced by contact between the inner
1711 >        monolayers inside the stalk. (C) 2001 American Institute of Physics.},
1712 >  annote = {491UW Times Cited:48 Cited References Count:25},
1713 >  issn = {0021-9606},
1714 >  uri = {<Go to ISI>://000172129300049},
1715   }
1716  
1717 < @Article{andersen83,
1718 <  author =   {H.~C. Andersen},
1719 <  title =    {{\sc rattle}: A Velocity Version of the Shake Algorithm for Molecular Dynamics Calculations},
1720 <  journal =      {Journal of Computational Physics},
1721 <  year =     1983,
1722 <  volume =   52,
1723 <  pages =    {24-34}
1717 > @ARTICLE{Orlandi2006,
1718 >  author = {S. Orlandi and R. Berardi and J. Steltzer and C. Zannoni},
1719 >  title = {A Monte Carlo study of the mesophases formed by polar bent-shaped
1720 >        molecules},
1721 >  journal = {Journal of Chemical Physics},
1722 >  year = {2006},
1723 >  volume = {124},
1724 >  pages = {-},
1725 >  number = {12},
1726 >  month = {Mar 28},
1727 >  abstract = {Liquid crystal phases formed by bent-shaped (or #banana#) molecules
1728 >        are currently of great interest. Here we investigate by Monte Carlo
1729 >        computer simulations the phases formed by rigid banana molecules
1730 >        modeled combining three Gay-Berne sites and containing either one
1731 >        central or two lateral and transversal dipoles. We show that changing
1732 >        the dipole position and orientation has a profound effect on the
1733 >        mesophase stability and molecular organization. In particular, we
1734 >        find a uniaxial nematic phase only for off-center dipolar models
1735 >        and tilted phases only for the one with terminal dipoles. (c) 2006
1736 >        American Institute of Physics.},
1737 >  annote = {028CP Times Cited:0 Cited References Count:42},
1738 >  issn = {0021-9606},
1739 >  uri = {<Go to ISI>://000236464000072},
1740   }
1741  
1742 < @Article{hura00,
1743 <  author =   {G. Hura and J.~M. Sorenson and R.~M. Glaeser and T. Head-Gordon},
1744 <  title =    {A high-quality x-ray scattering experiment on liquid water at ambient conditions},
1745 <  journal =      {J. Chem. Phys.},
1746 <  year =     2000,
1747 <  volume =   113,
1748 <  pages =    {9140-9148}
1742 > @ARTICLE{Palacios1998,
1743 >  author = {J. L. Garcia-Palacios and F. J. Lazaro},
1744 >  title = {Langevin-dynamics study of the dynamical properties of small magnetic
1745 >        particles},
1746 >  journal = {Physical Review B},
1747 >  year = {1998},
1748 >  volume = {58},
1749 >  pages = {14937-14958},
1750 >  number = {22},
1751 >  month = {Dec 1},
1752 >  abstract = {The stochastic Landau-Lifshitz-Gilbert equation of motion for a classical
1753 >        magnetic moment is numerically solved (properly observing the customary
1754 >        interpretation of it as a Stratonovich stochastic differential equation),
1755 >        in order to study the dynamics of magnetic nanoparticles. The corresponding
1756 >        Langevin-dynamics approach allows for the study of the fluctuating
1757 >        trajectories of individual magnetic moments, where we have encountered
1758 >        remarkable phenomena in the overbarrier rotation process, such as
1759 >        crossing-back or multiple crossing of the potential barrier, rooted
1760 >        in the gyromagnetic nature of the system. Concerning averaged quantities,
1761 >        we study the linear dynamic response of the archetypal ensemble
1762 >        of noninteracting classical magnetic moments with axially symmetric
1763 >        magnetic anisotropy. The results are compared with different analytical
1764 >        expressions used to model the relaxation of nanoparticle ensembles,
1765 >        assessing their accuracy. It has been found that, among a number
1766 >        of heuristic expressions for the linear dynamic susceptibility,
1767 >        only the simple formula proposed by Shliomis and Stepanov matches
1768 >        the coarse features of the susceptibility reasonably. By comparing
1769 >        the numerical results with the asymptotic formula of Storonkin {Sov.
1770 >        Phys. Crystallogr. 30, 489 (1985) [Kristallografiya 30, 841 (1985)]},
1771 >        the effects of the intra-potential-well relaxation modes on the
1772 >        low-temperature longitudinal dynamic response have been assessed,
1773 >        showing their relatively small reflection in the susceptibility
1774 >        curves but their dramatic influence on the phase shifts. Comparison
1775 >        of the numerical results with the exact zero-damping expression
1776 >        for the transverse susceptibility by Garanin, Ishchenko, and Panina
1777 >        {Theor. Math. Phys. (USSR) 82, 169 (1990) [Teor. Mat. Fit. 82, 242
1778 >        (1990)]}, reveals a sizable contribution of the spread of the precession
1779 >        frequencies of the magnetic moment in the anisotropy field to the
1780 >        dynamic response at intermediate-to-high temperatures. [S0163-1829
1781 >        (98)00446-9].},
1782 >  annote = {146XW Times Cited:66 Cited References Count:45},
1783 >  issn = {0163-1829},
1784 >  uri = {<Go to ISI>://000077460000052},
1785   }
1786  
1787 <
1788 < @Article{ryckaert77,
1789 <  author =   {J.~P. Ryckaert and G. Ciccotti and H.~J.~C. Berendsen},
1790 <  title =    {Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes},
1791 <  journal =      {Journal of Computational Physics},
1792 <  year =     1977,
1793 <  volume =   23,
1794 <  pages =    {327-341}
1787 > @ARTICLE{Pastor1988,
1788 >  author = {R. W. Pastor and B. R. Brooks and A. Szabo},
1789 >  title = {An Analysis of the Accuracy of Langevin and Molecular-Dynamics Algorithms},
1790 >  journal = {Molecular Physics},
1791 >  year = {1988},
1792 >  volume = {65},
1793 >  pages = {1409-1419},
1794 >  number = {6},
1795 >  month = {Dec 20},
1796 >  annote = {T1302 Times Cited:61 Cited References Count:26},
1797 >  issn = {0026-8976},
1798 >  uri = {<Go to ISI>://A1988T130200011},
1799   }
1800  
1801 <
1802 < @InBook{fowles99:lagrange,
1803 <  author =   {G.~R. Fowles and G.~L. Cassiday},
1804 <  title =    {Analytical Mechanics},
1805 <  chapter =      10,
1806 <  publisher =    {Saunders College Publishing},
1807 <  year =     1999,
1808 <  edition =  {6th}
1801 > @ARTICLE{Pelzl1999,
1802 >  author = {G. Pelzl and S. Diele and W. Weissflog},
1803 >  title = {Banana-shaped compounds - A new field of liquid crystals},
1804 >  journal = {Advanced Materials},
1805 >  year = {1999},
1806 >  volume = {11},
1807 >  pages = {707-724},
1808 >  number = {9},
1809 >  month = {Jul 5},
1810 >  annote = {220RC Times Cited:313 Cited References Count:49},
1811 >  issn = {0935-9648},
1812 >  uri = {<Go to ISI>://000081680400007},
1813   }
1814  
1815 < @Article{petrache00,
1816 <  author =   {H.~I. Petrache and S.~W. Dodd and M.~F. Brown},
1817 <  title =    {Area per Lipid and Acyl Length Distributions in Fluid Phosphatidylcholines Determined by $^2\text{H}$ {\sc nmr} Spectroscopy},
1818 <  journal =      {Biophysical Journal},
1819 <  year =     2000,
1820 <  volume =   79,
1821 <  pages =    {3172-3192}
1815 > @ARTICLE{Perram1985,
1816 >  author = {J. W. Perram and M. S. Wertheim},
1817 >  title = {Statistical-Mechanics of Hard Ellipsoids .1. Overlap Algorithm and
1818 >        the Contact Function},
1819 >  journal = {Journal of Computational Physics},
1820 >  year = {1985},
1821 >  volume = {58},
1822 >  pages = {409-416},
1823 >  number = {3},
1824 >  annote = {Akb93 Times Cited:71 Cited References Count:12},
1825 >  issn = {0021-9991},
1826 >  uri = {<Go to ISI>://A1985AKB9300008},
1827   }
1828  
1829 < @Article{egberts88,
1830 <  author =   {E. Egberts and H.~J.~C. Berendsen},
1831 <  title =    {Molecular Dynamics Simulation of a smectic liquid crystal with atomic detail},
1832 <  journal =      {J. Chem. Phys.},
1833 <  year =     1988,
1834 <  volume =   89,
1835 <  pages =    {3718-3732}
1829 > @ARTICLE{Petrache1998,
1830 >  author = {H. I. Petrache and S. Tristram-Nagle and J. F. Nagle},
1831 >  title = {Fluid phase structure of EPC and DMPC bilayers},
1832 >  journal = {Chemistry and Physics of Lipids},
1833 >  year = {1998},
1834 >  volume = {95},
1835 >  pages = {83-94},
1836 >  number = {1},
1837 >  month = {Sep},
1838 >  abstract = {X-ray diffraction data taken at high instrumental resolution were
1839 >        obtained for EPC and DMPC under various osmotic pressures, primarily
1840 >        at T = 30 degrees C. The headgroup thickness D-HH was obtained from
1841 >        relative electron density profiles. By using volumetric results
1842 >        and by comparing to gel phase DPPC we obtain areas A(EPC)(F) = 69.4
1843 >        +/- 1.1 Angstrom(2) and A(DMPC)(F) = 59.7 +/- 0.2 Angstrom(2). The
1844 >        analysis also gives estimates for the areal compressibility K-A.
1845 >        The A(F) results lead to other structural results regarding membrane
1846 >        thickness and associated waters. Using the recently determined absolute
1847 >        electrons density profile of DPPC, the AF results also lead to absolute
1848 >        electron density profiles and absolute continuous transforms \F(q)\
1849 >        for EPC and DMPC, Limited measurements of temperature dependence
1850 >        show directly that fluctuations increase with increasing temperature
1851 >        and that a small decrease in bending modulus K-c accounts for the
1852 >        increased water spacing reported by Simon et al. (1995) Biophys.
1853 >        J. 69, 1473-1483. (C) 1998 Elsevier Science Ireland Ltd. All rights
1854 >        reserved.},
1855 >  annote = {130AT Times Cited:98 Cited References Count:39},
1856 >  issn = {0009-3084},
1857 >  uri = {<Go to ISI>://000076497600007},
1858   }
1859  
1860 < @Article{Holz00,
1861 <  author =       {M. Holz and S.~R. Heil and A. Sacco},
1862 <  title =        {Temperature-dependent self-diffusion coefficients of
1863 <                  water and six selected molecular liquids for calibration
1864 <                  in accurate $^1${\sc h} {\sc nmr pfg} measurements},
1865 <  journal =      {Phys. Chem. Chem. Phys.},
1866 <  year =         2000,
1867 <  volume =       2,
2028 <  pages =        {4740-4742},
1860 > @ARTICLE{Powles1973,
1861 >  author = {J.~G. Powles},
1862 >  title = {A general ellipsoid can not always serve as a modle for the rotational
1863 >        diffusion properties of arbitrary shaped rigid molecules},
1864 >  journal = {Advan. Phys.},
1865 >  year = {1973},
1866 >  volume = {22},
1867 >  pages = {1-56},
1868   }
1869  
1870 < @InCollection{zannoni94,
1871 <  author =   {C. Zannoni},
1872 <  title =    {An introduction to the molecular dynamics method and to orientational dynamics in liquid crystals},
1873 <  booktitle =    {The Molecular Dynamics of Liquid Crstals},
1874 <  pages =    {139-169},
1875 <  publisher =    {Kluwer Academic Publishers},
1876 <  year =     1994,
1877 <  editor =   {G.~R. Luckhurst and C.~A. Veracini},
1878 <  chapter =  6
1870 > @ARTICLE{Recio2004,
1871 >  author = {J. Fernandez-Recio and M. Totrov and R. Abagyan},
1872 >  title = {Identification of protein-protein interaction sites from docking
1873 >        energy landscapes},
1874 >  journal = {Journal of Molecular Biology},
1875 >  year = {2004},
1876 >  volume = {335},
1877 >  pages = {843-865},
1878 >  number = {3},
1879 >  month = {Jan 16},
1880 >  abstract = {Protein recognition is one of the most challenging and intriguing
1881 >        problems in structural biology. Despite all the available structural,
1882 >        sequence and biophysical information about protein-protein complexes,
1883 >        the physico-chemical patterns, if any, that make a protein surface
1884 >        likely to be involved in protein-protein interactions, remain elusive.
1885 >        Here, we apply protein docking simulations and analysis of the interaction
1886 >        energy landscapes to identify protein-protein interaction sites.
1887 >        The new protocol for global docking based on multi-start global
1888 >        energy optimization of an allatom model of the ligand, with detailed
1889 >        receptor potentials and atomic solvation parameters optimized in
1890 >        a training set of 24 complexes, explores the conformational space
1891 >        around the whole receptor without restrictions. The ensembles of
1892 >        the rigid-body docking solutions generated by the simulations were
1893 >        subsequently used to project the docking energy landscapes onto
1894 >        the protein surfaces. We found that highly populated low-energy
1895 >        regions consistently corresponded to actual binding sites. The procedure
1896 >        was validated on a test set of 21 known protein-protein complexes
1897 >        not used in the training set. As much as 81% of the predicted high-propensity
1898 >        patch residues were located correctly in the native interfaces.
1899 >        This approach can guide the design of mutations on the surfaces
1900 >        of proteins, provide geometrical details of a possible interaction,
1901 >        and help to annotate protein surfaces in structural proteomics.
1902 >        (C) 2003 Elsevier Ltd. All rights reserved.},
1903 >  annote = {763GQ Times Cited:21 Cited References Count:59},
1904 >  issn = {0022-2836},
1905 >  uri = {<Go to ISI>://000188066900016},
1906   }
1907  
1908 + @ARTICLE{Reddy2006,
1909 +  author = {R. A. Reddy and C. Tschierske},
1910 +  title = {Bent-core liquid crystals: polar order, superstructural chirality
1911 +        and spontaneous desymmetrisation in soft matter systems},
1912 +  journal = {Journal of Materials Chemistry},
1913 +  year = {2006},
1914 +  volume = {16},
1915 +  pages = {907-961},
1916 +  number = {10},
1917 +  abstract = {An overview on the recent developments in the field of liquid crystalline
1918 +        bent-core molecules (so-called banana liquid crystals) is given.
1919 +        After some basic issues, dealing with general aspects of the systematisation
1920 +        of the mesophases, development of polar order and chirality in this
1921 +        class of LC systems and explaining some general structure-property
1922 +        relationships, we focus on fascinating new developments in this
1923 +        field, such as modulated, undulated and columnar phases, so-called
1924 +        B7 phases, phase biaxiality, ferroelectric and antiferroelectric
1925 +        polar order in smectic and columnar phases, amplification and switching
1926 +        of chirality and the spontaneous formation of superstructural and
1927 +        supramolecular chirality.},
1928 +  annote = {021NS Times Cited:2 Cited References Count:316},
1929 +  issn = {0959-9428},
1930 +  uri = {<Go to ISI>://000235990500001},
1931 + }
1932  
1933 < @Article{melchionna93,
1934 <  author =   {S. Melchionna and G. Ciccotti and B.~L. Holian},
1935 <  title =    {Hoover {\sc npt} dynamics for systems varying in shape and size},
1936 <  journal =      {Molecular Physics},
1937 <  year =     1993,
1938 <  volume =   78,
1939 <  pages =    {533-544}
1933 > @ARTICLE{Ros2005,
1934 >  author = {M. B. Ros and J. L. Serrano and M. R. {de la Fuente} and C. L. Folcia},
1935 >  title = {Banana-shaped liquid crystals: a new field to explore},
1936 >  journal = {Journal of Materials Chemistry},
1937 >  year = {2005},
1938 >  volume = {15},
1939 >  pages = {5093-5098},
1940 >  number = {48},
1941 >  abstract = {The recent literature in the field of liquid crystals shows that banana-shaped
1942 >        mesogenic materials represent a bewitching and stimulating field
1943 >        of research that is interesting both academically and in terms of
1944 >        applications. Numerous topics are open to investigation in this
1945 >        area because of the rich phenomenology and new possibilities that
1946 >        these materials offer. The principal concepts in this area are reviewed
1947 >        along with recent results. In addition, new directions to stimulate
1948 >        further research activities are highlighted.},
1949 >  annote = {990XA Times Cited:3 Cited References Count:72},
1950 >  issn = {0959-9428},
1951 >  uri = {<Go to ISI>://000233775500001},
1952   }
1953  
1954 < @Article{fennell04,
1955 <  author =   {C.~J. Fennell and J.~D. Gezelter},
1956 <  title =    {On the structural and transport properties of the soft sticky dipole(SSD) and related single point water models},
1957 <  journal =      {J. Chem. Phys},
1958 <  year =     {in press 2004}
1954 > @ARTICLE{Roy2005,
1955 >  author = {A. Roy and N. V. Madhusudana},
1956 >  title = {A frustrated packing model for the B-6-B-1-SmAP(A) sequence of phases
1957 >        in banana shaped molecules},
1958 >  journal = {European Physical Journal E},
1959 >  year = {2005},
1960 >  volume = {18},
1961 >  pages = {253-258},
1962 >  number = {3},
1963 >  month = {Nov},
1964 >  abstract = {A vast majority of compounds with bent core or banana shaped molecules
1965 >        exhibit the phase sequence B-6-B-1-B-2 as the chain length is increased
1966 >        in a homologous series. The B-6 phase has an intercalated fluid
1967 >        lamellar structure with a layer spacing of half the molecular length.
1968 >        The B-1 phase has a two dimensionally periodic rectangular columnar
1969 >        structure. The B-2 phase has a monolayer fluid lamellar structure
1970 >        with molecules tilted with respect to the layer normal. Neglecting
1971 >        the tilt order of the molecules in the B-2 phase, we have developed
1972 >        a frustrated packing model to describe this phase sequence qualitatively.
1973 >        The model has some analogy with that of the frustrated smectics
1974 >        exhibited by highly polar rod like molecules.},
1975 >  annote = {985FW Times Cited:0 Cited References Count:30},
1976 >  issn = {1292-8941},
1977 >  uri = {<Go to ISI>://000233363300002},
1978   }
1979  
1980 < @Article{klein01,
1981 <  author =   {J.~C. Shelley andf M.~Y. Shelley and R.~C. Reeder and S. Bandyopadhyay and M.~L. Klein},
1982 <  title =    {A coarse Grain Model for Phospholipid Simulations},
1983 <  journal =      {J. Phys. Chem. B},
1984 <  year =     2001,
1985 <  volume =   105,
1986 <  pages =    {4464-4470}
1980 > @ARTICLE{Sandu1999,
1981 >  author = {A. Sandu and T. Schlick},
1982 >  title = {Masking resonance artifacts in force-splitting methods for biomolecular
1983 >        simulations by extrapolative Langevin dynamics},
1984 >  journal = {Journal of Computational Physics},
1985 >  year = {1999},
1986 >  volume = {151},
1987 >  pages = {74-113},
1988 >  number = {1},
1989 >  month = {May 1},
1990 >  abstract = {Numerical resonance artifacts have become recognized recently as a
1991 >        limiting factor to increasing the timestep in multiple-timestep
1992 >        (MTS) biomolecular dynamics simulations. At certain timesteps correlated
1993 >        to internal motions (e.g., 5 fs, around half the period of the fastest
1994 >        bond stretch, T-min), visible inaccuracies or instabilities can
1995 >        occur. Impulse-MTS schemes are vulnerable to these resonance errors
1996 >        since large energy pulses are introduced to the governing dynamics
1997 >        equations when the slow forces are evaluated. We recently showed
1998 >        that such resonance artifacts can be masked significantly by applying
1999 >        extrapolative splitting to stochastic dynamics. Theoretical and
2000 >        numerical analyses of force-splitting integrators based on the Verlet
2001 >        discretization are reported here for linear models to explain these
2002 >        observations and to suggest how to construct effective integrators
2003 >        for biomolecular dynamics that balance stability with accuracy.
2004 >        Analyses for Newtonian dynamics demonstrate the severe resonance
2005 >        patterns of the Impulse splitting, with this severity worsening
2006 >        with the outer timestep. Delta t: Constant Extrapolation is generally
2007 >        unstable, but the disturbances do not grow with Delta t. Thus. the
2008 >        stochastic extrapolative combination can counteract generic instabilities
2009 >        and largely alleviate resonances with a sufficiently strong Langevin
2010 >        heat-bath coupling (gamma), estimates for which are derived here
2011 >        based on the fastest and slowest motion periods. These resonance
2012 >        results generally hold for nonlinear test systems: a water tetramer
2013 >        and solvated protein. Proposed related approaches such as Extrapolation/Correction
2014 >        and Midpoint Extrapolation work better than Constant Extrapolation
2015 >        only for timesteps less than T-min/2. An effective extrapolative
2016 >        stochastic approach for biomolecules that balances long-timestep
2017 >        stability with good accuracy for the fast subsystem is then applied
2018 >        to a biomolecule using a three-class partitioning: the medium forces
2019 >        are treated by Midpoint Extrapolation via position Verlet, and the
2020 >        slow forces are incorporated by Constant Extrapolation. The resulting
2021 >        algorithm (LN) performs well on a solvated protein system in terms
2022 >        of thermodynamic properties and yields an order of magnitude speedup
2023 >        with respect to single-timestep Langevin trajectories. Computed
2024 >        spectral density functions also show how the Newtonian modes can
2025 >        be approximated by using a small gamma in the range Of 5-20 ps(-1).
2026 >        (C) 1999 Academic Press.},
2027 >  annote = {194FM Times Cited:14 Cited References Count:32},
2028 >  issn = {0021-9991},
2029 >  uri = {<Go to ISI>://000080181500004},
2030   }
2031  
2032 <
2033 < @Article{marrink03:vesicles,
2034 <  author =   {S.~J. Marrink and A.~E. Mark},
2035 <  title =    {Molecular Dynaimcs Simulation of the Formation, Structure, and Dynamics of Small Phospholipid Vesicles},
2036 <  journal =      {J. Am. Chem. Soc.},
2037 <  year =     2003,
2038 <  volume =   125,
2039 <  pages =    {15233-15242}
2032 > @ARTICLE{Satoh1996,
2033 >  author = {K. Satoh and S. Mita and S. Kondo},
2034 >  title = {Monte Carlo simulations using the dipolar Gay-Berne model: Effect
2035 >        of terminal dipole moment on mesophase formation},
2036 >  journal = {Chemical Physics Letters},
2037 >  year = {1996},
2038 >  volume = {255},
2039 >  pages = {99-104},
2040 >  number = {1-3},
2041 >  month = {Jun 7},
2042 >  abstract = {The effects of dipole-dipole interaction on mesophase formation are
2043 >        investigated with a Monte Carlo simulation using the dipolar Gay-Berne
2044 >        potential. It is shown that the dipole moment at the end of a molecule
2045 >        causes a shift in the nematic-isotropic transition toward higher
2046 >        temperature and a spread of the temperature range of the nematic
2047 >        phase and that layer structures with various interdigitations are
2048 >        formed in the smectic phase.},
2049 >  annote = {Uq975 Times Cited:32 Cited References Count:33},
2050 >  issn = {0009-2614},
2051 >  uri = {<Go to ISI>://A1996UQ97500017},
2052   }
2053  
2054 < @Book{gamma94,
2055 <  author =       {E. Gamma, R. Helm, R. Johnson and J. Vlissides},
2056 <  title =        {Design Patterns: Elements of Reusable Object-Oriented Software},
2057 <  chapter =      7,
2058 <  publisher =    {Perason Education},
2059 <  year =         1994,
2060 <  address =      {London},
2054 > @ARTICLE{Shen2002,
2055 >  author = {M. Y. Shen and K. F. Freed},
2056 >  title = {Long time dynamics of met-enkephalin: Comparison of explicit and
2057 >        implicit solvent models},
2058 >  journal = {Biophysical Journal},
2059 >  year = {2002},
2060 >  volume = {82},
2061 >  pages = {1791-1808},
2062 >  number = {4},
2063 >  month = {Apr},
2064 >  abstract = {Met-enkephalin is one of the smallest opiate peptides. Yet, its dynamical
2065 >        structure and receptor docking mechanism are still not well understood.
2066 >        The conformational dynamics of this neuron peptide in liquid water
2067 >        are studied here by using all-atom molecular dynamics (MID) and
2068 >        implicit water Langevin dynamics (LD) simulations with AMBER potential
2069 >        functions and the three-site transferable intermolecular potential
2070 >        (TIP3P) model for water. To achieve the same simulation length in
2071 >        physical time, the full MID simulations require 200 times as much
2072 >        CPU time as the implicit water LID simulations. The solvent hydrophobicity
2073 >        and dielectric behavior are treated in the implicit solvent LD simulations
2074 >        by using a macroscopic solvation potential, a single dielectric
2075 >        constant, and atomic friction coefficients computed using the accessible
2076 >        surface area method with the TIP3P model water viscosity as determined
2077 >        here from MID simulations for pure TIP3P water. Both the local and
2078 >        the global dynamics obtained from the implicit solvent LD simulations
2079 >        agree very well with those from the explicit solvent MD simulations.
2080 >        The simulations provide insights into the conformational restrictions
2081 >        that are associated with the bioactivity of the opiate peptide dermorphin
2082 >        for the delta-receptor.},
2083 >  annote = {540MH Times Cited:36 Cited References Count:45},
2084 >  issn = {0006-3495},
2085 >  uri = {<Go to ISI>://000174932400010},
2086   }
2087  
2088 < @Book{alexander,
2089 <  author =       {C. Alexander},
2090 <  title =        {A Pattern Language: Towns, Buildings, Construction},
2091 <  publisher =    {Oxford University Press},
2092 <  year =         1987,
2093 <  address =      {New York}
2088 > @ARTICLE{Shillcock2005,
2089 >  author = {J. C. Shillcock and R. Lipowsky},
2090 >  title = {Tension-induced fusion of bilayer membranes and vesicles},
2091 >  journal = {Nature Materials},
2092 >  year = {2005},
2093 >  volume = {4},
2094 >  pages = {225-228},
2095 >  number = {3},
2096 >  month = {Mar},
2097 >  annote = {901QJ Times Cited:9 Cited References Count:23},
2098 >  issn = {1476-1122},
2099 >  uri = {<Go to ISI>://000227296700019},
2100   }
2101  
2102 < @Article{wilson,
2103 <  author =   {G.~V. Wilson },
2104 <  title =    {Where's the Real Bottleneck in Scientific Computing?},
2105 <  journal =      {American Scientist},
2106 <  year =     2006,
2107 <  volume =   94
2102 > @ARTICLE{Skeel2002,
2103 >  author = {R. D. Skeel and J. A. Izaguirre},
2104 >  title = {An impulse integrator for Langevin dynamics},
2105 >  journal = {Molecular Physics},
2106 >  year = {2002},
2107 >  volume = {100},
2108 >  pages = {3885-3891},
2109 >  number = {24},
2110 >  month = {Dec 20},
2111 >  abstract = {The best simple method for Newtonian molecular dynamics is indisputably
2112 >        the leapfrog Stormer-Verlet method. The appropriate generalization
2113 >        to simple Langevin dynamics is unclear. An analysis is presented
2114 >        comparing an 'impulse method' (kick; fluctuate; kick), the 1982
2115 >        method of van Gunsteren and Berendsen, and the Brunger-Brooks-Karplus
2116 >        (BBK) method. It is shown how the impulse method and the van Gunsteren-Berendsen
2117 >        methods can be implemented as efficiently as the BBK method. Other
2118 >        considerations suggest that the impulse method is the best basic
2119 >        method for simple Langevin dynamics, with the van Gunsteren-Berendsen
2120 >        method a close contender.},
2121 >  annote = {633RX Times Cited:8 Cited References Count:22},
2122 >  issn = {0026-8976},
2123 >  uri = {<Go to ISI>://000180297200014},
2124   }
2125  
2126 < @article{Meineke05,
2127 <        Author = {M.~A. Meineke and C.~F. {Vardeman II} and T. Lin and C.~J. Fennell and J.~D. Gezelter},
2128 <        Date-Modified = {2006-03-05 12:37:31 -0500},
2129 <        Journal = {J. Comp. Chem.},
2130 <        Pages = {252-271},
2131 <        Title = {OOPSE: An Open Source Object-Oriented Parallel Simulation Engine for Molecular Dynamics},
2132 <        Volume = 26,
2133 <        Year = 2005
2126 > @ARTICLE{Skeel1997,
2127 >  author = {R. D. Skeel and G. H. Zhang and T. Schlick},
2128 >  title = {A family of symplectic integrators: Stability, accuracy, and molecular
2129 >        dynamics applications},
2130 >  journal = {Siam Journal on Scientific Computing},
2131 >  year = {1997},
2132 >  volume = {18},
2133 >  pages = {203-222},
2134 >  number = {1},
2135 >  month = {Jan},
2136 >  abstract = {The following integration methods for special second-order ordinary
2137 >        differential equations are studied: leapfrog, implicit midpoint,
2138 >        trapezoid, Stormer-Verlet, and Cowell-Numerov. We show that all
2139 >        are members, or equivalent to members, of a one-parameter family
2140 >        of schemes. Some methods have more than one common form, and we
2141 >        discuss a systematic enumeration of these forms. We also present
2142 >        a stability and accuracy analysis based on the idea of ''modified
2143 >        equations'' and a proof of symplecticness. It follows that Cowell-Numerov
2144 >        and ''LIM2'' (a method proposed by Zhang and Schlick) are symplectic.
2145 >        A different interpretation of the values used by these integrators
2146 >        leads to higher accuracy and better energy conservation. Hence,
2147 >        we suggest that the straightforward analysis of energy conservation
2148 >        is misleading.},
2149 >  annote = {We981 Times Cited:30 Cited References Count:35},
2150 >  issn = {1064-8275},
2151 >  uri = {<Go to ISI>://A1997WE98100012},
2152   }
2153  
2154 < @article{Matthey05,
2155 <        Author = {T. Matthey, T. Cickovski and \textit{et al}},
2156 <        Date-Modified = {2006-03-05 12:37:31 -0500},
2157 <        Journal = {ACM Transactions on Mathematical Software},
2158 <        Pages = {237-265},
2159 <        Title = {ProtoMol, an Object-Oriented Framework for Prototyping Novel Algorithms for Molecular Dynamics},
2160 <        Volume = 20,
2161 <        Year = 2004
2154 > @ARTICLE{Tao2005,
2155 >  author = {Y. G. Tao and W. K. {den Otter} and J. T. Padding and J. K. G. Dhont
2156 >        and W. J. Briels},
2157 >  title = {Brownian dynamics simulations of the self- and collective rotational
2158 >        diffusion coefficients of rigid long thin rods},
2159 >  journal = {Journal of Chemical Physics},
2160 >  year = {2005},
2161 >  volume = {122},
2162 >  pages = {-},
2163 >  number = {24},
2164 >  month = {Jun 22},
2165 >  abstract = {Recently a microscopic theory for the dynamics of suspensions of long
2166 >        thin rigid rods was presented, confirming and expanding the well-known
2167 >        theory by Doi and Edwards [The Theory of Polymer Dynamics (Clarendon,
2168 >        Oxford, 1986)] and Kuzuu [J. Phys. Soc. Jpn. 52, 3486 (1983)]. Here
2169 >        this theory is put to the test by comparing it against computer
2170 >        simulations. A Brownian dynamics simulation program was developed
2171 >        to follow the dynamics of the rods, with a length over a diameter
2172 >        ratio of 60, on the Smoluchowski time scale. The model accounts
2173 >        for excluded volume interactions between rods, but neglects hydrodynamic
2174 >        interactions. The self-rotational diffusion coefficients D-r(phi)
2175 >        of the rods were calculated by standard methods and by a new, more
2176 >        efficient method based on calculating average restoring torques.
2177 >        Collective decay of orientational order was calculated by means
2178 >        of equilibrium and nonequilibrium simulations. Our results show
2179 >        that, for the currently accessible volume fractions, the decay times
2180 >        in both cases are virtually identical. Moreover, the observed decay
2181 >        of diffusion coefficients with volume fraction is much quicker than
2182 >        predicted by the theory, which is attributed to an oversimplification
2183 >        of dynamic correlations in the theory. (c) 2005 American Institute
2184 >        of Physics.},
2185 >  annote = {943DN Times Cited:3 Cited References Count:26},
2186 >  issn = {0021-9606},
2187 >  uri = {<Go to ISI>://000230332400077},
2188   }
2189  
2190 < @Book{tolman79,
2191 <  author =       {R.~C. Tolman},
2192 <  title =        {The Principles of Statistical Mechanics},
2193 <  chapter =      2,
2194 <  publisher =    {Dover Publications, Inc.},
2195 <  year =         1979,
2196 <  address =      {New York},
2197 <  pages =        {19-22}
2190 > @BOOK{Tolman1979,
2191 >  title = {The Principles of Statistical Mechanics},
2192 >  publisher = {Dover Publications, Inc.},
2193 >  year = {1979},
2194 >  author = {R.~C. Tolman},
2195 >  address = {New York},
2196 >  chapter = {2},
2197 >  pages = {19-22},
2198   }
2199  
2200 < @Book{Marion90,
2201 <  author =   {J.~B. Marion},
2202 <  title =    {Classical Dynamics of Particles and Systems},
2203 <  publisher =    {Academic Press},
2204 <  year =     1990,
2205 <  address =  {New York},
2206 <  edition =  {2rd}
2200 > @ARTICLE{Tu1995,
2201 >  author = {K. Tu and D. J. Tobias and M. L. Klein},
2202 >  title = {Constant pressure and temperature molecular dynamics simulation of
2203 >        a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine
2204 >        bilayer},
2205 >  journal = {Biophysical Journal},
2206 >  year = {1995},
2207 >  volume = {69},
2208 >  pages = {2558-2562},
2209 >  number = {6},
2210 >  month = {Dec},
2211 >  abstract = {We report a constant pressure and temperature molecular dynamics simulation
2212 >        of a fully hydrated liquid crystal (L(alpha) phase bilayer of dipalmitoylphosphatidylcholine
2213 >        at 50 degrees C and 28 water molecules/lipid. We have shown that
2214 >        the bilayer is stable throughout the 1550-ps simulation and have
2215 >        demonstrated convergence of the system dimensions. Several important
2216 >        aspects of the bilayer structure have been investigated and compared
2217 >        favorably with experimental results. For example, the average positions
2218 >        of specific carbon atoms along the bilayer normal agree well with
2219 >        neutron diffraction data, and the electron density profile is in
2220 >        accord with x-ray diffraction results. The hydrocarbon chain deuterium
2221 >        order parameters agree reasonably well with NMR results for the
2222 >        middles of the chains, but the simulation predicts too much order
2223 >        at the chain ends. In spite of the deviations in the order parameters,
2224 >        the hydrocarbon chain packing density appears to be essentially
2225 >        correct, inasmuch as the area/lipid and bilayer thickness are in
2226 >        agreement with the most refined experimental estimates. The deuterium
2227 >        order parameters for the glycerol and choline groups, as well as
2228 >        the phosphorus chemical shift anisotropy, are in qualitative agreement
2229 >        with those extracted from NMR measurements.},
2230 >  annote = {Tv018 Times Cited:108 Cited References Count:34},
2231 >  issn = {0006-3495},
2232 >  uri = {<Go to ISI>://A1995TV01800037},
2233   }
2234  
2235 < @Book{Leimkuhler04,
2236 <  author =   {B. Leimkuhler and S. Reich},
2237 <  title =    {Simulating Hamiltonian Dynamics},
2238 <  publisher =    {Cambridge University Press},
2239 <  year =     2004,
2240 <  address =  {Cambridge}
2235 > @ARTICLE{Tuckerman1992,
2236 >  author = {M. Tuckerman and B. J. Berne and G. J. Martyna},
2237 >  title = {Reversible Multiple Time Scale Molecular-Dynamics},
2238 >  journal = {Journal of Chemical Physics},
2239 >  year = {1992},
2240 >  volume = {97},
2241 >  pages = {1990-2001},
2242 >  number = {3},
2243 >  month = {Aug 1},
2244 >  abstract = {The Trotter factorization of the Liouville propagator is used to generate
2245 >        new reversible molecular dynamics integrators. This strategy is
2246 >        applied to derive reversible reference system propagator algorithms
2247 >        (RESPA) that greatly accelerate simulations of systems with a separation
2248 >        of time scales or with long range forces. The new algorithms have
2249 >        all of the advantages of previous RESPA integrators but are reversible,
2250 >        and more stable than those methods. These methods are applied to
2251 >        a set of paradigmatic systems and are shown to be superior to earlier
2252 >        methods. It is shown how the new RESPA methods are related to predictor-corrector
2253 >        integrators. Finally, we show how these methods can be used to accelerate
2254 >        the integration of the equations of motion of systems with Nose
2255 >        thermostats.},
2256 >  annote = {Je891 Times Cited:680 Cited References Count:19},
2257 >  issn = {0021-9606},
2258 >  uri = {<Go to ISI>://A1992JE89100044},
2259   }
2260  
2261 < @Article{Gray03,
2262 <  author =       {J.~J Gray,S. Moughon, C. Wang },
2263 <  title =        {Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations},
2264 <  journal =      {jmb},
2265 <  year =         2003,
2266 <  volume =       331,
2267 <  pages =        {281-299}
2261 > @ARTICLE{Wegener1979,
2262 >  author = {W.~A. Wegener, V.~J. Koester and R.~M. Dowben},
2263 >  title = {A general ellipsoid can not always serve as a modle for the rotational
2264 >        diffusion properties of arbitrary shaped rigid molecules},
2265 >  journal = {Proc. Natl. Acad. Sci.},
2266 >  year = {1979},
2267 >  volume = {76},
2268 >  pages = {6356-6360},
2269 >  number = {12},
2270   }
2271  
2272 < @Article{McLachlan93,
2273 <  author =       {R.~I McLachlan},
2274 <  title =        {Explicit Lie-Poisson integration and the Euler equations},
2275 <  journal =      {prl},
2276 <  year =         1993,
2277 <  volume =       71,
2278 <  pages =        {3043-3046}
2272 > @ARTICLE{Withers2003,
2273 >  author = {I. M. Withers},
2274 >  title = {Effects of longitudinal quadrupoles on the phase behavior of a Gay-Berne
2275 >        fluid},
2276 >  journal = {Journal of Chemical Physics},
2277 >  year = {2003},
2278 >  volume = {119},
2279 >  pages = {10209-10223},
2280 >  number = {19},
2281 >  month = {Nov 15},
2282 >  abstract = {The effects of longitudinal quadrupole moments on the formation of
2283 >        liquid crystalline phases are studied by means of constant NPT Monte
2284 >        Carlo simulation methods. The popular Gay-Berne model mesogen is
2285 >        used as the reference fluid, which displays the phase sequences
2286 >        isotropic-smectic A-smectic B and isotropic-smectic B at high (T*=2.0)
2287 >        and low (T*=1.5) temperatures, respectively. With increasing quadrupole
2288 >        magnitude the smectic phases are observed to be stabilized with
2289 >        respect to the isotropic liquid, while the smectic B is destabilized
2290 >        with respect to the smectic A. At the lower temperature, a sufficiently
2291 >        large quadrupole magnitude results in the injection of the smectic
2292 >        A phase into the phase sequence and the replacement of the smectic
2293 >        B phase by the tilted smectic J phase. The nematic phase is also
2294 >        injected into the phase sequence at both temperatures considered,
2295 >        and ultimately for sufficiently large quadrupole magnitudes no coherent
2296 >        layered structures were observed. The stabilization of the smectic
2297 >        A phase supports the commonly held belief that, while the inclusion
2298 >        of polar groups is not a prerequisite for the formation of the smectic
2299 >        A phase, quadrupolar interactions help to increase the temperature
2300 >        and pressure range for which the smectic A phase is observed. The
2301 >        quality of the layered structure is worsened with increasing quadrupole
2302 >        magnitude. This behavior, along with the injection of the nematic
2303 >        phase into the phase sequence, indicate that the general tendency
2304 >        of the quadrupolar interactions is to destabilize the layered structure.
2305 >        A pressure dependence upon the smectic layer spacing is observed.
2306 >        This behavior is in much closer agreement with experimental findings
2307 >        than has been observed previously for nonpolar Gay-Berne and hard
2308 >        spherocylinder models. (C) 2003 American Institute of Physics.},
2309 >  annote = {738EF Times Cited:3 Cited References Count:43},
2310 >  issn = {0021-9606},
2311 >  uri = {<Go to ISI>://000186273200027},
2312   }
2167 @ARTICLE{Wegener79,
2168  AUTHOR =       {W.~A. Wegener, V.~J. Koester and R.~M. Dowben},
2169  TITLE =        {A general ellipsoid can not always serve as a modle for the rotational diffusion properties of arbitrary shaped rigid molecules},
2170  JOURNAL =      {Proc. Natl. Acad. Sci.},
2171  YEAR =         {1979},
2172  volume =       {76},
2173  number =       {12},
2174  pages =        {6356-6360}
2175 }
2313  
2177 @ARTICLE{Powles73,
2178  AUTHOR =       {J.~G. Powles},
2179  TITLE =        {A general ellipsoid can not always serve as a modle for the rotational diffusion properties of arbitrary shaped rigid molecules},
2180  JOURNAL =      {Advan. Phys.},
2181  YEAR =         {1973},
2182  volume =       {22},
2183  pages =        {1-56}
2184 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines