ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/dissertation.bib
(Generate patch)

Comparing trunk/tengDissertation/dissertation.bib (file contents):
Revision 2730 by tim, Mon Apr 24 18:49:32 2006 UTC vs.
Revision 2840 by tim, Fri Jun 9 02:54:01 2006 UTC

# Line 1 | Line 1
1 < @string{jcp = "J. Chem. Phys."}
2 < @string{cpl = "Chem. Phys. Lett."}
3 < @string{jpc = "J. Phys. Chem."}
4 < @string{jpcA = "J. Phys. Chem. A"}
5 < @string{jpcB = "J. Phys. Chem. B"}
6 < @string{cp  = "Chem. Phys."}
7 < @string{acp = "Adv. Chem. Phys."}
8 < @string{pra = "Phys. Rev. A"}
9 < @string{prb = "Phys. Rev. B"}
10 < @string{pre = "Phys. Rev. E"}
11 < @string{prl = "Phys. Rev. Lett."}
12 < @string{rmp = "Rev. Mod. Phys."}
13 < @string{jml = "J. Mol. Liq."}
14 < @string{mp = "Mol. Phys."}
15 < @string{pnas = "Proc. Natl. Acad. Sci. USA"}
16 < @string{jacs = "J. Am. Chem. Soc."}
17 < @string{jmb = "J. Mol. Biol."}
1 > This file was created with JabRef 2.0.1.
2 > Encoding: GBK
3  
4 <
5 < @Book{Berne90,
6 <  author =       {B.~J. Berne and R. Pecora},
7 <  title =        {Dynamic Light Scattering},
8 <  publisher =    {Robert E. Krieger Publishing Company, Inc.},
9 <  year =         1990,
10 <  address =      {Malabar, Florida}
11 < }
12 <
13 < @Article{Evans77,
14 <  author =       {D.~J. Evans},
15 <  title =        {On the representation of orientation space},
16 <  journal =      {Mol. Phys.},
17 <  year =         1977,
18 <  volume =       34,
19 <  pages =        {317-325}
20 < }
21 <
22 < @Article{Tuckerman92,
23 <  author =       {M. Tuckerman and B.~J. Berne and G.~J. Martyna},
24 <  title =        {Reversible multiple time scale molecular dynamics},
25 <  journal =      jcp,
26 <  year =         1992,
27 <  volume =       97,
28 <  pages =        {1990-2001}
29 < }
30 <
31 < @Book{Hansen86,
32 <  author =       {J.~P. Hansen and I.~R. McDonald},
33 <  title =        {Theory of Simple Liquids},
34 <  chapter =      7,
35 <  publisher =    {Academic Press},
36 <  year =         1986,
37 <  address =      {London},
38 <  pages =        {199-206}
39 < }
55 <
56 < @Article{Angelani98,
57 <  author =       {L. Angelani and G. Parisi and G. Ruocco and G. Viliani},
58 <  title =        {Connected Network of Minima as a Model Glass: Long
59 <                  Time Dynamics},
60 <  journal =      prl,
61 <  year =         1998,
62 <  volume =       81,
63 <  number =       21,
64 <  pages =        {4648-4651}
65 < }
66 <
67 < @Article{Stillinger82,
68 <  author =       {F.~H. Stillinger and T.~A. Weber},
69 <  title =        {Hidden structure in liquids},
70 <  journal =      pra,
71 <  year =         1982,
72 <  volume =       25,
73 <  number =       2,
74 <  pages =        {978-989}
75 < }
76 <
77 < @Article{Stillinger83,
78 <  author =       {F.~H. Stillinger and T.~A. Weber},
79 <  title =        {Dynamics of structural transitions in liquids},
80 <  journal =      pra,
81 <  year =         1983,
82 <  volume =       28,
83 <  number =       4,
84 <  pages =        {2408-2416}
85 < }
86 <
87 < @Article{Weber84,
88 <  author =       {T.~A. Weber and F.~H. Stillinger},
89 <  title =        {The effect of density on the inherent structure in
90 <                  liquids},
91 <  journal =      jcp,
92 <  year =         1984,
93 <  volume =       80,
94 <  number =       6,
95 <  pages =        {2742-2746}
96 < }
97 <
98 < @Article{Stillinger85,
99 <  author =       {F.~H. Stillinger and T.~A. Weber},
100 <  title =        {Inherent structure theory of liquids in the
101 <                  hard-sphere limit},
102 <  journal =      jcp,
103 <  year =         1985,
104 <  volume =       83,
105 <  number =       9,
106 <  pages =        {4767-4775}
107 < }
108 <
109 < @Article{Stillinger98,
110 <  author =       {S. Sastry and P.~G. Debenedetti and F.~H. Stillinger},
111 <  title =        {Signatures of distinct dynamical regimes in the
112 <                  energy landscape of a glass-forming liquid},
113 <  journal =      {Nature},
114 <  year =         1998,
115 <  volume =       393,
116 <  pages =        {554-557}
117 < }
118 <
119 <
120 < @Article{Parkhurst75a,
121 <  author =       {H.~J. {Parkhurst, Jr.} and J. Jonas},
122 <  title =        {Dense liquids. I. The effect of density and
123 <                  temperature on viscosity of tetramethylsilane and
124 <                  benzene-$\mbox{D}_6$},
125 <  journal =      jcp,
126 <  year =         1975,
127 <  volume =       63,
128 <  number =       6,
129 <  pages =        {2698-2704}
130 < }
131 <
132 < @Article{Parkhurst75b,
133 <  author =       {H.~J. {Parkhurst, Jr.} and J. Jonas},
134 <  title =        {Dense liquids. II. The effect of density and
135 <                  temperature on viscosity of tetramethylsilane and
136 <                  benzene },
137 <  journal =      jcp,
138 <  year =         1975,
139 <  volume =       63,
140 <  number =       6,
141 <  pages =        {2705-2709}
142 < }
143 <
144 < @Article{Forester97,
145 <  author =       {T.~R. Forester and W. Smith and J.~H.~R. Clarke},
146 <  title =        {Antibiotic activity of valinomycin - Molecular
147 <                  dynamics simulations involving the water/membrane
148 <                  interface},
149 <  journal =      {J. Chem. Soc. - Faraday Transactions},
150 <  year =         1997,
151 <  volume =       93,
152 <  pages =        {613-619}
153 < }
154 <
155 < @Article{Tieleman98,
156 <  author =       {D.~P. Tieleman and H.~J.~C. Berendsen},
157 <  title =        {A molecular dynamics study of the pores formed by
158 <                  Escherichia coli OmpF porin in a fully hydrated
159 <                  palmitoyloleoylphosphatidylcholine bilayer},
160 <  journal =      {Biophys. J.},
161 <  year =         1998,
162 <  volume =       74,
163 <  pages =        {2786-2801}
164 < }
165 <
166 < @Article{Cascales98,
167 <  author =       {J.~J.~L. Cascales and J.~G.~H. Cifre and J.~G. de~la~Torre},
168 <  title =        {Anaesthetic mechanism on a model biological
169 <                  membrane: A molecular dynamics simulation study},
170 <  journal =      {J. Phys. Chem. B},
171 <  year =         1998,
172 <  volume =       102,
173 <  pages =        {625-631}
174 < }
175 <
176 < @Article{Bassolino95,
177 <  author =       {D. Bassolino and H.~E. Alper and T.~R. Stouch},
178 <  title =        {MECHANISM OF SOLUTE DIFFUSION THROUGH LIPID
179 <                  BILAYER-MEMBRANES BY MOLECULAR-DYNAMICS SIMULATION},
180 <  journal =      {J. Am. Chem. Soc.},
181 <  year =         1995,
182 <  volume =       117,
183 <  pages =        {4118-4129}
184 < }
185 <
186 < @Article{Alper95,
187 <  author =       {H.~E. Alper and T.~R. Stouch},
188 <  title =        {ORIENTATION AND DIFFUSION OF A DRUG ANALOG IN
189 <                  BIOMEMBRANES - MOLECULAR-DYNAMICS SIMULATIONS},
190 <  journal =      {J. Phys. Chem.},
191 <  year =         1995,
192 <  volume =       99,
193 <  pages =        {5724-5731}
194 < }
195 <
196 < @Article{Sok92,
197 <  author =       {R.~M. Sok and H.~J.~C. Berendsen and W.~F. van~Gunsteren},
198 <  title =        {MOLECULAR-DYNAMICS SIMULATION OF THE TRANSPORT OF
199 <                  SMALL MOLECULES ACROSS A POLYMER MEMBRANE},
200 <  journal =      {J. Chem. Phys.},
201 <  year =         1992,
202 <  volume =       96,
203 <  pages =        {4699-4704}
204 < }
205 <
206 < @Article{Rabani99,
207 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
208 <  title =        {Direct Observation of Stretched-Exponential
209 <                  Relaxation in Low-Temperature Lennard-Jones Systems
210 <                  Using the Cage Correlation Function},
211 <  journal =      prl,
212 <  year =         {1999},
213 <  volume =       82,
214 <  pages =        {3649}
215 < }
216 <
217 < @Article{Rabani97,
218 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
219 <  title =        {Calculating the hopping rate for self-diffusion on
220 <                  rough potential energy surfaces: Cage correlations},
221 <  journal =      {J. Chem. Phys.},
222 <  year =         1997,
223 <  volume =       107,
224 <  pages =        {6867-6876}
225 < }
226 <
227 < @Article{Gezelter99,
228 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
229 <  title =        {Methods for calculating the hopping rate for
230 <                  orientational and spatial diffusion in a molecular
231 <                  liquid: $\mbox{CS}_{2}$},
232 <  journal =      jcp,
233 <  year =         1999,
234 <  volume =       110,
235 <  pages =        3444
236 < }
237 <
238 < @Article{Gezelter98a,
239 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
240 <  title =        {Response to 'Comment on a Critique of the
241 <                  Instantaneous Normal Mode (INM) Approach to
242 <                  Diffusion'},
243 <  journal =      jcp,
244 <  year =         1998,
245 <  volume =       109,
246 <  pages =        4695
247 < }
248 <
249 < @Article{Gezelter97,
250 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
251 <  title =        {Can imaginary instantaneous normal mode frequencies
252 <                  predict barriers to self-diffusion?},
253 <  journal =      jcp,
254 <  year =         1997,
255 <  volume =       107,
256 <  pages =        4618
257 < }
258 <
259 < @Article{Zwanzig83,
260 <  author =       {R. Zwanzig},
261 <  title =        {On the relation between self-diffusion and viscosity
262 <                  of liquids},
263 <  journal =      jcp,
264 <  year =         1983,
265 <  volume =       79,
266 <  pages =        {4507-4508}
267 < }
268 <
269 < @Article{Zwanzig88,
270 <  author =       {R. Zwanzig},
271 <  title =        {Diffusion in rough potential},
272 <  journal =      {Proc. Natl. Acad. Sci. USA},
273 <  year =         1988,
274 <  volume =       85,
275 <  pages =        2029
276 < }
277 <
278 < @Article{Stillinger95,
279 <  author =       {F.~H. Stillinger},
280 <  title =        {A Topographic View of Supercooled Liquids and Glass
281 <                  Formation},
282 <  journal =      {Science},
283 <  year =         1995,
284 <  volume =       267,
285 <  pages =        {1935-1939}
286 < }
287 <
288 < @InCollection{Angell85,
289 <  author =       {C.~A. Angell},
290 <  title =        {unknown},
291 <  booktitle =    {Relaxations in Complex Systems},
292 <  publisher =    {National Technical Information Service,
293 <                  U.S. Department of Commerce},
294 <  year =         1985,
295 <  editor =       {K.~Ngai and G.~B. Wright},
296 <  address =      {Springfield, VA},
297 <  pages =        1
298 < }
299 <
300 < @Article{Bembenek96,
301 <  author =       {S.~D. Bembenek and B.~B. Laird},
302 <  title =        {The role of localization in glasses and supercooled liquids},
303 <  journal =      jcp,
304 <  year =         1996,
305 <  volume =       104,
306 <  pages =        5199
307 < }
308 <
309 < @Article{Sun97,
310 <  author =       {X. Sun and W.~H. Miller},
311 <  title =        {Semiclassical initial value representation for
312 <                  electronically nonadiabatic molecular dynamics},
313 <  journal =      jcp,
314 <  year =         1997,
315 <  volume =       106,
316 <  pages =        6346
317 < }
318 <
319 < @Article{Spath96,
320 <  author =       {B.~W. Spath and W.~H. Miller},
321 <  title =        {SEMICLASSICAL CALCULATION OF CUMULATIVE REACTION
322 <                  PROBABILITIES},
323 <  journal =      jcp,
324 <  year =         1996,
325 <  volume =       104,
326 <  pages =        95
327 < }
328 <
329 < @Book{Warshel91,
330 <  author =       {Arieh Warshel},
331 <  title =        {Computer modeling of chemical reactions in enzymes
332 <                  and solutions},
333 <  publisher =    {Wiley},
334 <  year =         1991,
335 <  address =      {New York}
336 < }
337 <
338 < @Article{Vuilleumier97,
339 <  author =       {Rodolphe Vuilleumier and Daniel Borgis},
340 <  title =        {Molecular Dynamics of an excess proton in water
341 <                  using a non-additive valence bond force field},
342 <  journal =      jpc,
343 <  year =         1997,
344 <  volume =       {in press}
345 < }
346 <
347 < @Article{Kob95a,
348 <  author =       {W. Kob and H.~C. Andersen},
349 <  title =        {Testing mode-coupling theory for a supercooled
350 <                  binary Lennard-Jones mixtures: The van Hove
351 <                  corraltion function},
352 <  journal =      pre,
353 <  year =         1995,
354 <  volume =       51,
355 <  pages =        {4626-4641}
356 < }
357 <
358 < @Article{Kob95b,
359 <  author =       {W. Kob and H.~C. Andersen},
360 <  title =        {Testing mode-coupling theory for a supercooled
361 <                  binary Lennard-Jones mixtures. II. Intermediate
362 <                  scattering function and dynamic susceptibility},
363 <  journal =      pre,
364 <  year =         1995,
365 <  volume =       52,
366 <  pages =        {4134-4153}
367 < }
368 <
369 < @InProceedings{Gotze89,
370 <  author =       "W. G{\"{o}}tze",
371 <  title =        "Aspects of Structural Glass Transitions",
372 <  editor =       "J.~P. Hansen and D. Levesque and J. Zinn-Justin",
373 <  volume =       "I",
374 <  pages =        "287-503",
375 <  booktitle =    "Liquids, Freezing and Glass Transitions",
376 <  year =         1989,
377 <  publisher =    "North-Holland",
378 <  address =      "Amsterdam"
379 < }
380 <
381 < @Article{Sun97a,
382 <  author =       "X. Sun and W.~H. Miller",
383 <  title =        {Mixed semiclassical-classical approaches to the
384 <                  dynamics of complex molecular systems},
385 <  journal =      jcp,
386 <  year =         1997,
387 <  pages =        916
388 < }
389 <
390 < @Article{Keshavamurthy94,
391 <  author =       "S. Keshavamurthy and W.~H. Miller",
392 <  title =        "ivr",
393 <  journal =      cpl,
394 <  year =         1994,
395 <  volume =       218,
396 <  pages =        189
397 < }
398 <
399 < @Article{Billing75,
400 <  author =       "G.~D. Billing",
401 <  title =        "ehrenfest",
402 <  journal =      cpl,
403 <  year =         1975,
404 <  volume =       30,
405 <  pages =        391
406 < }
407 <
408 < @Article{Chang90,
409 <  author =       {Y.-T. Chang and W.~H. Miller},
410 <  title =        {An Empirical Valence Bond Model for Constructing
411 <                  Global Potential Energy Surfaces for Chemical
412 <                  Reactions of Polyatomic Molecular Systems},
413 <  journal =      jpc,
414 <  year =         1990,
415 <  volume =       94,
416 <  pages =        {5884-5888}
417 < }
418 <
419 < @Article{Shor94,
420 <  author =       {P.W. Shor},
421 <  title =        {Algorithms for quantum computation: discrete
422 <                  logarithms and factoring},
423 <  journal =      {Proceedings of the 35th Annual Symposium
424 < on Foundations of Computer Science},
425 <  year =         1994,
426 <  pages =        {124-134}
427 < }
428 <
429 < @Article{Feynman82,
430 <  author =       {R.~P. Feynman},
431 <  title =        {Simulating physics with computers},
432 <  journal =      {Int. J. Theor. Phys.},
433 <  year =         1982,
434 <  volume =       21,
435 <  pages =        {467-488}
436 < }
437 <
438 < @Article{Grover97,
439 <  author =       {L.~K. Grover},
440 <  title =        {Quantum computers can search arbitrarily large
441 <                  databases by a single query},
442 <  journal =      prl,
443 <  year =         1997,
444 <  volume =       79,
445 <  pages =        {4709-4712}
446 < }
447 <
448 < @Article{Chuang98,
449 <  author =       {I. Chuang and N. Gershenfeld and M. Kubinec},
450 <  title =        {Experimental Implementation of Fast Quantum Searching},
451 <  journal =      prl,
452 <  year =         1998,
453 <  volume =       80,
454 <  pages =        {3408-3411}
455 < }
456 <
457 < @Article{Monroe95,
458 <  author =       "C. Monroe and D.~M. Meekhof and B.~E. King and
459 <                  W.~M. Itano and D.~J. Wineland",
460 <  title =        {Demonstration of a fundamental quantum logic gate},
461 <  journal =      prl,
462 <  year =         1995,
463 <  volume =       75,
464 <  pages =        4714
4 > @ARTICLE{Torre2003,
5 >  author = {J. G. {de la Torre} and H. E. Sanchez and A. Ortega and J. G. Hernandez
6 >        and M. X. Fernandes and F. G. Diaz and M. C. L. Martinez},
7 >  title = {Calculation of the solution properties of flexible macromolecules:
8 >        methods and applications},
9 >  journal = {European Biophysics Journal with Biophysics Letters},
10 >  year = {2003},
11 >  volume = {32},
12 >  pages = {477-486},
13 >  number = {5},
14 >  month = {Aug},
15 >  abstract = {While the prediction of hydrodynamic properties of rigid particles
16 >        is nowadays feasible using simple and efficient computer programs,
17 >        the calculation of such properties and, in general, the dynamic
18 >        behavior of flexible macromolecules has not reached a similar situation.
19 >        Although the theories are available, usually the computational work
20 >        is done using solutions specific for each problem. We intend to
21 >        develop computer programs that would greatly facilitate the task
22 >        of predicting solution behavior of flexible macromolecules. In this
23 >        paper, we first present an overview of the two approaches that are
24 >        most practical: the Monte Carlo rigid-body treatment, and the Brownian
25 >        dynamics simulation technique. The Monte Carlo procedure is based
26 >        on the calculation of properties for instantaneous conformations
27 >        of the macromolecule that are regarded as if they were instantaneously
28 >        rigid. We describe how a Monte Carlo program can be interfaced to
29 >        the programs in the HYDRO suite for rigid particles, and provide
30 >        an example of such calculation, for a hypothetical particle: a protein
31 >        with two domains connected by a flexible linker. We also describe
32 >        briefly the essentials of Brownian dynamics, and propose a general
33 >        mechanical model that includes several kinds of intramolecular interactions,
34 >        such as bending, internal rotation, excluded volume effects, etc.
35 >        We provide an example of the application of this methodology to
36 >        the dynamics of a semiflexible, wormlike DNA.},
37 >  annote = {724XK Times Cited:6 Cited References Count:64},
38 >  issn = {0175-7571},
39 >  uri = {<Go to ISI>://000185513400011},
40   }
41  
42 < @Article{Lent93,
43 <  author =       "C.~S. Lent and P.~D. Tougaw and W.~Porod and
44 <                  G.~H. Bernstein",
45 <  title =        {Quantum Cellular Automata},
46 <  journal =      {Nanotechnology},
47 <  year =         1993,
48 <  volume =       4,
49 <  pages =        {49-57}
50 < }
51 <
52 < @Article{Barenco95,
53 <  author =       "A. Barenco and C.~H. Bennett and R. Cleve and
54 <                  D.~P. DiVincenzo and N. Margolus and P. Shor and
55 <                  T. Sleator and J.~A. Smolin and H. Weinfurter",
56 <  title =        {elementary gates for quantum computation},
57 <  journal =      {Phys. Rev. A},
58 <  year =         1995,
59 <  volume =       52,
60 <  pages =        {3457-3467}
61 < }
62 <
63 < @Article{Small97,
64 <  author =       {T. Reinot and J.~M. Hayes and G.~J. Small},
65 <  title =        {Electronic dephasing and electron-phonon coupling of
66 <                  aluminum phthalocyanine tetrasulphonate in
67 <                  hyperquenched and annealed glassy films of ethanol
68 <                  and methanol over a broad temperature range},
69 <  journal =      jcp,
70 <  year =         1997,
71 <  volume =       106,
72 <  pages =        {457-466}
73 < }
74 <
75 < @Article{Laflamme96,
76 <  author =       {R. Laflamme and C. Miquel and J.~P. Paz and W.~H. Zurek},
77 <  title =        {A perfect quantum error correcting code: 5 bit code
78 <                  correcting a general 1 qubit error to encode 1 qubit
79 <                  of information},
80 <  journal =      prl,
81 <  year =         1996,
82 <  volume =       98,
83 <  pages =        77
84 < }
85 <
86 < @Article{Shor95,
87 <  author =       {P.~W. Shor},
88 <  title =        {SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY},
514 <  journal =      {Phys. Rev. A},
515 <  year =         1995,
516 <  volume =       52,
517 <  pages =        {2493-2496}
518 < }
519 <
520 < @Article{Calderbank96,
521 <  author =       {A.~R. Calderbank and P.~W. Shor},
522 <  title =        {Good quantum error-correcting codes exist},
523 <  journal =      {Phys. Rev. A},
524 <  year =         1996,
525 <  volume =       54,
526 <  pages =        {1098-1105}
527 < }
528 <
529 < @Article{Steane96,
530 <  author =       {A.~M. Steane},
531 <  title =        {Error correcting codes in quantum theory},
532 <  journal =      prl,
533 <  year =         1996,
534 <  volume =       77,
535 <  pages =        {793-797}
536 < }
537 <
538 < @Article{Gezelter95,
539 <  author =       {J.~D. Gezelter and W.~H. Miller},
540 <  title =        {RESONANT FEATURES IN THE ENERGY-DEPENDENCE OF THE
541 <                  RATE OF KETENE ISOMERIZATION},
542 <  journal =      jcp,
543 <  year =         1995,
544 <  volume =       103,
545 <  pages =        {7868-7876}
546 < }
547 <
548 < @Article{Chakrabarti92,
549 <  author =       {A.~C. Chakrabarti and D.~W. Deamer},
550 <  title =        {PERMEABILITY OF LIPID BILAYERS TO AMINO-ACIDS AND PHOSPHATE},
551 <  journal =      {Biochimica et Biophysica Acta},
552 <  year =         1992,
553 <  volume =       1111,
554 <  pages =        {171-177}
555 < }
556 <
557 < @Article{Paula96,
558 <  author =       {S. Paula and A.~G. Volkov and A.~N. VanHoek and
559 <                  T.~H. Haines and D.~W. Deamer},
560 <  title =        {Permeation of protons, potassium ions, and small
561 <                  polar molecules through phospholipid bilayers as a
562 <                  function of membrane thickness},
563 <  journal =      {Biophys. J.},
564 <  year =         1996,
565 <  volume =       70,
566 <  pages =        {339-348}
567 < }
568 <
569 < @Article{Little96,
570 <  author =       {H.~J. Little},
571 <  title =        {How has molecular pharmacology contributed to our
572 <                  understanding of the mechanism(s) of general
573 <                  anesthesia?},
574 <  journal =      {Pharmacology \& Therapeutics},
575 <  year =         1996,
576 <  volume =       69,
577 <  pages =        {37-58}
578 < }
579 <
580 < @Article{McKinnon92,
581 <  author =       {S.~J. McKinnon and S.~L. Whittenburg and B. Brooks},
582 <  title =        {Nonequilibrium Molecular Dynamics Simulation of
583 <                  Oxygen Diffusion through Hexadecane Monolayers with
584 <                  Varying Concentrations of Cholesterol},
585 <  journal =      jpc,
586 <  year =         1992,
587 <  volume =       96,
588 <  pages =        {10497-10506}
589 < }
590 <
591 < @Article{Venable93,
592 <  author =       {R.~M. Venable and Y. Zhang and B.~J. Hardy and
593 <                  R.~W. Pastor},
594 <  title =        {Molecular Dynamics Simulations of a Lipid Bilayer
595 <                  and of Hexadecane: An Investigation of Membrane Fluidity},
596 <  journal =      {Science},
597 <  year =         1993,
598 <  volume =       262,
599 <  pages =        {223-226}
600 < }
601 <
602 < @Article{Essmann99,
603 <  author =       {U. Essmann and M.~L. Berkowitz},
604 <  title =        {Dynamical properties of phospholipid bilayers from
605 <                  computer simulation},
606 <  journal =      {Biophys. J.},
607 <  year =         1999,
608 <  volume =       76,
609 <  pages =        {2081-2089}
610 < }
611 <
612 < @Article{Tu98,
613 <  author =       {K.~C. Tu and M. Tarek and M.~L. Klein and D. Scharf},
614 <  title =        {Effects of anesthetics on the structure of a
615 <                  phospholipid bilayer: Molecular dynamics
616 <                  investigation of halothane in the hydrated liquid
617 <                  crystal phase of dipalmitoylphosphatidylcholine},
618 <  journal =      {Biophys. J.},
619 <  year =         1998,
620 <  volume =       75,
621 <  pages =        {2123-2134}
622 < }
623 <
624 < @Article{Pomes96,
625 <  author =       {R. Pomes and B. Roux},
626 <  title =        {Structure and dynamics of a proton wire: A
627 <                  theoretical study of H+ translocation along the
628 <                  single-file water chain in the gramicidin a channel},
629 <  journal =      {Biophys. J.},
630 <  year =         1996,
631 <  volume =       71,
632 <  pages =        {19-39}
633 < }
634 <
635 < @Article{Duwez60,
636 <  author =       {P. Duwez and R.~H. Willens and W. {Klement~Jr.}},
637 <  title =        {Continuous Series of Metastable Solid Solutions in
638 <                  Silver-Copper Alloys},
639 <  journal =      {J. Appl. Phys.},
640 <  year =         1960,
641 <  volume =       31,
642 <  pages =        {1136-1137}
643 < }
644 <
645 < @Article{Peker93,
646 <  author =       {A. Peker and W.~L. Johnson},
647 <  title =        {A highly processable metallic-glass -
648 <                  $\mbox{Zr}_{41.2}\mbox{Ti}_{13.8}\mbox{Cu}_{12.5}\mbox{Ni}_{10.0}\mbox{Be}_{22.5}$},
649 <  journal =      {Appl. Phys. Lett.},
650 <  year =         1993,
651 <  volume =       63,
652 <  pages =        {2342-2344}
653 < }
654 <
655 < @Article{ChoiYim97,
656 <  author =       {H. Choi-Yim and W.~L. Johnson},
657 <  title =        {Bulk metallic glass matrix composites},
658 <  journal =      {Appl. Phys. Lett.},
659 <  year =         1997,
660 <  volume =       71,
661 <  pages =        {3808-3810}
662 < }
663 <
664 < @Article{Sun96,
665 <  author =       {X. Sun and S. Schneider and U. Geyer and
666 <                  W.~L. Johnson and M.~A. Nicolet},
667 <  title =        {Oxidation and crystallization of an amorphous
668 <                  $\mbox{Zr}_{60}\mbox{Al}_{15}\mbox{Ni}_{25}$ alloy},
669 <  journal =      {J. Mater. Res.},
670 <  year =         1996,
671 <  volume =       11,
672 <  pages =        {2738-2743}
673 < }
674 <
675 < @Article{Heller93,
676 <  author =       {H. Heller and M. Schaefer and K. Schulten},
677 <  title =        {MOLECULAR DYNAMICS SIMULATION OF A BILAYER OF 200
678 <                  LIPIDS IN THE GEL AND IN THE LIQUID-CRYSTAL PHASES},
679 <  journal =      jpc,
680 <  year =         1993,
681 <  volume =       97,
682 <  pages =        {8343-8360}
683 < }
684 <
685 < @Article{Kushick76,
686 <  author =       {J. Kushick and B.~J. Berne},
687 <  title =        {Computer Simulation of anisotropic molecular fluids},
688 <  journal =      jcp,
689 <  year =         1976,
690 <  volume =       64,
691 <  pages =        {1362-1367}
692 < }
693 <
694 < @Article{Berardi96,
695 <  author =       {R. Berardi and S. Orlandi and C Zannoni},
696 <  title =        {Antiphase structures in polar smectic liquid
697 <                  crystals and their molecular origin},
698 <  journal =      cpl,
699 <  year =         1996,
700 <  volume =       261,
701 <  pages =        {357-362}
702 < }
703 <
704 < @Article{Berardi99,
705 <  author =       {R. Berardi and S. Orlandi and C. Zannoni},
706 <  title =        {Monte Carlo simulations of rod-like Gay-Berne
707 <                  mesogens with transverse dipoles},
708 <  journal =      {Int. J. Mod. Phys. C},
709 <  year =         1999,
710 <  volume =       10,
711 <  pages =        {477-484}
712 < }
713 <
714 < @Article{Pasterny2000,
715 <  author =       {K. Pasterny and E. Gwozdz and A. Brodka},
716 <  title =        {Properties of a model liquid crystal: Polar
717 <                  Gay-Berne particles},
718 <  journal =      {J. Mol. Liq.},
719 <  year =         2000,
720 <  volume =       85,
721 <  pages =        {173-184}
722 < }
723 <
724 < @Article{Jorgensen83,
725 <  author =       {W.~L. Jorgensen and J. Chandrasekhar and
726 <                  J.~D. Madura and R.~W. Impey and M.~L. Klein},
727 <  title =        {COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR
728 <                  SIMULATING LIQUID WATER},
729 <  journal =      jcp,
730 <  year =         1983,
731 <  volume =       79,
732 <  pages =        {926-935}
733 < }
734 <
735 < @Article{Berardi98,
736 <  author =       {R. Berardi and C. Fava and C. Zannoni},
737 <  title =        {A Gay-Berne potential for dissimilar biaxial particles},
738 <  journal =      cpl,
739 <  year =         1998,
740 <  volume =       297,
741 <  pages =        {8-14}
742 < }
743 <
744 < @Article{Luckhurst90,
745 <  author =       {G.~R. Luckhurst and R.~A. Stephens and R.~W. Phippen},
746 <  title =        {Computer simulation studies of anisotropic systems
747 <                  {XIX}. Mesophases formed by the Gay-Berne model mesogen},
748 <  journal =      {Liquid Crystals},
749 <  year =         1990,
750 <  volume =       8,
751 <  pages =        {451-464}
752 < }
753 <
754 < @Article{Gay81,
755 <  author =       {J.~G. Gay and B.~J. Berne},
756 <  title =        {MODIFICATION OF THE OVERLAP POTENTIAL TO MIMIC A
757 <                  LINEAR SITE-SITE POTENTIAL},
758 <  journal =      jcp,
759 <  year =         1981,
760 <  volume =       74,
761 <  pages =        {3316-3319}
762 < }
763 <
764 < @Article{Berne72,
765 <  author =       {B.~J. Berne and P. Pechukas},
766 <  title =        {Gaussian Model Potentials for Molecular Interactions},
767 <  journal =      jcp,
768 <  year =         1972,
769 <  volume =       56,
770 <  pages =        {4213-4216}
771 < }
772 <
773 < @Article{Perram96,
774 <  author =       {J.~W. Perram and J. Rasmussen and E. Praestgaard and
775 <                  J.~L. Lebowitz},
776 <  title =        {Ellipsoid contact potential: Theory and relation to
777 <                  overlap potentials},
778 <  journal =      pre,
779 <  year =         1996,
780 <  volume =       54,
781 <  pages =        {6565-6572}
782 < }
783 <
784 < @Article{Cornell95,
785 <  author =       {W.~D. Cornell and P. Cieplak and C.~I. Bayly and
786 <                  I.~R. Gould and K.~M. {Merz, Jr.} and D.~M. Ferguson
787 <                  and D.~C. Spellmeyer and T. Fox and J.~W. Caldwell
788 <                  and P.~A. Kollman},
789 <  title =        {A second generation force field for the simulation
790 <                  of proteins and nucleic acids},
791 <  journal =      jacs,
792 <  year =         1995,
793 <  volume =       117,
794 <  pages =        {5179-5197}
795 < }
796 <
797 < @Article{Brooks83,
798 <  author =       {B.~R. Brooks and R.~E. Bruccoleri and B.~D. Olafson
799 <                  and D.~J. States and S. Swaminathan and M. Karplus},
800 <  title =        {{\sc charmm}: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations},
801 <  journal =      {J. Comp. Chem.},
802 <  year =         1983,
803 <  volume =       4,
804 <  pages =        {187-217}
805 < }
806 <
807 < @InCollection{MacKerell98,
808 <  author =       {A.~D. {MacKerell, Jr.} and B. Brooks and
809 <                  C.~L. {Brooks III} and L. Nilsson and B. Roux and
810 <                  Y. Won and and M. Karplus},
811 <  title =        {{\sc charmm}: The Energy Function and Its Parameterization
812 <                  with an Overview of the Program},
813 <  booktitle =    {The Encyclopedia of Computational Chemistry},
814 <  pages =        {271-277},
815 <  publisher =    {John Wiley \& Sons},
816 <  year =         1998,
817 <  editor =       {P.~v.~R. {Schleyer, {\it et al.}}},
818 <  volume =       1,
819 <  address =      {New York}
820 < }
821 <
822 < @InCollection{Jorgensen98,
823 <  author =       {W.~L. Jorgensen},
824 <  title =        {OPLS Force Fields},
825 <  booktitle =    {The Encyclopedia of Computational Chemistry},
826 <  pages =        {1986-1989},
827 <  publisher =    {John Wiley \& Sons},
828 <  year =         1998,
829 <  editor =       {P.~v.~R. {Schleyer, {\it et al.}}},
830 <  volume =       3,
831 <  address =      {New York}
832 < }
833 <
834 < @Article{Rabani2000,
835 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
836 <  title =        {Reply to `Comment on ``Direct Observation of
837 <                  Stretched-Exponential Relaxation in Low-Temperature
838 <                  Lennard-Jones Systems Using th eCage Correlation
839 <                  Function'' '},
840 <  journal =      prl,
841 <  year =         2000,
842 <  volume =       85,
843 <  pages =        467
844 < }
845 <
846 < @Book{Cevc87,
847 <  author =       {G. Cevc and D. Marsh},
848 <  title =        {Phospholipid Bilayers},
849 <  publisher =    {John Wiley \& Sons},
850 <  year =         1987,
851 <  address =      {New York}
852 < }
853 <
854 < @Article{Janiak79,
855 <  author =       {M.~J. Janiak and D.~M. Small and G.~G. Shipley},
856 <  title =        {Temperature and Compositional Dependence of the
857 <                  Structure of Hydrated Dimyristoyl Lecithin},
858 <  journal =      {J. Biol. Chem.},
859 <  year =         1979,
860 <  volume =       254,
861 <  pages =        {6068-6078}
42 > @ARTICLE{Alakent2005,
43 >  author = {B. Alakent and M. C. Camurdan and P. Doruker},
44 >  title = {Hierarchical structure of the energy landscape of proteins revisited
45 >        by time series analysis. II. Investigation of explicit solvent effects},
46 >  journal = {Journal of Chemical Physics},
47 >  year = {2005},
48 >  volume = {123},
49 >  pages = {-},
50 >  number = {14},
51 >  month = {Oct 8},
52 >  abstract = {Time series analysis tools are employed on the principal modes obtained
53 >        from the C-alpha trajectories from two independent molecular-dynamics
54 >        simulations of alpha-amylase inhibitor (tendamistat). Fluctuations
55 >        inside an energy minimum (intraminimum motions), transitions between
56 >        minima (interminimum motions), and relaxations in different hierarchical
57 >        energy levels are investigated and compared with those encountered
58 >        in vacuum by using different sampling window sizes and intervals.
59 >        The low-frequency low-indexed mode relationship, established in
60 >        vacuum, is also encountered in water, which shows the reliability
61 >        of the important dynamics information offered by principal components
62 >        analysis in water. It has been shown that examining a short data
63 >        collection period (100 ps) may result in a high population of overdamped
64 >        modes, while some of the low-frequency oscillations (< 10 cm(-1))
65 >        can be captured in water by using a longer data collection period
66 >        (1200 ps). Simultaneous analysis of short and long sampling window
67 >        sizes gives the following picture of the effect of water on protein
68 >        dynamics. Water makes the protein lose its memory: future conformations
69 >        are less dependent on previous conformations due to the lowering
70 >        of energy barriers in hierarchical levels of the energy landscape.
71 >        In short-time dynamics (< 10 ps), damping factors extracted from
72 >        time series model parameters are lowered. For tendamistat, the friction
73 >        coefficient in the Langevin equation is found to be around 40-60
74 >        cm(-1) for the low-indexed modes, compatible with literature. The
75 >        fact that water has increased the friction and that on the other
76 >        hand has lubrication effect at first sight contradicts. However,
77 >        this comes about because water enhances the transitions between
78 >        minima and forces the protein to reduce its already inherent inability
79 >        to maintain oscillations observed in vacuum. Some of the frequencies
80 >        lower than 10 cm(-1) are found to be overdamped, while those higher
81 >        than 20 cm(-1) are slightly increased. As for the long-time dynamics
82 >        in water, it is found that random-walk motion is maintained for
83 >        approximately 200 ps (about five times of that in vacuum) in the
84 >        low-indexed modes, showing the lowering of energy barriers between
85 >        the higher-level minima.},
86 >  annote = {973OH Times Cited:1 Cited References Count:33},
87 >  issn = {0021-9606},
88 >  uri = {<Go to ISI>://000232532000064},
89   }
90  
91 < @Book{Tobias90,
92 <  author =       {Sheila Tobias},
93 <  title =        {They're not Dumb. They're Different: Stalking the
94 <                  Second Tier},
95 <  publisher =    {Research Corp.},
96 <  year =         1990,
870 <  address =      {Tucson}
91 > @BOOK{Alexander1987,
92 >  title = {A Pattern Language: Towns, Buildings, Construction},
93 >  publisher = {Oxford University Press},
94 >  year = {1987},
95 >  author = {C. Alexander},
96 >  address = {New York},
97   }
98  
99 < @Article{Mazur92,
100 <  author =       {E. Mazur},
101 <  title =        {Qualitative vs. Quantititative Thinking: Are we
102 <                  teaching the right thing? },
103 <  journal =      {Optics and Photonics News},
104 <  year =         1992,
879 <  volume =       3,
880 <  pages =        38
99 > @BOOK{Allen1987,
100 >  title = {Computer Simulations of Liquids},
101 >  publisher = {Oxford University Press},
102 >  year = {1987},
103 >  author = {M.~P. Allen and D.~J. Tildesley},
104 >  address = {New York},
105   }
106  
107 < @Book{Mazur97,
108 <  author =       {Eric Mazur},
109 <  title =        {Peer Instruction: A User's Manual},
110 <  publisher =    {Prentice Hall},
111 <  year =         1997,
112 <  address =      {New Jersey}
107 > @ARTICLE{Allison1991,
108 >  author = {S. A. Allison},
109 >  title = {A Brownian Dynamics Algorithm for Arbitrary Rigid Bodies - Application
110 >        to Polarized Dynamic Light-Scattering},
111 >  journal = {Macromolecules},
112 >  year = {1991},
113 >  volume = {24},
114 >  pages = {530-536},
115 >  number = {2},
116 >  month = {Jan 21},
117 >  abstract = {A Brownian dynamics algorithm is developed to simulate dynamics experiments
118 >        of rigid macromolecules. It is applied to polarized dynamic light
119 >        scattering from rodlike sturctures and from a model of a DNA fragment
120 >        (762 base pairs). A number of rod cases are examined in which the
121 >        translational anisotropy is increased form zero to a large value.
122 >        Simulated first cumulants as well as amplitudes and lifetimes of
123 >        the dynamic form factor are compared with predictions of analytic
124 >        theories and found to be in very good agreement with them. For DNA
125 >        fragments 762 base pairs in length or longer, translational anisotropy
126 >        does not contribute significantly to dynamic light scattering. In
127 >        a comparison of rigid and flexible simulations on semistiff models
128 >        of this fragment, it is shown directly that flexing contributes
129 >        to the faster decay processes probed by light scattering and that
130 >        the flexible model studies are in good agreement with experiment.},
131 >  annote = {Eu814 Times Cited:8 Cited References Count:32},
132 >  issn = {0024-9297},
133 >  uri = {<Go to ISI>://A1991EU81400029},
134   }
135  
136 < @Article{Wigner55,
137 <  author =       {E.~P. Wigner},
138 <  title =        {Characteristic Vectors of Bordered Matrices with
139 <                  Infinite Dimensions},
140 <  journal =      {Annals of Mathematics},
141 <  year =         1955,
142 <  volume =       62,
143 <  pages =        {548-564}
136 > @ARTICLE{Andersen1983,
137 >  author = {H. C. Andersen},
138 >  title = {Rattle - a Velocity Version of the Shake Algorithm for Molecular-Dynamics
139 >        Calculations},
140 >  journal = {Journal of Computational Physics},
141 >  year = {1983},
142 >  volume = {52},
143 >  pages = {24-34},
144 >  number = {1},
145 >  annote = {Rq238 Times Cited:559 Cited References Count:14},
146 >  issn = {0021-9991},
147 >  uri = {<Go to ISI>://A1983RQ23800002},
148   }
149  
150 < @Article{Gaukel98,
151 <  author =       {C. Gaukel and H.~R. Schober},
152 <  title =        {Diffusion Mechanisms in under-cooled Binary Metal
153 <                  Liquids of $\mbox{Zr}_{67}\mbox{Cu}_{33}$},
154 <  journal =      {Solid State Comm.},
155 <  year =         1998,
156 <  volume =       107,
157 <  pages =        {1-5}
150 > @ARTICLE{Auerbach2005,
151 >  author = {A. Auerbach},
152 >  title = {Gating of acetylcholine receptor channels: Brownian motion across
153 >        a broad transition state},
154 >  journal = {Proceedings of the National Academy of Sciences of the United States
155 >        of America},
156 >  year = {2005},
157 >  volume = {102},
158 >  pages = {1408-1412},
159 >  number = {5},
160 >  month = {Feb 1},
161 >  abstract = {Acetylcholine receptor channels (AChRs) are proteins that switch between
162 >        stable #closed# and #open# conformations. In patch clamp recordings,
163 >        diliganded AChR gating appears to be a simple, two-state reaction.
164 >        However, mutagenesis studies indicate that during gating dozens
165 >        of residues across the protein move asynchronously and are organized
166 >        into rigid body gating domains (#blocks#). Moreover, there is an
167 >        upper limit to the apparent channel opening rate constant. These
168 >        observations suggest that the gating reaction has a broad, corrugated
169 >        transition state region, with the maximum opening rate reflecting,
170 >        in part, the mean first-passage time across this ensemble. Simulations
171 >        reveal that a flat, isotropic energy profile for the transition
172 >        state can account for many of the essential features of AChR gating.
173 >        With this mechanism, concerted, local structural transitions that
174 >        occur on the broad transition state ensemble give rise to fractional
175 >        measures of reaction progress (Phi values) determined by rate-equilibrium
176 >        free energy relationship analysis. The results suggest that the
177 >        coarse-grained AChR gating conformational change propagates through
178 >        the protein with dynamics that are governed by the Brownian motion
179 >        of individual gating blocks.},
180 >  annote = {895QF Times Cited:9 Cited References Count:33},
181 >  issn = {0027-8424},
182 >  uri = {<Go to ISI>://000226877300030},
183   }
184  
185 < @Article{Qi99,
186 <  author =       {Y. Qi and T. \c{C}a\v{g}in and Y.
187 <                  Kimura and W.~A. {Goddard III}},
188 <  title =        {Molecular-dynamics simulations of glass formation
189 <                  and crystallization in binary liquid metals: $\mbox{Cu-Ag}$
190 <                  and $\mbox{Cu-Ni}$},
191 <  journal =      prb,
192 <  year =         1999,
193 <  volume =    59,
194 <  number =    5,
195 <  pages =     {3527-3533}
185 > @ARTICLE{Baber1995,
186 >  author = {J. Baber and J. F. Ellena and D. S. Cafiso},
187 >  title = {Distribution of General-Anesthetics in Phospholipid-Bilayers Determined
188 >        Using H-2 Nmr and H-1-H-1 Noe Spectroscopy},
189 >  journal = {Biochemistry},
190 >  year = {1995},
191 >  volume = {34},
192 >  pages = {6533-6539},
193 >  number = {19},
194 >  month = {May 16},
195 >  abstract = {The effect of the general anesthetics halothane, enflurane, and isoflurane
196 >        on hydrocarbon chain packing in palmitoyl(d(31))oleoylphosphatidylcholine
197 >        membranes in the liquid crystalline phase was investigated using
198 >        H-2 NMR. Upon the addition of the anesthetics, the first five methylene
199 >        units near the interface generally show a very small increase in
200 >        segmental order, while segments deeper within the bilayer show a
201 >        small decrease in segmental order. From the H-2 NMR results, the
202 >        chain length for the perdeuterated palmitoyl chain in the absence
203 >        of anesthetic was found to be 12.35 Angstrom. Upon the addition
204 >        of halothane enflurane, or isoflurane, the acyl chain undergoes
205 >        slight contractions of 0.11, 0.20, or 0.16 Angstrom, respectively,
206 >        at 50 mol % anesthetic. A simple model was used to estimate the
207 >        relative amounts of anesthetic located near the interface and deeper
208 >        in the bilayer hydrocarbon region, and only a slight preference
209 >        for an interfacial location was observed. Intermolecular H-1-H-1
210 >        nuclear Overhauser effects (NOEs) were measured between phospholipid
211 >        and halothane protons. These NOEs are consistent with the intramembrane
212 >        location of the anesthetics suggested by the H-2 NMR data. In addition,
213 >        the NOE data indicate that anesthetics prefer the interfacial and
214 >        hydrocarbon regions of the membrane and are not found in high concentrations
215 >        in the phospholipid headgroup.},
216 >  annote = {Qz716 Times Cited:38 Cited References Count:37},
217 >  issn = {0006-2960},
218 >  uri = {<Go to ISI>://A1995QZ71600035},
219   }
220  
221 < @Article{Khorunzhy97,
222 <  author =       {A. Khorunzhy and G.~J. Rodgers},
223 <  title =        {Eigenvalue distribution of large dilute random matrices},
224 <  journal =      {J. Math. Phys.},
225 <  year =         1997,
226 <  volume =       38,
227 <  pages =        {3300-3320}
221 > @ARTICLE{Banerjee2004,
222 >  author = {D. Banerjee and B. C. Bag and S. K. Banik and D. S. Ray},
223 >  title = {Solution of quantum Langevin equation: Approximations, theoretical
224 >        and numerical aspects},
225 >  journal = {Journal of Chemical Physics},
226 >  year = {2004},
227 >  volume = {120},
228 >  pages = {8960-8972},
229 >  number = {19},
230 >  month = {May 15},
231 >  abstract = {Based on a coherent state representation of noise operator and an
232 >        ensemble averaging procedure using Wigner canonical thermal distribution
233 >        for harmonic oscillators, a generalized quantum Langevin equation
234 >        has been recently developed [Phys. Rev. E 65, 021109 (2002); 66,
235 >        051106 (2002)] to derive the equations of motion for probability
236 >        distribution functions in c-number phase-space. We extend the treatment
237 >        to explore several systematic approximation schemes for the solutions
238 >        of the Langevin equation for nonlinear potentials for a wide range
239 >        of noise correlation, strength and temperature down to the vacuum
240 >        limit. The method is exemplified by an analytic application to harmonic
241 >        oscillator for arbitrary memory kernel and with the help of a numerical
242 >        calculation of barrier crossing, in a cubic potential to demonstrate
243 >        the quantum Kramers' turnover and the quantum Arrhenius plot. (C)
244 >        2004 American Institute of Physics.},
245 >  annote = {816YY Times Cited:8 Cited References Count:35},
246 >  issn = {0021-9606},
247 >  uri = {<Go to ISI>://000221146400009},
248   }
249  
250 < @Article{Rodgers88,
251 <  author =       {G.~J. Rodgers and A. Bray},
252 <  title =        {Density of States of a Sparse Random Matrix},
253 <  journal =      {Phys. Rev. B},
254 <  year =         1988,
255 <  volume =       37,
256 <  pages =        355703562
250 > @ARTICLE{Barojas1973,
251 >  author = {J. Barojas and D. Levesque},
252 >  title = {Simulation of Diatomic Homonuclear Liquids},
253 >  journal = {Phys. Rev. A},
254 >  year = {1973},
255 >  volume = {7},
256 >  pages = {1092-1105},
257   }
258  
259 < @Article{Rodgers90,
260 <  author =       {G.~J. Rodgers and C. {De Dominicis}},
261 <  title =        {Density of states of sparse random matrices},
262 <  journal =      {J. Phys. A: Math. Gen.},
263 <  year =         1990,
264 <  volume =       23,
265 <  pages =        {1567-1573}
259 > @ARTICLE{Barth1998,
260 >  author = {E. Barth and T. Schlick},
261 >  title = {Overcoming stability limitations in biomolecular dynamics. I. Combining
262 >        force splitting via extrapolation with Langevin dynamics in LN},
263 >  journal = {Journal of Chemical Physics},
264 >  year = {1998},
265 >  volume = {109},
266 >  pages = {1617-1632},
267 >  number = {5},
268 >  month = {Aug 1},
269 >  abstract = {We present an efficient new method termed LN for propagating biomolecular
270 >        dynamics according to the Langevin equation that arose fortuitously
271 >        upon analysis of the range of harmonic validity of our normal-mode
272 >        scheme LIN. LN combines force linearization with force splitting
273 >        techniques and disposes of LIN'S computationally intensive minimization
274 >        (anharmonic correction) component. Unlike the competitive multiple-timestepping
275 >        (MTS) schemes today-formulated to be symplectic and time-reversible-LN
276 >        merges the slow and fast forces via extrapolation rather than impulses;
277 >        the Langevin heat bath prevents systematic energy drifts. This combination
278 >        succeeds in achieving more significant speedups than these MTS methods
279 >        which are Limited by resonance artifacts to an outer timestep less
280 >        than some integer multiple of half the period of the fastest motion
281 >        (around 4-5 fs for biomolecules). We show that LN achieves very
282 >        good agreement with small-timestep solutions of the Langevin equation
283 >        in terms of thermodynamics (energy means and variances), geometry,
284 >        and dynamics (spectral densities) for two proteins in vacuum and
285 >        a large water system. Significantly, the frequency of updating the
286 >        slow forces extends to 48 fs or more, resulting in speedup factors
287 >        exceeding 10. The implementation of LN in any program that employs
288 >        force-splitting computations is straightforward, with only partial
289 >        second-derivative information required, as well as sparse Hessian/vector
290 >        multiplication routines. The linearization part of LN could even
291 >        be replaced by direct evaluation of the fast components. The application
292 >        of LN to biomolecular dynamics is well suited for configurational
293 >        sampling, thermodynamic, and structural questions. (C) 1998 American
294 >        Institute of Physics.},
295 >  annote = {105HH Times Cited:29 Cited References Count:49},
296 >  issn = {0021-9606},
297 >  uri = {<Go to ISI>://000075066300006},
298   }
299  
300 < @InProceedings{Barker80,
301 <  author =       {J.~A. Barker},
302 <  title =        {Reaction field method for polar fluids},
303 <  booktitle =    {The problem of long-range forces in the computer
304 <                  simulation of condensed matter},
305 <  pages =        {45-6},
306 <  year =         1980,
307 <  editor =       {D. Ceperley},
308 <  volume =       9,
309 <  series =       {NRCC Workshop Proceedings}
300 > @ARTICLE{Batcho2001,
301 >  author = {P. F. Batcho and T. Schlick},
302 >  title = {Special stability advantages of position-Verlet over velocity-Verlet
303 >        in multiple-time step integration},
304 >  journal = {Journal of Chemical Physics},
305 >  year = {2001},
306 >  volume = {115},
307 >  pages = {4019-4029},
308 >  number = {9},
309 >  month = {Sep 1},
310 >  abstract = {We present an analysis for a simple two-component harmonic oscillator
311 >        that compares the use of position-Verlet to velocity-Verlet for
312 >        multiple-time step integration. The numerical stability analysis
313 >        based on the impulse-Verlet splitting shows that position-Verlet
314 >        has enhanced stability, in terms of the largest allowable time step,
315 >        for cases where an ample separation of time scales exists. Numerical
316 >        investigations confirm the advantages of the position-Verlet scheme
317 >        when used for the fastest time scales of the system. Applications
318 >        to a biomolecule. a solvated protein, for both Newtonian and Langevin
319 >        dynamics echo these trends over large outer time-step regimes. (C)
320 >        2001 American Institute of Physics.},
321 >  annote = {469KV Times Cited:6 Cited References Count:30},
322 >  issn = {0021-9606},
323 >  uri = {<Go to ISI>://000170813800005},
324   }
325  
326 < @Article{Smith82,
327 <  author =       {W. Smith},
328 <  title =        {Point multipoles in the Ewald summation},
329 <  journal =      {CCP5 Quarterly},
330 <  year =         1982,
331 <  volume =       4,
332 <  pages =        {13-25}
326 > @ARTICLE{Bates2005,
327 >  author = {M. A. Bates and G. R. Luckhurst},
328 >  title = {Biaxial nematic phases and V-shaped molecules: A Monte Carlo simulation
329 >        study},
330 >  journal = {Physical Review E},
331 >  year = {2005},
332 >  volume = {72},
333 >  pages = {-},
334 >  number = {5},
335 >  month = {Nov},
336 >  abstract = {Inspired by recent claims that compounds composed of V-shaped molecules
337 >        can exhibit the elusive biaxial nematic phase, we have developed
338 >        a generic simulation model for such systems. This contains the features
339 >        of the molecule that are essential to its liquid crystal behavior,
340 >        namely the anisotropies of the two arms and the angle between them.
341 >        The behavior of the model has been investigated using Monte Carlo
342 >        simulations for a wide range of these structural parameters. This
343 >        allows us to establish the relationship between the V-shaped molecule
344 >        and its ability to form a biaxial nematic phase. Of particular importance
345 >        are the criteria of geometry and the relative anisotropy necessary
346 >        for the system to exhibit a Landau point, at which the biaxial nematic
347 >        is formed directly from the isotropic phase. The simulations have
348 >        also been used to determine the orientational order parameters for
349 >        a selection of molecular axes. These are especially important because
350 >        they reveal the phase symmetry and are connected to the experimental
351 >        determination of this. The simulation results show that, whereas
352 >        some positions are extremely sensitive to the phase biaxiality,
353 >        others are totally blind to this.},
354 >  annote = {Part 1 988LQ Times Cited:0 Cited References Count:38},
355 >  issn = {1539-3755},
356 >  uri = {<Go to ISI>://000233603100030},
357   }
358  
359 < @Article{Daw84,
360 <  author =       {M.~S. Daw and M.~I. Baskes},
361 <  title =        {Embedded-atom method: Derivation and application to
362 <                  impurities, surfaces, and other defects in metals},
363 <  journal =      prb,
364 <  year =         1984,
365 <  volume =    29,
366 <  number =    12,
367 <  pages =     {6443-6453}
359 > @ARTICLE{Beard2003,
360 >  author = {D. A. Beard and T. Schlick},
361 >  title = {Unbiased rotational moves for rigid-body dynamics},
362 >  journal = {Biophysical Journal},
363 >  year = {2003},
364 >  volume = {85},
365 >  pages = {2973-2976},
366 >  number = {5},
367 >  month = {Nov 1},
368 >  abstract = {We introduce an unbiased protocol for performing rotational moves
369 >        in rigid-body dynamics simulations. This approach - based on the
370 >        analytic solution for the rotational equations of motion for an
371 >        orthogonal coordinate system at constant angular velocity - removes
372 >        deficiencies that have been largely ignored in Brownian dynamics
373 >        simulations, namely errors for finite rotations that result from
374 >        applying the noncommuting rotational matrices in an arbitrary order.
375 >        Our algorithm should thus replace standard approaches to rotate
376 >        local coordinate frames in Langevin and Brownian dynamics simulations.},
377 >  annote = {736UA Times Cited:0 Cited References Count:11},
378 >  issn = {0006-3495},
379 >  uri = {<Go to ISI>://000186190500018},
380   }
381  
382 <
383 < @Article{Chen90,
384 <  author =       {A.~P. Sutton and J. Chen},
385 <  title =        {Long-Range $\mbox{Finnis Sinclair}$ Potentials},
386 <  journal =      {Phil. Mag. Lett.},
387 <  year =         1990,
388 <  volume =    61,
389 <  pages =     {139-146}
382 > @ARTICLE{Beloborodov1998,
383 >  author = {I. S. Beloborodov and V. Y. Orekhov and A. S. Arseniev},
384 >  title = {Effect of coupling between rotational and translational Brownian
385 >        motions on NMR spin relaxation: Consideration using green function
386 >        of rigid body diffusion},
387 >  journal = {Journal of Magnetic Resonance},
388 >  year = {1998},
389 >  volume = {132},
390 >  pages = {328-329},
391 >  number = {2},
392 >  month = {Jun},
393 >  abstract = {Using the Green function of arbitrary rigid Brownian diffusion (Goldstein,
394 >        Biopolymers 33, 409-436, 1993), it was analytically shown that coupling
395 >        between translation and rotation diffusion degrees of freedom does
396 >        not affect the correlation functions relevant to the NMR intramolecular
397 >        relaxation. It follows that spectral densities usually used for
398 >        the anisotropic rotation diffusion (Woessner, J. Chem. Phys. 37,
399 >        647-654, 1962) can be regarded as exact in respect to the rotation-translation
400 >        coupling for the spin system connected with a rigid body. (C) 1998
401 >        Academic Press.},
402 >  annote = {Zu605 Times Cited:2 Cited References Count:6},
403 >  issn = {1090-7807},
404 >  uri = {<Go to ISI>://000074214800017},
405   }
406  
407 < @Article{Lu97,
408 <  author =       {J. Lu and J.~A. Szpunar},
409 <  title =        {Applications of the embedded-atom method to glass
410 <                  formation and crystallization of liquid and glass
411 <                  transition-metal nickel},
412 <  journal =      {Phil. Mag. A},
413 <  year =         {1997},
414 <  volume =    {75},
415 <  pages =        {1057-1066},
407 > @ARTICLE{Berardi1996,
408 >  author = {R. Berardi and S. Orlandi and C. Zannoni},
409 >  title = {Antiphase structures in polar smectic liquid crystals and their molecular
410 >        origin},
411 >  journal = {Chemical Physics Letters},
412 >  year = {1996},
413 >  volume = {261},
414 >  pages = {357-362},
415 >  number = {3},
416 >  month = {Oct 18},
417 >  abstract = {We demonstrate that the overall molecular dipole organization in a
418 >        smectic liquid crystal formed of polar molecules can be strongly
419 >        influenced by the position of the dipole in the molecule. We study
420 >        by large scale Monte Carlo simulations systems of attractive-repulsive
421 >        ''Gay-Berne'' elongated ellipsoids with an axial dipole at the center
422 >        or near the end of the molecule and we show that monolayer smectic
423 >        liquid crystals and modulated antiferroelectric bilayer stripe domains
424 >        similar to the experimentally observed ''antiphase'' structures
425 >        are obtained in the two cases.},
426 >  annote = {Vn637 Times Cited:49 Cited References Count:26},
427 >  issn = {0009-2614},
428 >  uri = {<Go to ISI>://A1996VN63700023},
429   }
430  
431 < @Article{Shlesinger99,
432 <  author =       {M.~F. Shlesinger and J. Klafter and G. Zumofen},
433 <  title =        {Above, below, and beyond Brownian motion},
434 <  journal =      {Am. J. Phys.},
435 <  year =         1999,
436 <  volume =       67,
437 <  pages =        {1253-1259}
431 > @ARTICLE{Berkov2005,
432 >  author = {D. V. Berkov and N. L. Gorn},
433 >  title = {Magnetization precession due to a spin-polarized current in a thin
434 >        nanoelement: Numerical simulation study},
435 >  journal = {Physical Review B},
436 >  year = {2005},
437 >  volume = {72},
438 >  pages = {-},
439 >  number = {9},
440 >  month = {Sep},
441 >  abstract = {In this paper a detailed numerical study (in frames of the Slonczewski
442 >        formalism) of magnetization oscillations driven by a spin-polarized
443 >        current through a thin elliptical nanoelement is presented. We show
444 >        that a sophisticated micromagnetic model, where a polycrystalline
445 >        structure of a nanoelement is taken into account, can explain qualitatively
446 >        all most important features of the magnetization oscillation spectra
447 >        recently observed experimentally [S. I. Kiselev , Nature 425, 380
448 >        (2003)], namely, existence of several equidistant spectral bands,
449 >        sharp onset and abrupt disappearance of magnetization oscillations
450 >        with increasing current, absence of the out-of-plane regime predicted
451 >        by a macrospin model, and the relation between frequencies of so-called
452 >        small-angle and quasichaotic oscillations. However, a quantitative
453 >        agreement with experimental results (especially concerning the frequency
454 >        of quasichaotic oscillations) could not be achieved in the region
455 >        of reasonable parameter values, indicating that further model refinement
456 >        is necessary for a complete understanding of the spin-driven magnetization
457 >        precession even in this relatively simple experimental situation.},
458 >  annote = {969IT Times Cited:2 Cited References Count:55},
459 >  issn = {1098-0121},
460 >  uri = {<Go to ISI>://000232228500058},
461   }
462  
463 < @Article{Klafter96,
464 <  author =       {J. Klafter and M. Shlesinger and G. Zumofen},
465 <  title =        {Beyond Brownian Motion},
466 <  journal =      {Physics Today},
467 <  year =         1996,
468 <  volume =       49,
469 <  pages =        {33-39}
463 > @ARTICLE{Berkov2005a,
464 >  author = {D. V. Berkov and N. L. Gorn},
465 >  title = {Stochastic dynamic simulations of fast remagnetization processes:
466 >        recent advances and applications},
467 >  journal = {Journal of Magnetism and Magnetic Materials},
468 >  year = {2005},
469 >  volume = {290},
470 >  pages = {442-448},
471 >  month = {Apr},
472 >  abstract = {Numerical simulations of fast remagnetization processes using stochastic
473 >        dynamics are widely used to study various magnetic systems. In this
474 >        paper, we first address several crucial methodological problems
475 >        of such simulations: (i) the influence of finite-element discretization
476 >        on simulated dynamics, (ii) choice between Ito and Stratonovich
477 >        stochastic calculi by the solution of micromagnetic stochastic equations
478 >        of motion and (iii) non-trivial correlation properties of the random
479 >        (thermal) field. Next, we discuss several examples to demonstrate
480 >        the great potential of the Langevin dynamics for studying fast remagnetization
481 >        processes in technically relevant applications: we present numerical
482 >        analysis of equilibrium magnon spectra in patterned structures,
483 >        study thermal noise effects on the magnetization dynamics of nanoelements
484 >        in pulsed fields and show some results for a remagnetization dynamics
485 >        induced by a spin-polarized current. (c) 2004 Elsevier B.V. All
486 >        rights reserved.},
487 >  annote = {Part 1 Sp. Iss. SI 922KU Times Cited:2 Cited References Count:25},
488 >  issn = {0304-8853},
489 >  uri = {<Go to ISI>://000228837600109},
490   }
491  
492 < @Article{Blumen83,
493 <  author =       {A. Blumen and J. Klafter and G. Zumofen},
494 <  title =        {Recombination in amorphous materials as a
495 <                  continuous-time random-walk problem},
496 <  journal =      {Phys. Rev. B},
497 <  year =         1983,
498 <  volume =       27,
499 <  pages =        {3429-3435}
492 > @ARTICLE{Berkov2002,
493 >  author = {D. V. Berkov and N. L. Gorn and P. Gornert},
494 >  title = {Magnetization dynamics in nanoparticle systems: Numerical simulation
495 >        using Langevin dynamics},
496 >  journal = {Physica Status Solidi a-Applied Research},
497 >  year = {2002},
498 >  volume = {189},
499 >  pages = {409-421},
500 >  number = {2},
501 >  month = {Feb 16},
502 >  abstract = {We report on recent progress achieved by the development of numerical
503 >        methods based on the stochastic (Langevin) dynamics applied to systems
504 >        of interacting magnetic nanoparticles. The method enables direct
505 >        simulations of the trajectories of magnetic moments taking into
506 >        account (i) all relevant interactions, (ii) precession dynamics,
507 >        and (iii) temperature fluctuations included via the random (thermal)
508 >        field. We present several novel results obtained using new methods
509 >        developed for the solution of the Langevin equations. In particular,
510 >        we have investigated magnetic nanodots and disordered granular systems
511 >        of single-domain magnetic particles. For the first case we have
512 >        calculated the spectrum and the spatial distribution of spin excitations.
513 >        For the second system the complex ac susceptibility chi(omega, T)
514 >        for various particle concentrations and particle anisotropies were
515 >        computed and compared with numerous experimental results.},
516 >  annote = {526TF Times Cited:4 Cited References Count:37},
517 >  issn = {0031-8965},
518 >  uri = {<Go to ISI>://000174145200026},
519   }
520  
521 < @Article{Klafter94,
522 <  author =       {J. Klafter and G. Zumofen},
523 <  title =        {Probability Distributions for Continuous-Time Random
524 <                  Walks with Long Tails},
525 <  journal =      jpc,
526 <  year =         1994,
527 <  volume =       98,
528 <  pages =        {7366-7370}
521 > @ARTICLE{Bernal1980,
522 >  author = {J.M. Bernal and J. G. {de la Torre}},
523 >  title = {Transport Properties and Hydrodynamic Centers of Rigid Macromolecules
524 >        with Arbitrary Shape},
525 >  journal = {Biopolymers},
526 >  year = {1980},
527 >  volume = {19},
528 >  pages = {751-766},
529   }
530  
531 <
532 < @Article{Dzugutov92,
533 <  author =       {M. Dzugutov},
534 <  title =        {Glass formation in a simple monatomic liquid with
535 <                  icosahedral inherent local order},
536 <  journal =      pra,
537 <  year =         1992,
538 <  volume =       46,
1050 <  pages =        {R2984-R2987}
531 > @ARTICLE{Brenner1967,
532 >  author = {H. Brenner },
533 >  title = {Coupling between the Translational and Rotational Brownian Motions
534 >        of Rigid Particles of Arbitrary shape},
535 >  journal = {J. Collid. Int. Sci.},
536 >  year = {1967},
537 >  volume = {23},
538 >  pages = {407-436},
539   }
540  
541 < @Article{Moore94,
542 <  author =       {P. Moore and T. Keyes},
543 <  title =        {Normal Mode Analysis of Liquid $\mbox{CS}_2$: Velocity
544 <                  Correlation Functions and Self-Diffusion Constants},
545 <  journal =      jcp,
546 <  year =         1994,
547 <  volume =       100,
548 <  pages =        6709
541 > @ARTICLE{Brunger1984,
542 >  author = {A. Brunger and C. L. Brooks and M. Karplus},
543 >  title = {Stochastic Boundary-Conditions for Molecular-Dynamics Simulations
544 >        of St2 Water},
545 >  journal = {Chemical Physics Letters},
546 >  year = {1984},
547 >  volume = {105},
548 >  pages = {495-500},
549 >  number = {5},
550 >  annote = {Sm173 Times Cited:143 Cited References Count:22},
551 >  issn = {0009-2614},
552 >  uri = {<Go to ISI>://A1984SM17300007},
553   }
554  
555 < @Article{Seeley89,
556 <  author =       {G. Seeley and T. Keyes},
557 <  title =        {Normal-mode analysis of liquid-state dynamics},
558 <  journal =      jcp,
559 <  year =         1989,
560 <  volume =       91,
561 <  pages =        {5581-5586}
555 > @ARTICLE{Budd1999,
556 >  author = {C. J. Budd and G. J. Collins and W. Z. Huang and R. D. Russell},
557 >  title = {Self-similar numerical solutions of the porous-medium equation using
558 >        moving mesh methods},
559 >  journal = {Philosophical Transactions of the Royal Society of London Series
560 >        a-Mathematical Physical and Engineering Sciences},
561 >  year = {1999},
562 >  volume = {357},
563 >  pages = {1047-1077},
564 >  number = {1754},
565 >  month = {Apr 15},
566 >  abstract = {This paper examines a synthesis of adaptive mesh methods with the
567 >        use of symmetry to study a partial differential equation. In particular,
568 >        it considers methods which admit discrete self-similar solutions,
569 >        examining the convergence of these to the true self-similar solution
570 >        as well as their stability. Special attention is given to the nonlinear
571 >        diffusion equation describing flow in a porous medium.},
572 >  annote = {199EE Times Cited:4 Cited References Count:14},
573 >  issn = {1364-503X},
574 >  uri = {<Go to ISI>://000080466800005},
575   }
576  
577 < @Article{Madan90,
578 <  author =       {B. Madan and T. Keyes and G. Seeley},
579 <  title =        {Diffusion in supercooled liquids via normal mode
580 <                  analysis},
581 <  journal =      jcp,
582 <  year =         1990,
583 <  volume =       92,
584 <  pages =        {7565-7569}
577 > @ARTICLE{Camp1999,
578 >  author = {P. J. Camp and M. P. Allen and A. J. Masters},
579 >  title = {Theory and computer simulation of bent-core molecules},
580 >  journal = {Journal of Chemical Physics},
581 >  year = {1999},
582 >  volume = {111},
583 >  pages = {9871-9881},
584 >  number = {21},
585 >  month = {Dec 1},
586 >  abstract = {Fluids of hard bent-core molecules have been studied using theory
587 >        and computer simulation. The molecules are composed of two hard
588 >        spherocylinders, with length-to-breadth ratio L/D, joined by their
589 >        ends at an angle 180 degrees - gamma. For L/D = 2 and gamma = 0,10,20
590 >        degrees, the simulations show isotropic, nematic, smectic, and solid
591 >        phases. For L/D = 2 and gamma = 30 degrees, only isotropic, nematic,
592 >        and solid phases are in evidence, which suggests that there is a
593 >        nematic-smectic-solid triple point at an angle in the range 20 degrees
594 >        < gamma < 30 degrees. In all of the orientationally ordered fluid
595 >        phases the order is purely uniaxial. For gamma = 10 degrees and
596 >        20 degrees, at the studied densities, the solid is also uniaxially
597 >        ordered, whilst for gamma = 30 degrees the solid layers are biaxially
598 >        ordered. For L/D = 2 and gamma = 60 degrees and 90 degrees we find
599 >        no spontaneous orientational ordering. This is shown to be due to
600 >        the interlocking of dimer pairs which precludes alignment. We find
601 >        similar results for L/D = 9.5 and gamma = 72 degrees, where an isotropic-biaxial
602 >        nematic transition is predicted by Onsager theory. Simulations in
603 >        the biaxial nematic phase show it to be at least mechanically stable
604 >        with respect to the isotropic phase, however. We have compared the
605 >        quasi-exact simulation results in the isotropic phase with the predicted
606 >        equations of state from three theories: the virial expansion containing
607 >        the second and third virial coefficients; the Parsons-Lee equation
608 >        of state; an application of Wertheim's theory of associating fluids
609 >        in the limit of infinite attractive association energy. For all
610 >        of the molecule elongations and geometries we have simulated, the
611 >        Wertheim theory proved to be the most accurate. Interestingly, the
612 >        isotropic equation of state is virtually independent of the dimer
613 >        bond angle-a feature that is also reflected in the lack of variation
614 >        with angle of the calculated second and third virial coefficients.
615 >        (C) 1999 American Institute of Physics. [S0021-9606(99)50445-5].},
616 >  annote = {255TC Times Cited:24 Cited References Count:38},
617 >  issn = {0021-9606},
618 >  uri = {<Go to ISI>://000083685400056},
619   }
620  
621 < @Article{Madan91,
622 <  author =       {B. Madan and T. Keyes and G. Seeley},
623 <  title =        {Normal mode analysis of the velocity correlation
624 <                  function in supercooled liquids},
625 <  journal =      jcp,
626 <  year =         1991,
627 <  volume =       94,
628 <  pages =        {6762-6769}
621 > @ARTICLE{Care2005,
622 >  author = {C. M. Care and D. J. Cleaver},
623 >  title = {Computer simulation of liquid crystals},
624 >  journal = {Reports on Progress in Physics},
625 >  year = {2005},
626 >  volume = {68},
627 >  pages = {2665-2700},
628 >  number = {11},
629 >  month = {Nov},
630 >  abstract = {A review is presented of molecular and mesoscopic computer simulations
631 >        of liquid crystalline systems. Molecular simulation approaches applied
632 >        to such systems are described, and the key findings for bulk phase
633 >        behaviour are reported. Following this, recently developed lattice
634 >        Boltzmann approaches to the mesoscale modelling of nemato-dynanics
635 >        are reviewed. This paper concludes with a discussion of possible
636 >        areas for future development in this field.},
637 >  annote = {989TU Times Cited:2 Cited References Count:258},
638 >  issn = {0034-4885},
639 >  uri = {<Go to ISI>://000233697600004},
640   }
641  
642 < @Article{Buchner92,
643 <  author =       {M. Buchner, B.~M. Ladanyi and R.~M. Stratt},
644 <  title =        {The short-time dynamics of molecular
645 <                  liquids. Instantaneous-normal-mode theory},
646 <  journal =      jcp,
647 <  year =         1992,
648 <  volume =       97,
649 <  pages =        {8522-8535}
642 > @ARTICLE{Carrasco1999,
643 >  author = {B. Carrasco and J. G. {de la Torre}},
644 >  title = {Hydrodynamic properties of rigid particles: Comparison of different
645 >        modeling and computational procedures},
646 >  journal = {Biophysical Journal},
647 >  year = {1999},
648 >  volume = {76},
649 >  pages = {3044-3057},
650 >  number = {6},
651 >  month = {Jun},
652 >  abstract = {The hydrodynamic properties of rigid particles are calculated from
653 >        models composed of spherical elements (beads) using theories developed
654 >        by Kirkwood, Bloomfield, and their coworkers. Bead models have usually
655 >        been built in such a way that the beads fill the volume occupied
656 >        by the particles. Sometimes the beads are few and of varying sizes
657 >        (bead models in the strict sense), and other times there are many
658 >        small beads (filling models). Because hydrodynamic friction takes
659 >        place at the molecular surface, another possibility is to use shell
660 >        models, as originally proposed by Bloomfield. In this work, we have
661 >        developed procedures to build models of the various kinds, and we
662 >        describe the theory and methods for calculating their hydrodynamic
663 >        properties, including approximate methods that may be needed to
664 >        treat models with a very large number of elements. By combining
665 >        the various possibilities of model building and hydrodynamic calculation,
666 >        several strategies can be designed. We have made a quantitative
667 >        comparison of the performance of the various strategies by applying
668 >        them to some test cases, for which the properties are known a priori.
669 >        We provide guidelines and computational tools for bead modeling.},
670 >  annote = {200TT Times Cited:46 Cited References Count:57},
671 >  issn = {0006-3495},
672 >  uri = {<Go to ISI>://000080556700016},
673   }
674  
675 < @Article{Wan94,
676 <  author =       {Yi. Wan and R.~M. Stratt},
677 <  title =        {Liquid theory for the instantaneous normal modes of
678 <                  a liquid},
679 <  journal =      jcp,
680 <  year =         1994,
681 <  volume =       100,
682 <  pages =        {5123-5138}
675 > @ARTICLE{Chandra1999,
676 >  author = {A. Chandra and T. Ichiye},
677 >  title = {Dynamical properties of the soft sticky dipole model of water: Molecular
678 >        dynamics simulations},
679 >  journal = {Journal of Chemical Physics},
680 >  year = {1999},
681 >  volume = {111},
682 >  pages = {2701-2709},
683 >  number = {6},
684 >  month = {Aug 8},
685 >  abstract = {Dynamical properties of the soft sticky dipole (SSD) model of water
686 >        are calculated by means of molecular dynamics simulations. Since
687 >        this is not a simple point model, the forces and torques arising
688 >        from the SSD potential are derived here. Simulations are carried
689 >        out in the microcanonical ensemble employing the Ewald method for
690 >        the electrostatic interactions. Various time correlation functions
691 >        and dynamical quantities associated with the translational and rotational
692 >        motion of water molecules are evaluated and compared with those
693 >        of two other commonly used models of liquid water, namely the transferable
694 >        intermolecular potential-three points (TIP3P) and simple point charge/extended
695 >        (SPC/E) models, and also with experiments. The dynamical properties
696 >        of the SSD water model are found to be in good agreement with the
697 >        experimental results and appear to be better than the TIP3P and
698 >        SPC/E models in most cases, as has been previously shown for its
699 >        thermodynamic, structural, and dielectric properties. Also, molecular
700 >        dynamics simulations of the SSD model are found to run much faster
701 >        than TIP3P, SPC/E, and other multisite models. (C) 1999 American
702 >        Institute of Physics. [S0021-9606(99)51430-X].},
703 >  annote = {221EN Times Cited:14 Cited References Count:66},
704 >  issn = {0021-9606},
705 >  uri = {<Go to ISI>://000081711200038},
706   }
707  
708 < @article{Stratt95,
709 <  author =       {R.~M. Stratt},
710 <  title =        {The instantaneous normal modes of liquids},
711 <  journal =      {Acc. Chem. Res.},
712 <  year =         1995,
713 <  volume =       28,
714 <  pages =        {201-207}
708 > @ARTICLE{Channell1990,
709 >  author = {P. J. Channell and C. Scovel},
710 >  title = {Symplectic Integration of Hamiltonian-Systems},
711 >  journal = {Nonlinearity},
712 >  year = {1990},
713 >  volume = {3},
714 >  pages = {231-259},
715 >  number = {2},
716 >  month = {may},
717 >  annote = {Dk631 Times Cited:152 Cited References Count:34},
718 >  issn = {0951-7715},
719 >  uri = {<Go to ISI>://A1990DK63100001},
720   }
721  
722 < @Article{Nitzan95,
723 <  author =       {G.~V. Vijayadamodar and A. Nitzan},
724 <  title =        {On the application of instantaneous normal mode
725 <                  analysis to long time dynamics of liquids},
726 <  journal =      jcp,
727 <  year =         1995,
728 <  volume =       103,
729 <  pages =        {2169-2177}
722 > @ARTICLE{Chen2003,
723 >  author = {B. Chen and F. Solis},
724 >  title = {Explicit mixed finite order Runge-Kutta methods},
725 >  journal = {Applied Numerical Mathematics},
726 >  year = {2003},
727 >  volume = {44},
728 >  pages = {21-30},
729 >  number = {1-2},
730 >  month = {Jan},
731 >  abstract = {We investigate the asymptotic behavior of systems of nonlinear differential
732 >        equations and introduce a family of mixed methods from combinations
733 >        of explicit Runge-Kutta methods. These methods have better stability
734 >        behavior than traditional Runge-Kutta methods and generally extend
735 >        the range of validity of the calculated solutions. These methods
736 >        also give a way of determining if the numerical solutions are real
737 >        or spurious. Emphasis is put on examples coming from mathematical
738 >        models in ecology. (C) 2002 IMACS. Published by Elsevier Science
739 >        B.V. All rights reserved.},
740 >  annote = {633ZD Times Cited:0 Cited References Count:9},
741 >  issn = {0168-9274},
742 >  uri = {<Go to ISI>://000180314200002},
743   }
744  
745 < @Article{Ribeiro98,
746 <  author =       "M.~C.~C. Ribeiro and P.~A. Madden",
747 <  title =        "Unstable Modes in Ionic Melts",
748 <  journal =      jcp,
749 <  year =         1998,
750 <  volume =       108,
751 <  pages =        {3256-3263}
745 > @ARTICLE{Cheung2004,
746 >  author = {D. L. Cheung and S. J. Clark and M. R. Wilson},
747 >  title = {Calculation of flexoelectric coefficients for a nematic liquid crystal
748 >        by atomistic simulation},
749 >  journal = {Journal of Chemical Physics},
750 >  year = {2004},
751 >  volume = {121},
752 >  pages = {9131-9139},
753 >  number = {18},
754 >  month = {Nov 8},
755 >  abstract = {Equilibrium molecular dynamics calculations have been performed for
756 >        the liquid crystal molecule n-4-(trans-4-n-pentylcyclohexyl)benzonitrile
757 >        (PCH5) using a fully atomistic model. Simulation data have been
758 >        obtained for a series of temperatures in the nematic phase. The
759 >        simulation data have been used to calculate the flexoelectric coefficients
760 >        e(s) and e(b) using the linear response formalism of Osipov and
761 >        Nemtsov [M. A. Osipov and V. B. Nemtsov, Sov. Phys. Crstallogr.
762 >        31, 125 (1986)]. The temperature and order parameter dependence
763 >        of e(s) and e(b) are examined, as are separate contributions from
764 >        different intermolecular interactions. Values of e(s) and e(b) calculated
765 >        from simulation are consistent with those found from experiment.
766 >        (C) 2004 American Institute of Physics.},
767 >  annote = {866UM Times Cited:4 Cited References Count:61},
768 >  issn = {0021-9606},
769 >  uri = {<Go to ISI>://000224798900053},
770   }
771  
772 < @Article{Keyes98a,
773 <  author =       {T. Keyes and W.-X. Li and U.~Z{\"{u}}rcher},
774 <  title =        {Comment on a critique of the instantaneous normal
775 <                  mode (INM) approach to diffusion
776 <                  (J. Chem. Phys. {\bf 107}, 4618 (1997))},
777 <  journal =      jcp,
778 <  year =         1998,
779 <  volume =       109,
780 <  pages =        {4693-4694}
772 > @ARTICLE{Cheung2002,
773 >  author = {D. L. Cheung and S. J. Clark and M. R. Wilson},
774 >  title = {Calculation of the rotational viscosity of a nematic liquid crystal},
775 >  journal = {Chemical Physics Letters},
776 >  year = {2002},
777 >  volume = {356},
778 >  pages = {140-146},
779 >  number = {1-2},
780 >  month = {Apr 15},
781 >  abstract = {Equilibrium molecular dynamics calculations have been performed for
782 >        the liquid crystal molecule n-4-(trans-4-npentylcyclohexyl)benzonitrile
783 >        (PCH5) using a fully atomistic model. Simulation data has been obtained
784 >        for a series of temperatures in the nematic phase. The rotational
785 >        viscosity co-efficient gamma(1), has been calculated using the angular
786 >        velocity correlation function of the nematic director, n, the mean
787 >        squared diffusion of n and statistical mechanical methods based
788 >        on the rotational diffusion co-efficient. We find good agreement
789 >        between the first two methods and experimental values. (C) 2002
790 >        Published by Elsevier Science B.V.},
791 >  annote = {547KF Times Cited:8 Cited References Count:31},
792 >  issn = {0009-2614},
793 >  uri = {<Go to ISI>://000175331000020},
794   }
795  
796 < @Article{Alemany98,
797 <  author =       {M.~M.~G. Alemany and C. Rey and L.~J. Gallego},
798 <  title =        {Transport coefficients of liquid transition metals:
799 <                  A computer simulation study using the embedded atom
800 <                  model},
801 <  journal =      jcp,
802 <  year =         1998,
803 <  volume =       109,
804 <  pages =        {5175-5176}
796 > @ARTICLE{Chin2004,
797 >  author = {S. A. Chin},
798 >  title = {Dynamical multiple-time stepping methods for overcoming resonance
799 >        instabilities},
800 >  journal = {Journal of Chemical Physics},
801 >  year = {2004},
802 >  volume = {120},
803 >  pages = {8-13},
804 >  number = {1},
805 >  month = {Jan 1},
806 >  abstract = {Current molecular dynamics simulations of biomolecules using multiple
807 >        time steps to update the slowly changing force are hampered by instabilities
808 >        beginning at time steps near the half period of the fastest vibrating
809 >        mode. These #resonance# instabilities have became a critical barrier
810 >        preventing the long time simulation of biomolecular dynamics. Attempts
811 >        to tame these instabilities by altering the slowly changing force
812 >        and efforts to damp them out by Langevin dynamics do not address
813 >        the fundamental cause of these instabilities. In this work, we trace
814 >        the instability to the nonanalytic character of the underlying spectrum
815 >        and show that a correct splitting of the Hamiltonian, which renders
816 >        the spectrum analytic, restores stability. The resulting Hamiltonian
817 >        dictates that in addition to updating the momentum due to the slowly
818 >        changing force, one must also update the position with a modified
819 >        mass. Thus multiple-time stepping must be done dynamically. (C)
820 >        2004 American Institute of Physics.},
821 >  annote = {757TK Times Cited:1 Cited References Count:22},
822 >  issn = {0021-9606},
823 >  uri = {<Go to ISI>://000187577400003},
824   }
825  
826 < @Article{Belonoshko00,
827 <  author =       {A.~B. Belonoshko and R. Ahuja and O. Eriksson and
828 <                  B. Johansson},
829 <  title =        {Quasi ab initio molecular dynamic study of Cu melting},
830 <  journal =      prb,
831 <  year =         2000,
832 <  volume =       61,
833 <  pages =        {3838-3844}
826 > @ARTICLE{Cook2000,
827 >  author = {M. J. Cook and M. R. Wilson},
828 >  title = {Simulation studies of dipole correlation in the isotropic liquid
829 >        phase},
830 >  journal = {Liquid Crystals},
831 >  year = {2000},
832 >  volume = {27},
833 >  pages = {1573-1583},
834 >  number = {12},
835 >  month = {Dec},
836 >  abstract = {The Kirkwood correlation factor g(1) determines the preference for
837 >        local parallel or antiparallel dipole association in the isotropic
838 >        phase. Calamitic mesogens with longitudinal dipole moments and Kirkwood
839 >        factors greater than 1 have an enhanced effective dipole moment
840 >        along the molecular long axis. This leads to higher values of Delta
841 >        epsilon in the nematic phase. This paper describes state-of-the-art
842 >        molecular dynamics simulations of two calamitic mesogens 4-(trans-4-n-pentylcyclohexyl)benzonitrile
843 >        (PCH5) and 4-(trans-4-n-pentylcyclohexyl) chlorobenzene (PCH5-Cl)
844 >        in the isotropic liquid phase using an all-atom force field and
845 >        taking long range electrostatics into account using an Ewald summation.
846 >        Using this methodology, PCH5 is seen to prefer antiparallel dipole
847 >        alignment with a negative g(1) and PCH5-Cl is seen to prefer parallel
848 >        dipole alignment with a positive g(1); this is in accordance with
849 >        experimental dielectric measurements. Analysis of the molecular
850 >        dynamics trajectories allows an assessment of why these molecules
851 >        behave differently.},
852 >  annote = {376BF Times Cited:10 Cited References Count:16},
853 >  issn = {0267-8292},
854 >  uri = {<Go to ISI>://000165437800002},
855   }
856  
857 < @Article{Banhart92,
858 <  author =       {J. Banhart and H. Ebert and R. Kuentzler and
859 <                  J. Voitl\"{a}nder},
860 <  title =        {Electronic properties of single-phased metastable
861 <                  Ag-Cu alloys},
862 <  journal =      prb,
863 <  year =         1992,
864 <  volume =       46,
865 <  pages =        {9968-9975}
857 > @ARTICLE{Cui2003,
858 >  author = {B. X. Cui and M. Y. Shen and K. F. Freed},
859 >  title = {Folding and misfolding of the papillomavirus E6 interacting peptide
860 >        E6ap},
861 >  journal = {Proceedings of the National Academy of Sciences of the United States
862 >        of America},
863 >  year = {2003},
864 >  volume = {100},
865 >  pages = {7087-7092},
866 >  number = {12},
867 >  month = {Jun 10},
868 >  abstract = {All-atom Langevin dynamics simulations have been performed to study
869 >        the folding pathways of the 18-residue binding domain fragment E6ap
870 >        of the human papillomavirus E6 interacting peptide. Six independent
871 >        folding trajectories, with a total duration of nearly 2 mus, all
872 >        lead to the same native state in which the E6ap adopts a fluctuating
873 >        a-helix structure in the central portion (Ser-4-Leu-13) but with
874 >        very flexible N and C termini. Simulations starting from different
875 >        core configurations exhibit the E6ap folding dynamics as either
876 >        a two- or three-state folder with an intermediate misfolded state.
877 >        The essential leucine hydrophobic core (Leu-9, Leu-12, and Leu-13)
878 >        is well conserved in the native-state structure but absent in the
879 >        intermediate structure, suggesting that the leucine core is not
880 >        only essential for the binding activity of E6ap but also important
881 >        for the stability of the native structure. The free energy landscape
882 >        reveals a significant barrier between the basins separating the
883 >        native and misfolded states. We also discuss the various underlying
884 >        forces that drive the peptide into its native state.},
885 >  annote = {689LC Times Cited:3 Cited References Count:48},
886 >  issn = {0027-8424},
887 >  uri = {<Go to ISI>://000183493500037},
888   }
889  
890 < @Article{Wendt78,
891 <  author =       {H. Wendt and F.~F. Abraham},
892 <  title =        {},
893 <  journal =      prl,
894 <  year =         1978,
895 <  volume =       41,
896 <  pages =        1244
890 > @ARTICLE{Denisov2003,
891 >  author = {S. I. Denisov and T. V. Lyutyy and K. N. Trohidou},
892 >  title = {Magnetic relaxation in finite two-dimensional nanoparticle ensembles},
893 >  journal = {Physical Review B},
894 >  year = {2003},
895 >  volume = {67},
896 >  pages = {-},
897 >  number = {1},
898 >  month = {Jan 1},
899 >  abstract = {We study the slow phase of thermally activated magnetic relaxation
900 >        in finite two-dimensional ensembles of dipolar interacting ferromagnetic
901 >        nanoparticles whose easy axes of magnetization are perpendicular
902 >        to the distribution plane. We develop a method to numerically simulate
903 >        the magnetic relaxation for the case that the smallest heights of
904 >        the potential barriers between the equilibrium directions of the
905 >        nanoparticle magnetic moments are much larger than the thermal energy.
906 >        Within this framework, we analyze in detail the role that the correlations
907 >        of the nanoparticle magnetic moments and the finite size of the
908 >        nanoparticle ensemble play in magnetic relaxation.},
909 >  annote = {642XH Times Cited:11 Cited References Count:31},
910 >  issn = {1098-0121},
911 >  uri = {<Go to ISI>://000180830400056},
912   }
913  
914 < @Article{Lewis91,
915 <  author =       {L.~J. Lewis},
916 <  title =        {Atomic dynamics through the glass transition},
917 <  journal =      prb,
918 <  year =         1991,
919 <  volume =       44,
920 <  pages =        {4245-4254}
914 > @ARTICLE{Derreumaux1998,
915 >  author = {P. Derreumaux and T. Schlick},
916 >  title = {The loop opening/closing motion of the enzyme triosephosphate isomerase},
917 >  journal = {Biophysical Journal},
918 >  year = {1998},
919 >  volume = {74},
920 >  pages = {72-81},
921 >  number = {1},
922 >  month = {Jan},
923 >  abstract = {To explore the origin of the large-scale motion of triosephosphate
924 >        isomerase's flexible loop (residues 166 to 176) at the active site,
925 >        several simulation protocols are employed both for the free enzyme
926 >        in vacuo and for the free enzyme with some solvent modeling: high-temperature
927 >        Langevin dynamics simulations, sampling by a #dynamics##driver#
928 >        approach, and potential-energy surface calculations. Our focus is
929 >        on obtaining the energy barrier to the enzyme's motion and establishing
930 >        the nature of the loop movement. Previous calculations did not determine
931 >        this energy barrier and the effect of solvent on the barrier. High-temperature
932 >        molecular dynamics simulations and crystallographic studies have
933 >        suggested a rigid-body motion with two hinges located at both ends
934 >        of the loop; Brownian dynamics simulations at room temperature pointed
935 >        to a very flexible behavior. The present simulations and analyses
936 >        reveal that although solute/solvent hydrogen bonds play a crucial
937 >        role in lowering the energy along the pathway, there still remains
938 >        a high activation barrier, This finding clearly indicates that,
939 >        if the loop opens and closes in the absence of a substrate at standard
940 >        conditions (e.g., room temperature, appropriate concentration of
941 >        isomerase), the time scale for transition is not in the nanosecond
942 >        but rather the microsecond range. Our results also indicate that
943 >        in the context of spontaneous opening in the free enzyme, the motion
944 >        is of rigid-body type and that the specific interaction between
945 >        residues Ala(176) and Tyr(208) plays a crucial role in the loop
946 >        opening/closing mechanism.},
947 >  annote = {Zl046 Times Cited:30 Cited References Count:29},
948 >  issn = {0006-3495},
949 >  uri = {<Go to ISI>://000073393400009},
950   }
951  
952 < @Article{Liu92,
953 <  author =       {R.~S. Liu and D.~W. Qi and S. Wang},
954 <  title =        {Subpeaks of structure factors for rapidly quenched metals},
955 <  journal =      prb,
956 <  year =         1992,
957 <  volume =       45,
958 <  pages =        {451-453}
952 > @ARTICLE{Dullweber1997,
953 >  author = {A. Dullweber and B. Leimkuhler and R. McLachlan},
954 >  title = {Symplectic splitting methods for rigid body molecular dynamics},
955 >  journal = {Journal of Chemical Physics},
956 >  year = {1997},
957 >  volume = {107},
958 >  pages = {5840-5851},
959 >  number = {15},
960 >  month = {Oct 15},
961 >  abstract = {Rigid body molecular models possess symplectic structure and time-reversal
962 >        symmetry. Standard numerical integration methods destroy both properties,
963 >        introducing nonphysical dynamical behavior such as numerically induced
964 >        dissipative states and drift in the energy during long term simulations.
965 >        This article describes the construction, implementation, and practical
966 >        application of fast explicit symplectic-reversible integrators for
967 >        multiple rigid body molecular simulations, These methods use a reduction
968 >        to Euler equations for the free rigid body, together with a symplectic
969 >        splitting technique. In every time step, the orientational dynamics
970 >        of each rigid body is integrated by a sequence of planar rotations.
971 >        Besides preserving the symplectic and reversible structures of the
972 >        flow, this scheme accurately conserves the total angular momentum
973 >        of a system of interacting rigid bodies. Excellent energy conservation
974 >        fan be obtained relative to traditional methods, especially in long-time
975 >        simulations. The method is implemented in a research code, ORIENT
976 >        and compared with a quaternion/extrapolation scheme for the TIP4P
977 >        model of water. Our experiments show that the symplectic-reversible
978 >        scheme is far superior to the more traditional quaternion method.
979 >        (C) 1997 American Institute of Physics.},
980 >  annote = {Ya587 Times Cited:35 Cited References Count:32},
981 >  issn = {0021-9606},
982 >  uri = {<Go to ISI>://A1997YA58700024},
983   }
984  
985 < @Book{pliny,
986 <  author =       {Pliny},
987 <  title =        {Hist. Nat.},
988 <  publisher =    { },
989 <  year =         { },
990 <  volume =       {XXXVI}
985 > @BOOK{Gamma1994,
986 >  title = {Design Patterns: Elements of Reusable Object-Oriented Software},
987 >  publisher = {Perason Education},
988 >  year = {1994},
989 >  author = {E. Gamma, R. Helm, R. Johnson and J. Vlissides},
990 >  address = {London},
991 >  chapter = {7},
992   }
993  
994 < @Article{Anheuser94,
995 <  author =       {K. Anheuser and J.P. Northover},
996 <  title =        {Silver plating of Roman and Celtic coins from Britan - a technical study},
997 <  journal =      {Brit. Num. J.},
998 <  year =         1994,
999 <  volume =       64,
1000 <  pages =        22
1001 < }
1002 <
1003 < @Article{Pense92,
1004 <  author =       {A. W. Pense},
1005 <  title =        {The Decline and Fall of the Roman Denarius},
1006 <  journal =      {Mat. Char.},
1007 <  year =         1992,
1008 <  volume =       29,
1009 <  pages =        213
1010 < }
1011 <
1012 < @Article{Ngai81,
1013 <  author =       {K.~L. Ngai and F.-S. Liu},
1014 <  title =        {Dispersive diffusion transport and noise,
1015 <                  time-dependent diffusion coefficient, generalized
1016 <                  Einstein-Nernst relation, and dispersive
1241 <                  diffusion-controlled unimolecular and bimolecular
1242 <                  reactions},
1243 <  journal =      prb,
1244 <  year =         1981,
1245 <  volume =       24,
1246 <  pages =        {1049-1065}
994 > @ARTICLE{Edwards2005,
995 >  author = {S. A. Edwards and D. R. M. Williams},
996 >  title = {Stretching a single diblock copolymer in a selective solvent: Langevin
997 >        dynamics simulations},
998 >  journal = {Macromolecules},
999 >  year = {2005},
1000 >  volume = {38},
1001 >  pages = {10590-10595},
1002 >  number = {25},
1003 >  month = {Dec 13},
1004 >  abstract = {Using the Langevin dynamics technique, we have carried out simulations
1005 >        of a single-chain flexible diblock copolymer. The polymer consists
1006 >        of two blocks of equal length, one very poorly solvated and the
1007 >        other close to theta-conditions. We study what happens when such
1008 >        a polymer is stretched, for a range of different stretching speeds,
1009 >        and correlate our observations with features in the plot of force
1010 >        vs extension. We find that at slow speeds this force profile does
1011 >        not increase monotonically, in disagreement with earlier predictions,
1012 >        and that at high speeds there is a strong dependence on which end
1013 >        of the polymer is pulled, as well as a high level of hysteresis.},
1014 >  annote = {992EC Times Cited:0 Cited References Count:13},
1015 >  issn = {0024-9297},
1016 >  uri = {<Go to ISI>://000233866200035},
1017   }
1018  
1019 < @Unpublished{Truhlar00,
1020 <  author =       {D.~G. Truhlar and A. Kohen},
1021 <  note =         {private correspondence}
1019 > @ARTICLE{Egberts1988,
1020 >  author = {E. Egberts and H. J. C. Berendsen},
1021 >  title = {Molecular-Dynamics Simulation of a Smectic Liquid-Crystal with Atomic
1022 >        Detail},
1023 >  journal = {Journal of Chemical Physics},
1024 >  year = {1988},
1025 >  volume = {89},
1026 >  pages = {3718-3732},
1027 >  number = {6},
1028 >  month = {Sep 15},
1029 >  annote = {Q0188 Times Cited:219 Cited References Count:43},
1030 >  issn = {0021-9606},
1031 >  uri = {<Go to ISI>://A1988Q018800036},
1032   }
1033  
1034 < @Article{Truhlar78,
1035 <  author =       {Donald G. Truhlar},
1036 <  title =        {Interpretation of the Activation Energy},
1037 <  journal =      {J. Chem. Ed.},
1038 <  year =         1978,
1039 <  volume =       55,
1040 <  pages =        309
1034 > @ARTICLE{Ermak1978,
1035 >  author = {D. L. Ermak and J. A. Mccammon},
1036 >  title = {Brownian Dynamics with Hydrodynamic Interactions},
1037 >  journal = {Journal of Chemical Physics},
1038 >  year = {1978},
1039 >  volume = {69},
1040 >  pages = {1352-1360},
1041 >  number = {4},
1042 >  annote = {Fp216 Times Cited:785 Cited References Count:42},
1043 >  issn = {0021-9606},
1044 >  uri = {<Go to ISI>://A1978FP21600004},
1045   }
1046  
1047 < @Book{Tolman27,
1048 <  author =       {R. C. Tolman},
1049 <  title =        {Statistical Mechanics with Applications to Physics and Chemistry},
1050 <  chapter =      {},
1051 <  publisher =    {Chemical Catalog Co.},
1052 <  address =      {New York},
1053 <  year =         1927,
1054 <  pages =        {260-270}
1047 > @ARTICLE{Evans1977,
1048 >  author = {D. J. Evans},
1049 >  title = {Representation of Orientation Space},
1050 >  journal = {Molecular Physics},
1051 >  year = {1977},
1052 >  volume = {34},
1053 >  pages = {317-325},
1054 >  number = {2},
1055 >  annote = {Ds757 Times Cited:271 Cited References Count:18},
1056 >  issn = {0026-8976},
1057 >  uri = {<Go to ISI>://A1977DS75700002},
1058   }
1059  
1060 < @Article{Tolman20,
1061 <  author =       {R. C. Tolman},
1062 <  title =        {Statistical Mechanics Applied to Chemical Kinetics},
1063 <  journal =      jacs,
1064 <  year =         1920,
1065 <  volume =       42,
1066 <  pages =        2506
1060 > @ARTICLE{Fennell2004,
1061 >  author = {C. J. Fennell and J. D. Gezelter},
1062 >  title = {On the structural and transport properties of the soft sticky dipole
1063 >        and related single-point water models},
1064 >  journal = {Journal of Chemical Physics},
1065 >  year = {2004},
1066 >  volume = {120},
1067 >  pages = {9175-9184},
1068 >  number = {19},
1069 >  month = {May 15},
1070 >  abstract = {The density maximum and temperature dependence of the self-diffusion
1071 >        constant were investigated for the soft sticky dipole (SSD) water
1072 >        model and two related reparametrizations of this single-point model.
1073 >        A combination of microcanonical and isobaric-isothermal molecular
1074 >        dynamics simulations was used to calculate these properties, both
1075 >        with and without the use of reaction field to handle long-range
1076 >        electrostatics. The isobaric-isothermal simulations of the melting
1077 >        of both ice-I-h and ice-I-c showed a density maximum near 260 K.
1078 >        In most cases, the use of the reaction field resulted in calculated
1079 >        densities which were significantly lower than experimental densities.
1080 >        Analysis of self-diffusion constants shows that the original SSD
1081 >        model captures the transport properties of experimental water very
1082 >        well in both the normal and supercooled liquid regimes. We also
1083 >        present our reparametrized versions of SSD for use both with the
1084 >        reaction field or without any long-range electrostatic corrections.
1085 >        These are called the SSD/RF and SSD/E models, respectively. These
1086 >        modified models were shown to maintain or improve upon the experimental
1087 >        agreement with the structural and transport properties that can
1088 >        be obtained with either the original SSD or the density-corrected
1089 >        version of the original model (SSD1). Additionally, a novel low-density
1090 >        ice structure is presented which appears to be the most stable ice
1091 >        structure for the entire SSD family. (C) 2004 American Institute
1092 >        of Physics.},
1093 >  annote = {816YY Times Cited:5 Cited References Count:39},
1094 >  issn = {0021-9606},
1095 >  uri = {<Go to ISI>://000221146400032},
1096   }
1097  
1098 < @Article{Nagel96,
1099 <  author =       {M.D. Ediger and  C.A. Angell and Sidney R. Nagel},
1100 <  title =        {Supercooled Liquids and Glasses},
1101 <  journal =      jpc,
1102 <  year =         1996,
1103 <  volume =       100,
1104 <  pages =        13200
1098 > @ARTICLE{Fernandes2002,
1099 >  author = {M. X. Fernandes and J. G. {de la Torre}},
1100 >  title = {Brownian dynamics simulation of rigid particles of arbitrary shape
1101 >        in external fields},
1102 >  journal = {Biophysical Journal},
1103 >  year = {2002},
1104 >  volume = {83},
1105 >  pages = {3039-3048},
1106 >  number = {6},
1107 >  month = {Dec},
1108 >  abstract = {We have developed a Brownian dynamics simulation algorithm to generate
1109 >        Brownian trajectories of an isolated, rigid particle of arbitrary
1110 >        shape in the presence of electric fields or any other external agents.
1111 >        Starting from the generalized diffusion tensor, which can be calculated
1112 >        with the existing HYDRO software, the new program BROWNRIG (including
1113 >        a case-specific subprogram for the external agent) carries out a
1114 >        simulation that is analyzed later to extract the observable dynamic
1115 >        properties. We provide a variety of examples of utilization of this
1116 >        method, which serve as tests of its performance, and also illustrate
1117 >        its applicability. Examples include free diffusion, transport in
1118 >        an electric field, and diffusion in a restricting environment.},
1119 >  annote = {633AD Times Cited:2 Cited References Count:43},
1120 >  issn = {0006-3495},
1121 >  uri = {<Go to ISI>://000180256300012},
1122   }
1123  
1124 < @InBook{Blumen86,
1125 <  author =       {A. Blumen and J. Klafter and G. Zumofen},
1126 <  editor =       {Luciano Peitronero and E. Tosatti},
1127 <  title =        {Fractals in Physics},
1128 <  chapter =      {Reactions in Disordered Media Modelled by Fractals},
1129 <  publisher =    {North-Holland},
1297 <  year =         1986,
1298 <  series =       {International Symposium on Fractals in Physics},
1299 <  address =      {Amsterdam},
1300 <  pages =        399
1124 > @BOOK{Frenkel1996,
1125 >  title = {Understanding Molecular Simulation : From Algorithms to Applications},
1126 >  publisher = {Academic Press},
1127 >  year = {1996},
1128 >  author = {D. Frenkel and B. Smit},
1129 >  address = {New York},
1130   }
1131  
1132 < @Article{Shlesinger84,
1133 <  author =       {M.~F. Shlesinger and E.~W. Montroll},
1134 <  title =        {On the Williams-Watts function of dielectric relaxation},
1135 <  journal =      {Proc. Natl. Acad. Sci. USA},
1136 <  year =         1984,
1137 <  volume =       81,
1138 <  pages =        {1280-1283}
1132 > @ARTICLE{Gay1981,
1133 >  author = {J. G. Gay and B. J. Berne},
1134 >  title = {Modification of the Overlap Potential to Mimic a Linear Site-Site
1135 >        Potential},
1136 >  journal = {Journal of Chemical Physics},
1137 >  year = {1981},
1138 >  volume = {74},
1139 >  pages = {3316-3319},
1140 >  number = {6},
1141 >  annote = {Lj347 Times Cited:482 Cited References Count:13},
1142 >  issn = {0021-9606},
1143 >  uri = {<Go to ISI>://A1981LJ34700029},
1144   }
1145  
1146 < @Article{Klafter86,
1147 <  author =       {J. Klafter and M.~F. Shlesinger},
1148 <  title =        {On the relationship among three theories of
1149 <                  relaxation in disordered systems},
1150 <  journal =      {Proc. Natl. Acad. Sci. USA},
1151 <  year =         1986,
1152 <  volume =       83,
1153 <  pages =        {848-851}
1146 > @ARTICLE{Gelin1999,
1147 >  author = {M. F. Gelin},
1148 >  title = {Inertial effects in the Brownian dynamics with rigid constraints},
1149 >  journal = {Macromolecular Theory and Simulations},
1150 >  year = {1999},
1151 >  volume = {8},
1152 >  pages = {529-543},
1153 >  number = {6},
1154 >  month = {Nov},
1155 >  abstract = {To investigate the influence of inertial effects on the dynamics of
1156 >        an assembly of beads subjected to rigid constraints and placed in
1157 >        a buffer medium, a convenient method to introduce suitable generalized
1158 >        coordinates is presented. Without any restriction on the nature
1159 >        of the soft forces involved (both stochastic and deterministic),
1160 >        pertinent Langevin equations are derived. Provided that the Brownian
1161 >        forces are Gaussian and Markovian, the corresponding Fokker-Planck
1162 >        equation (FPE) is obtained in the complete phase space of generalized
1163 >        coordinates and momenta. The correct short time behavior for correlation
1164 >        functions (CFs) of generalized coordinates is established, and the
1165 >        diffusion equation with memory (DEM) is deduced from the FPE in
1166 >        the high friction Limit. The DEM is invoked to perform illustrative
1167 >        calculations in two dimensions of the orientational CFs for once
1168 >        broken nonrigid rods immobilized on a surface. These calculations
1169 >        reveal that the CFs under certain conditions exhibit an oscillatory
1170 >        behavior, which is irreproducible within the standard diffusion
1171 >        equation. Several methods are considered for the approximate solution
1172 >        of the DEM, and their application to three dimensional DEMs is discussed.},
1173 >  annote = {257MM Times Cited:2 Cited References Count:82},
1174 >  issn = {1022-1344},
1175 >  uri = {<Go to ISI>://000083785700002},
1176   }
1177  
1178 < @Article{Li2001,
1179 <  author =   {Z. Li and M. Lieberman and W. Hill},
1180 <  title =    {{\sc xps} and {\sc sers} Study of Silicon Phthalocyanine
1181 <                  Monolayers: umbrella vs. octopus design strategies
1182 <                  for formation of oriented {\sc sam}s},
1183 <  journal =      {Langmuir},
1184 <  year =     2001,
1329 <  volume =       17,
1330 <  pages =        {4887-4894}
1178 > @BOOK{Goldstein2001,
1179 >  title = {Classical Mechanics},
1180 >  publisher = {Addison Wesley},
1181 >  year = {2001},
1182 >  author = {H. Goldstein and C. Poole and J. Safko},
1183 >  address = {San Francisco},
1184 >  edition = {3rd},
1185   }
1186  
1187 < @Article{Evans1993,
1188 <  author =       {J.~W. Evans},
1189 <  title =        {Random and Cooperative Sequential Adsorption},
1190 <  journal =      rmp,
1191 <  year =         1993,
1192 <  volume =       65,
1193 <  pages =        {1281-1329}
1187 > @ARTICLE{Gray2003,
1188 >  author = {J. J. Gray and S. Moughon and C. Wang and O. Schueler-Furman and
1189 >        B. Kuhlman and C. A. Rohl and D. Baker},
1190 >  title = {Protein-protein docking with simultaneous optimization of rigid-body
1191 >        displacement and side-chain conformations},
1192 >  journal = {Journal of Molecular Biology},
1193 >  year = {2003},
1194 >  volume = {331},
1195 >  pages = {281-299},
1196 >  number = {1},
1197 >  month = {Aug 1},
1198 >  abstract = {Protein-protein docking algorithms provide a means to elucidate structural
1199 >        details for presently unknown complexes. Here, we present and evaluate
1200 >        a new method to predict protein-protein complexes from the coordinates
1201 >        of the unbound monomer components. The method employs a low-resolution,
1202 >        rigid-body, Monte Carlo search followed by simultaneous optimization
1203 >        of backbone displacement and side-chain conformations using Monte
1204 >        Carlo minimization. Up to 10(5) independent simulations are carried
1205 >        out, and the resulting #decoys# are ranked using an energy function
1206 >        dominated by van der Waals interactions, an implicit solvation model,
1207 >        and an orientation-dependent hydrogen bonding potential. Top-ranking
1208 >        decoys are clustered to select the final predictions. Small-perturbation
1209 >        studies reveal the formation of binding funnels in 42 of 54 cases
1210 >        using coordinates derived from the bound complexes and in 32 of
1211 >        54 cases using independently determined coordinates of one or both
1212 >        monomers. Experimental binding affinities correlate with the calculated
1213 >        score function and explain the predictive success or failure of
1214 >        many targets. Global searches using one or both unbound components
1215 >        predict at least 25% of the native residue-residue contacts in 28
1216 >        of the 32 cases where binding funnels exist. The results suggest
1217 >        that the method may soon be useful for generating models of biologically
1218 >        important complexes from the structures of the isolated components,
1219 >        but they also highlight the challenges that must be met to achieve
1220 >        consistent and accurate prediction of protein-protein interactions.
1221 >        (C) 2003 Elsevier Ltd. All rights reserved.},
1222 >  annote = {704QL Times Cited:48 Cited References Count:60},
1223 >  issn = {0022-2836},
1224 >  uri = {<Go to ISI>://000184351300022},
1225   }
1226  
1227 <
1228 < @Article{Dwyer1977,
1229 <  author =   {D.~J. Dwyer and G.~W. Simmons and R.~P. Wei},
1230 <  title =    {},
1231 <  journal =      {Surf. Sci.},
1232 <  year =     1977,
1233 <  volume =   64,
1234 <  pages =    617
1227 > @ARTICLE{Greengard1994,
1228 >  author = {L. Greengard},
1229 >  title = {Fast Algorithms for Classical Physics},
1230 >  journal = {Science},
1231 >  year = {1994},
1232 >  volume = {265},
1233 >  pages = {909-914},
1234 >  number = {5174},
1235 >  month = {Aug 12},
1236 >  abstract = {Some of the recently developed fast summation methods that have arisen
1237 >        in scientific computing are described. These methods require an
1238 >        amount of work proportional to N or N log N to evaluate all pairwise
1239 >        interactions in an ensemble of N particles. Traditional methods,
1240 >        by contrast, require an amount of work proportional to N-2. AS a
1241 >        result, large-scale simulations can be carried out using only modest
1242 >        computer resources. In combination with supercomputers, it is possible
1243 >        to address questions that were previously out of reach. Problems
1244 >        from diffusion, gravitation, and wave propagation are considered.},
1245 >  annote = {Pb499 Times Cited:99 Cited References Count:44},
1246 >  issn = {0036-8075},
1247 >  uri = {<Go to ISI>://A1994PB49900031},
1248   }
1249  
1250 < @Article{Macritche1978,
1251 <  author =   {F. MacRitche},
1252 <  title =    {},
1253 <  journal =      {Adv. Protein Chem.},
1254 <  year =     1978,
1255 <  volume =   32,
1256 <  pages =    283
1250 > @ARTICLE{Greengard1987,
1251 >  author = {L. Greengard and V. Rokhlin},
1252 >  title = {A Fast Algorithm for Particle Simulations},
1253 >  journal = {Journal of Computational Physics},
1254 >  year = {1987},
1255 >  volume = {73},
1256 >  pages = {325-348},
1257 >  number = {2},
1258 >  month = {Dec},
1259 >  annote = {L0498 Times Cited:899 Cited References Count:7},
1260 >  issn = {0021-9991},
1261 >  uri = {<Go to ISI>://A1987L049800006},
1262   }
1263  
1264 < @Article{Feder1980,
1265 <  author =   {J. Feder},
1266 <  title =    {},
1267 <  journal =      {J. Theor. Biol.},
1268 <  year =     1980,
1269 <  volume =   87,
1270 <  pages =    237
1264 > @ARTICLE{Hairer1997,
1265 >  author = {E. Hairer and C. Lubich},
1266 >  title = {The life-span of backward error analysis for numerical integrators},
1267 >  journal = {Numerische Mathematik},
1268 >  year = {1997},
1269 >  volume = {76},
1270 >  pages = {441-462},
1271 >  number = {4},
1272 >  month = {Jun},
1273 >  abstract = {Backward error analysis is a useful tool for the study of numerical
1274 >        approximations to ordinary differential equations. The numerical
1275 >        solution is formally interpreted as the exact solution of a perturbed
1276 >        differential equation, given as a formal and usually divergent series
1277 >        in powers of the step size. For a rigorous analysis, this series
1278 >        has to be truncated. In this article we study the influence of this
1279 >        truncation to the difference between the numerical solution and
1280 >        the exact solution of the perturbed differential equation. Results
1281 >        on the long-time behaviour of numerical solutions are obtained in
1282 >        this way. We present applications to the numerical phase portrait
1283 >        near hyperbolic equilibrium points, to asymptotically stable periodic
1284 >        orbits and Hopf bifurcation, and to energy conservation and approximation
1285 >        of invariant tori in Hamiltonian systems.},
1286 >  annote = {Xj488 Times Cited:50 Cited References Count:19},
1287 >  issn = {0029-599X},
1288 >  uri = {<Go to ISI>://A1997XJ48800002},
1289   }
1290  
1291 < @Article{Ramsden1993,
1292 <  author =   {J.~J. Ramsden},
1293 <  title =    {},
1294 <  journal =      prl,
1295 <  year =     1993,
1296 <  volume =   71,
1297 <  pages =    295
1291 > @ARTICLE{Hao1993,
1292 >  author = {M. H. Hao and M. R. Pincus and S. Rackovsky and H. A. Scheraga},
1293 >  title = {Unfolding and Refolding of the Native Structure of Bovine Pancreatic
1294 >        Trypsin-Inhibitor Studied by Computer-Simulations},
1295 >  journal = {Biochemistry},
1296 >  year = {1993},
1297 >  volume = {32},
1298 >  pages = {9614-9631},
1299 >  number = {37},
1300 >  month = {Sep 21},
1301 >  abstract = {A new procedure for studying the folding and unfolding of proteins,
1302 >        with an application to bovine pancreatic trypsin inhibitor (BPTI),
1303 >        is reported. The unfolding and refolding of the native structure
1304 >        of the protein are characterized by the dimensions of the protein,
1305 >        expressed in terms of the three principal radii of the structure
1306 >        considered as an ellipsoid. A dynamic equation, describing the variations
1307 >        of the principal radii on the unfolding path, and a numerical procedure
1308 >        to solve this equation are proposed. Expanded and distorted conformations
1309 >        are refolded to the native structure by a dimensional-constraint
1310 >        energy minimization procedure. A unique and reproducible unfolding
1311 >        pathway for an intermediate of BPTI lacking the [30,51] disulfide
1312 >        bond is obtained. The resulting unfolded conformations are extended;
1313 >        they contain near-native local structure, but their longest principal
1314 >        radii are more than 2.5 times greater than that of the native structure.
1315 >        The most interesting finding is that the majority of expanded conformations,
1316 >        generated under various conditions, can be refolded closely to the
1317 >        native structure, as measured by the correct overall chain fold,
1318 >        by the rms deviations from the native structure of only 1.9-3.1
1319 >        angstrom, and by the energy differences of about 10 kcal/mol from
1320 >        the native structure. Introduction of the [30,51] disulfide bond
1321 >        at this stage, followed by minimization, improves the closeness
1322 >        of the refolded structures to the native structure, reducing the
1323 >        rms deviations to 0.9-2.0 angstrom. The unique refolding of these
1324 >        expanded structures over such a large conformational space implies
1325 >        that the folding is strongly dictated by the interactions in the
1326 >        amino acid sequence of BPTI. The simulations indicate that, under
1327 >        conditions that favor a compact structure as mimicked by the volume
1328 >        constraints in our algorithm; the expanded conformations have a
1329 >        strong tendency to move toward the native structure; therefore,
1330 >        they probably would be favorable folding intermediates. The results
1331 >        presented here support a general model for protein folding, i.e.,
1332 >        progressive formation of partially folded structural units, followed
1333 >        by collapse to the compact native structure. The general applicability
1334 >        of the procedure is also discussed.},
1335 >  annote = {Ly294 Times Cited:27 Cited References Count:57},
1336 >  issn = {0006-2960},
1337 >  uri = {<Go to ISI>://A1993LY29400014},
1338   }
1339  
1340 <
1341 < @Article{Egelhoff1989,
1342 <  author =   {W.~F. Egelhoff and I. Jacob},
1343 <  title =    {},
1344 <  journal =      prl,
1345 <  year =     1989,
1346 <  volume =   62,
1347 <  pages =    921
1340 > @ARTICLE{Hinsen2000,
1341 >  author = {K. Hinsen and A. J. Petrescu and S. Dellerue and M. C. Bellissent-Funel
1342 >        and G. R. Kneller},
1343 >  title = {Harmonicity in slow protein dynamics},
1344 >  journal = {Chemical Physics},
1345 >  year = {2000},
1346 >  volume = {261},
1347 >  pages = {25-37},
1348 >  number = {1-2},
1349 >  month = {Nov 1},
1350 >  abstract = {The slow dynamics of proteins around its native folded state is usually
1351 >        described by diffusion in a strongly anharmonic potential. In this
1352 >        paper, we try to understand the form and origin of the anharmonicities,
1353 >        with the principal aim of gaining a better understanding of the
1354 >        principal motion types, but also in order to develop more efficient
1355 >        numerical methods for simulating neutron scattering spectra of large
1356 >        proteins. First, we decompose a molecular dynamics (MD) trajectory
1357 >        of 1.5 ns for a C-phycocyanin dimer surrounded by a layer of water
1358 >        into three contributions that we expect to be independent: the global
1359 >        motion of the residues, the rigid-body motion of the sidechains
1360 >        relative to the backbone, and the internal deformations of the sidechains.
1361 >        We show that they are indeed almost independent by verifying the
1362 >        factorization of the incoherent intermediate scattering function.
1363 >        Then, we show that the global residue motions, which include all
1364 >        large-scale backbone motions, can be reproduced by a simple harmonic
1365 >        model which contains two contributions: a short-time vibrational
1366 >        term, described by a standard normal mode calculation in a local
1367 >        minimum, and a long-time diffusive term, described by Brownian motion
1368 >        in an effective harmonic potential. The potential and the friction
1369 >        constants were fitted to the MD data. The major anharmonic contribution
1370 >        to the incoherent intermediate scattering function comes from the
1371 >        rigid-body diffusion of the sidechains. This model can be used to
1372 >        calculate scattering functions for large proteins and for long-time
1373 >        scales very efficiently, and thus provides a useful complement to
1374 >        MD simulations, which are best suited for detailed studies on smaller
1375 >        systems or for shorter time scales. (C) 2000 Elsevier Science B.V.
1376 >        All rights reserved.},
1377 >  annote = {Sp. Iss. SI 368MT Times Cited:16 Cited References Count:31},
1378 >  issn = {0301-0104},
1379 >  uri = {<Go to ISI>://000090121700003},
1380   }
1381  
1382 <
1383 < @Article{Viot1992a,
1384 <  author =   {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1385 <  title =    {RANDOM SEQUENTIAL ADSORPTION OF ANISOTROPIC
1386 <                  PARTICLES 1. JAMMING LIMIT AND ASYMPTOTIC-BEHAVIOR},
1387 <  journal =      jpc,
1388 <  year =     1992,
1389 <  volume =   97,
1390 <  pages =    {5212-5218}
1382 > @ARTICLE{Ho1992,
1383 >  author = {C. Ho and C. D. Stubbs},
1384 >  title = {Hydration at the Membrane Protein-Lipid Interface},
1385 >  journal = {Biophysical Journal},
1386 >  year = {1992},
1387 >  volume = {63},
1388 >  pages = {897-902},
1389 >  number = {4},
1390 >  month = {Oct},
1391 >  abstract = {Evidence has been found for the existence water at the protein-lipid
1392 >        hydrophobic interface ot the membrane proteins, gramicidin and apocytochrome
1393 >        C, using two related fluorescence spectroscopic approaches. The
1394 >        first approach exploited the fact that the presence of water in
1395 >        the excited state solvent cage of a fluorophore increases the rate
1396 >        of decay. For 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5-hexatrienyl)
1397 >        phenyl]ethyl]carbonyl]-3-sn-PC (DPH-PC), where the fluorophores
1398 >        are located in the hydrophobic core of the lipid bilayer, the introduction
1399 >        of gramicidin reduced the fluorescence lifetime, indicative of an
1400 >        increased presence of water in the bilayer. Since a high protein:lipid
1401 >        ratio was used, the fluorophores were forced to be adjacent to the
1402 >        protein hydrophobic surface, hence the presence of water in this
1403 >        region could be inferred. Cholesterol is known to reduce the water
1404 >        content of lipid bilayers and this effect was maintained at the
1405 >        protein-lipid interface with both gramicidin and apocytochrome C,
1406 >        again suggesting hydration in this region. The second approach was
1407 >        to use the fluorescence enhancement induced by exchanging deuterium
1408 >        oxide (D2O) for H2O. Both the fluorescence intensities of trimethylammonium-DPH,
1409 >        located in the lipid head group region, and of the gramicidin intrinsic
1410 >        tryptophans were greater in a D2O buffer compared with H2O, showing
1411 >        that the fluorophores were exposed to water in the bilayer at the
1412 >        protein-lipid interface. In the presence of cholesterol the fluorescence
1413 >        intensity ratio of D2O to H2O decreased, indicating a removal of
1414 >        water by the cholesterol, in keeping with the lifetime data. Altered
1415 >        hydration at the protein-lipid interface could affect conformation,
1416 >        thereby offering a new route by which membrane protein functioning
1417 >        may be modified.},
1418 >  annote = {Ju251 Times Cited:55 Cited References Count:44},
1419 >  issn = {0006-3495},
1420 >  uri = {<Go to ISI>://A1992JU25100002},
1421   }
1422  
1423 < @Article{Viot1992b,
1424 <  author =   {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1425 <  title =    {SATURATION COVERAGE IN RANDOM SEQUENTIAL ADSORPTION
1426 <                  OF VERY ELONGATED PARTICLES},
1427 <  journal =      {Physica A},
1428 <  year =     1992,
1406 <  volume =   191,
1407 <  pages =    {248-252}
1423 > @BOOK{Hockney1981,
1424 >  title = {Computer Simulation Using Particles},
1425 >  publisher = {McGraw-Hill},
1426 >  year = {1981},
1427 >  author = {R.W. Hockney and J.W. Eastwood},
1428 >  address = {New York},
1429   }
1430  
1431 < @Article{Dobson1987,
1432 <  author =       {B.~W. Dobson},
1433 <  title =        {},
1434 <  journal =      prb,
1435 <  year =         1987,
1436 <  volume =       36,
1437 <  pages =        1068
1431 > @ARTICLE{Hoover1985,
1432 >  author = {W. G. Hoover},
1433 >  title = {Canonical Dynamics - Equilibrium Phase-Space Distributions},
1434 >  journal = {Physical Review A},
1435 >  year = {1985},
1436 >  volume = {31},
1437 >  pages = {1695-1697},
1438 >  number = {3},
1439 >  annote = {Acr30 Times Cited:1809 Cited References Count:11},
1440 >  issn = {1050-2947},
1441 >  uri = {<Go to ISI>://A1985ACR3000056},
1442   }
1443  
1444 < @Article{Boyer1995,
1445 <  author =       {D. Boyer and P. Viot and G. Tarjus and J. Talbot},
1446 <  title =        {PERCUS-$\mbox{Y}$EVICK-LIKE INTERGRAL EQUATION FOR RANDOM SEQUENTIAL
1447 <                  ADSORPTION},
1448 <  journal =      jcp,
1449 <  year =         1995,
1450 <  volume =       103,
1451 <  pages =        1607
1444 > @ARTICLE{Huh2004,
1445 >  author = {Y. Huh and N. M. Cann},
1446 >  title = {Discrimination in isotropic, nematic, and smectic phases of chiral
1447 >        calamitic molecules: A computer simulation study},
1448 >  journal = {Journal of Chemical Physics},
1449 >  year = {2004},
1450 >  volume = {121},
1451 >  pages = {10299-10308},
1452 >  number = {20},
1453 >  month = {Nov 22},
1454 >  abstract = {Racemic fluids of chiral calamitic molecules are investigated with
1455 >        molecular dynamics simulations. In particular, the phase behavior
1456 >        as a function of density is examined for eight racemates. The relationship
1457 >        between chiral discrimination and orientational order in the phase
1458 >        is explored. We find that the transition from the isotropic phase
1459 >        to a liquid crystal phase is accompanied by an increase in chiral
1460 >        discrimination, as measured by differences in radial distributions.
1461 >        Among ordered phases, discrimination is largest for smectic phases
1462 >        with a significant preference for heterochiral contact within the
1463 >        layers. (C) 2004 American Institute of Physics.},
1464 >  annote = {870FJ Times Cited:0 Cited References Count:63},
1465 >  issn = {0021-9606},
1466 >  uri = {<Go to ISI>://000225042700059},
1467   }
1468  
1469 < @Article{Viot1992c,
1470 <  author =       {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1471 <  title =        {SATURATION COVERAGE OF HIGHLY ELONGATED ANISOTROPIC
1472 <                  PARTICLES},
1473 <  journal =      {Physica A},
1474 <  year =         1992,
1475 <  volume =       191,
1476 <  pages =        {248-252}
1469 > @ARTICLE{Humphrey1996,
1470 >  author = {W. Humphrey and A. Dalke and K. Schulten},
1471 >  title = {VMD: Visual molecular dynamics},
1472 >  journal = {Journal of Molecular Graphics},
1473 >  year = {1996},
1474 >  volume = {14},
1475 >  pages = {33-\&},
1476 >  number = {1},
1477 >  month = {Feb},
1478 >  abstract = {VMD is a molecular graphics program designed for the display and analysis
1479 >        of molecular assemblies, in particular biopolymers such as proteins
1480 >        and nucleic acids. VMD can simultaneously display any number of
1481 >        structures using a wide variety of rendering styles and coloring
1482 >        methods. Molecules are displayed as one or more ''representations,''
1483 >        in which each representation embodies a particular rendering method
1484 >        and coloring scheme for a selected subset of atoms. The atoms displayed
1485 >        in each representation are chosen using an extensive atom selection
1486 >        syntax, which includes Boolean operators and regular expressions.
1487 >        VMD provides a complete graphical user interface for program control,
1488 >        as well as a text interface using the Tcl embeddable parser to allow
1489 >        for complex scripts with variable substitution, control loops, and
1490 >        function calls. Full session logging is supported, which produces
1491 >        a VMD command script for later playback. High-resolution raster
1492 >        images of displayed molecules may be produced by generating input
1493 >        scripts for use by a number of photorealistic image-rendering applications.
1494 >        VMD has also been expressly designed with the ability to animate
1495 >        molecular dynamics (MD) simulation trajectories, imported either
1496 >        from files or from a direct connection to a running MD simulation.
1497 >        VMD is the visualization component of MDScope, a set of tools for
1498 >        interactive problem solving in structural biology, which also includes
1499 >        the parallel MD program NAMD, and the MDCOMM software used to connect
1500 >        the visualization and simulation programs. VMD is written in C++,
1501 >        using an object-oriented design; the program, including source code
1502 >        and extensive documentation, is freely available via anonymous ftp
1503 >        and through the World Wide Web.},
1504 >  annote = {Uh515 Times Cited:1418 Cited References Count:19},
1505 >  issn = {0263-7855},
1506 >  uri = {<Go to ISI>://A1996UH51500005},
1507   }
1508  
1509 < @Article{Ricci1994,
1510 <  author =       {S.~M. Ricci and J. Talbot and G. Tarjus and P. Viot},
1511 <  title =        {A STRUCTURAL COMPARISON OF RANDOM SEQUENTIAL ADSORPTION AND
1512 <                  EQUILIBRIUM CONFIGURATIONS OF SPHEROCYLINDERS},
1513 <  journal =      jcp,
1514 <  year =         1994,
1515 <  volume =       101,
1516 <  pages =        9164
1509 > @ARTICLE{Izaguirre2001,
1510 >  author = {J. A. Izaguirre and D. P. Catarello and J. M. Wozniak and R. D. Skeel},
1511 >  title = {Langevin stabilization of molecular dynamics},
1512 >  journal = {Journal of Chemical Physics},
1513 >  year = {2001},
1514 >  volume = {114},
1515 >  pages = {2090-2098},
1516 >  number = {5},
1517 >  month = {Feb 1},
1518 >  abstract = {In this paper we show the possibility of using very mild stochastic
1519 >        damping to stabilize long time step integrators for Newtonian molecular
1520 >        dynamics. More specifically, stable and accurate integrations are
1521 >        obtained for damping coefficients that are only a few percent of
1522 >        the natural decay rate of processes of interest, such as the velocity
1523 >        autocorrelation function. Two new multiple time stepping integrators,
1524 >        Langevin Molly (LM) and Brunger-Brooks-Karplus-Molly (BBK-M), are
1525 >        introduced in this paper. Both use the mollified impulse method
1526 >        for the Newtonian term. LM uses a discretization of the Langevin
1527 >        equation that is exact for the constant force, and BBK-M uses the
1528 >        popular Brunger-Brooks-Karplus integrator (BBK). These integrators,
1529 >        along with an extrapolative method called LN, are evaluated across
1530 >        a wide range of damping coefficient values. When large damping coefficients
1531 >        are used, as one would for the implicit modeling of solvent molecules,
1532 >        the method LN is superior, with LM closely following. However, with
1533 >        mild damping of 0.2 ps(-1), LM produces the best results, allowing
1534 >        long time steps of 14 fs in simulations containing explicitly modeled
1535 >        flexible water. With BBK-M and the same damping coefficient, time
1536 >        steps of 12 fs are possible for the same system. Similar results
1537 >        are obtained for a solvated protein-DNA simulation of estrogen receptor
1538 >        ER with estrogen response element ERE. A parallel version of BBK-M
1539 >        runs nearly three times faster than the Verlet-I/r-RESPA (reversible
1540 >        reference system propagator algorithm) when using the largest stable
1541 >        time step on each one, and it also parallelizes well. The computation
1542 >        of diffusion coefficients for flexible water and ER/ERE shows that
1543 >        when mild damping of up to 0.2 ps-1 is used the dynamics are not
1544 >        significantly distorted. (C) 2001 American Institute of Physics.},
1545 >  annote = {397CQ Times Cited:14 Cited References Count:36},
1546 >  issn = {0021-9606},
1547 >  uri = {<Go to ISI>://000166676100020},
1548   }
1549  
1550 < @Article{Semmler1998,
1551 <  author =   {M. Semmler and E.~K. Mann and J. Ricka and M. Borkovec},
1552 <  title =    {Diffusional Deposition of Charged Latex Particles on
1553 <                  Water-Solid Interfaces at Low Ionic Strength},
1554 <  journal =      {Langmuir},
1555 <  year =     1998,
1556 <  volume =   14,
1456 <  pages =    {5127-5132}
1550 > @ARTICLE{Torre1977,
1551 >  author = {Jose Garcia De La Torre, V.A. Bloomfield},
1552 >  title = {Hydrodynamic properties of macromolecular complexes. I. Translation},
1553 >  journal = {Biopolymers},
1554 >  year = {1977},
1555 >  volume = {16},
1556 >  pages = {1747-1763},
1557   }
1558  
1559 < @Article{Solomon1986,
1560 <  author =   {H. Solomon and H. Weiner},
1561 <  title =    {A REVIEW OF THE PACKING PROBLEM},
1562 <  journal =      {Comm. Statistics A},
1563 <  year =     1986,
1564 <  volume =   15,
1565 <  pages =    {2571-2607}
1559 > @ARTICLE{Kane2000,
1560 >  author = {C. Kane and J. E. Marsden and M. Ortiz and M. West},
1561 >  title = {Variational integrators and the Newmark algorithm for conservative
1562 >        and dissipative mechanical systems},
1563 >  journal = {International Journal for Numerical Methods in Engineering},
1564 >  year = {2000},
1565 >  volume = {49},
1566 >  pages = {1295-1325},
1567 >  number = {10},
1568 >  month = {Dec 10},
1569 >  abstract = {The purpose of this work is twofold. First, we demonstrate analytically
1570 >        that the classical Newmark family as well as related integration
1571 >        algorithms are variational in the sense of the Veselov formulation
1572 >        of discrete mechanics. Such variational algorithms are well known
1573 >        to be symplectic and momentum preserving and to often have excellent
1574 >        global energy behaviour. This analytical result is verified through
1575 >        numerical examples and is believed to be one of the primary reasons
1576 >        that this class of algorithms performs so well. Second, we develop
1577 >        algorithms for mechanical systems with forcing, and in particular,
1578 >        for dissipative systems. In this case, we develop integrators that
1579 >        are based on a discretization of the Lagrange d'Alembert principle
1580 >        as well as on a variational formulation of dissipation. It is demonstrated
1581 >        that these types of structured integrators have good numerical behaviour
1582 >        in terms of obtaining the correct amounts by which the energy changes
1583 >        over the integration run. Copyright (C) 2000 John Wiley & Sons,
1584 >        Ltd.},
1585 >  annote = {373CJ Times Cited:30 Cited References Count:41},
1586 >  issn = {0029-5981},
1587 >  uri = {<Go to ISI>://000165270600004},
1588   }
1589  
1590 < @Article{Bonnier1993,
1591 <  author =   {B. Bonnier and M. Hontebeyrie and C. Meyers},
1592 <  title =    {ON THE RANDOM FILLING OF R(D) BY NONOVERLAPPING
1593 <                  D-DIMENSIONAL CUBES},
1594 <  journal =      {Physica A},
1595 <  year =     1993,
1596 <  volume =   198,
1597 <  pages =    {1-10}
1590 > @ARTICLE{Klimov1997,
1591 >  author = {D. K. Klimov and D. Thirumalai},
1592 >  title = {Viscosity dependence of the folding rates of proteins},
1593 >  journal = {Physical Review Letters},
1594 >  year = {1997},
1595 >  volume = {79},
1596 >  pages = {317-320},
1597 >  number = {2},
1598 >  month = {Jul 14},
1599 >  abstract = {The viscosity (eta) dependence of the folding rates for four sequences
1600 >        (the native state of three sequences is a beta sheet, while the
1601 >        fourth forms an alpha helix) is calculated for off-lattice models
1602 >        of proteins. Assuming that the dynamics is given by the Langevin
1603 >        equation, we show that the folding rates increase linearly at low
1604 >        viscosities eta, decrease as 1/eta at large eta, and have a maximum
1605 >        at intermediate values. The Kramers' theory of barrier crossing
1606 >        provides a quantitative fit of the numerical results. By mapping
1607 >        the simulation results to real proteins we estimate that for optimized
1608 >        sequences the time scale for forming a four turn alpha-helix topology
1609 >        is about 500 ns, whereas for beta sheet it is about 10 mu s.},
1610 >  annote = {Xk293 Times Cited:77 Cited References Count:17},
1611 >  issn = {0031-9007},
1612 >  uri = {<Go to ISI>://A1997XK29300035},
1613   }
1614  
1615 < @Book{Frenkel1996,
1616 <  author =   {D. Frenkel and B. Smit},
1617 <  title =    {Understanding Molecular Simulation : From Algorithms
1618 <                  to Applications},
1619 <  publisher =    {Academic Press},
1620 <  year =     1996,
1621 <  address =  {New York}
1622 <
1623 <
1615 > @ARTICLE{Kol1997,
1616 >  author = {A. Kol and B. B. Laird and B. J. Leimkuhler},
1617 >  title = {A symplectic method for rigid-body molecular simulation},
1618 >  journal = {Journal of Chemical Physics},
1619 >  year = {1997},
1620 >  volume = {107},
1621 >  pages = {2580-2588},
1622 >  number = {7},
1623 >  month = {Aug 15},
1624 >  abstract = {Rigid-body molecular dynamics simulations typically are performed
1625 >        in a quaternion representation. The nonseparable form of the Hamiltonian
1626 >        in quaternions prevents the use of a standard leapfrog (Verlet)
1627 >        integrator, so nonsymplectic Runge-Kutta, multistep, or extrapolation
1628 >        methods are generally used, This is unfortunate since symplectic
1629 >        methods like Verlet exhibit superior energy conservation in long-time
1630 >        integrations. In this article, we describe an alternative method,
1631 >        which we call RSHAKE (for rotation-SHAKE), in which the entire rotation
1632 >        matrix is evolved (using the scheme of McLachlan and Scovel [J.
1633 >        Nonlin. Sci, 16 233 (1995)]) in tandem with the particle positions.
1634 >        We employ a fast approximate Newton solver to preserve the orthogonality
1635 >        of the rotation matrix. We test our method on a system of soft-sphere
1636 >        dipoles and compare with quaternion evolution using a 4th-order
1637 >        predictor-corrector integrator, Although the short-time error of
1638 >        the quaternion algorithm is smaller for fixed time step than that
1639 >        for RSHAKE, the quaternion scheme exhibits an energy drift which
1640 >        is not observed in simulations with RSHAKE, hence a fixed energy
1641 >        tolerance can be achieved by using a larger time step, The superiority
1642 >        of RSHAKE increases with system size. (C) 1997 American Institute
1643 >        of Physics.},
1644 >  annote = {Xq332 Times Cited:11 Cited References Count:18},
1645 >  issn = {0021-9606},
1646 >  uri = {<Go to ISI>://A1997XQ33200046},
1647   }
1648  
1649 < @Article{Dullweber1997,
1650 <  author =   {A. Dullweber and B. Leimkuhler and R. McLachlan},
1651 <  title =    {Symplectic splitting methods for rigid body molecular
1652 <                  dynamics},
1653 <  journal =      jcp,
1654 <  year =     1997,
1655 <  volume =   107,
1656 <  number =   15,
1657 <  pages =    {5840-5851}
1649 > @ARTICLE{Lansac2001,
1650 >  author = {Y. Lansac and M. A. Glaser and N. A. Clark},
1651 >  title = {Microscopic structure and dynamics of a partial bilayer smectic liquid
1652 >        crystal},
1653 >  journal = {Physical Review E},
1654 >  year = {2001},
1655 >  volume = {6405},
1656 >  pages = {-},
1657 >  number = {5},
1658 >  month = {Nov},
1659 >  abstract = {Cyanobiphenyls (nCB's) represent a useful and intensively studied
1660 >        class of mesogens. Many of the peculiar properties of nCB's (e.g.,
1661 >        the occurence of the partial bilayer smectic-A(d) phase) are thought
1662 >        to be a manifestation of short-range antiparallel association of
1663 >        neighboring molecules, resulting from strong dipole-dipole interactions
1664 >        between cyano groups. To test and extend existing models of microscopic
1665 >        ordering in nCB's, we carry out large-scale atomistic simulation
1666 >        studies of the microscopic structure and dynamics of the Sm-A(d)
1667 >        phase of 4-octyl-4'-cyanobiphenyl (8CB). We compute a variety of
1668 >        thermodynamic, structural, and dynamical properties for this material,
1669 >        and make a detailed comparison of our results with experimental
1670 >        measurements in order to validate our molecular model. Semiquantitative
1671 >        agreement with experiment is found: the smectic layer spacing and
1672 >        mass density are well reproduced, translational diffusion constants
1673 >        are similar to experiment, but the orientational ordering of alkyl
1674 >        chains is overestimated. This simulation provides a detailed picture
1675 >        of molecular conformation, smectic layer structure, and intermolecular
1676 >        correlations in Sm-A(d) 8CB, and demonstrates that pronounced short-range
1677 >        antiparallel association of molecules arising from dipole-dipole
1678 >        interactions plays a dominant role in determining the molecular-scale
1679 >        structure of 8CB.},
1680 >  annote = {Part 1 496QF Times Cited:10 Cited References Count:60},
1681 >  issn = {1063-651X},
1682 >  uri = {<Go to ISI>://000172406900063},
1683   }
1684  
1685 < @Article{Siepmann1998,
1686 <  author =   {M. Martin and J.~I. Siepmann},
1687 <  title =    {Transferable Potentials for Phase Equilibria. 1. United-Atom
1688 <                  Description of n-Alkanes},
1689 <  journal =      jpcB,
1690 <  year =     1998,
1691 <  volume =   102,
1692 <  pages =    {2569-2577}
1685 > @ARTICLE{Lansac2003,
1686 >  author = {Y. Lansac and P. K. Maiti and N. A. Clark and M. A. Glaser},
1687 >  title = {Phase behavior of bent-core molecules},
1688 >  journal = {Physical Review E},
1689 >  year = {2003},
1690 >  volume = {67},
1691 >  pages = {-},
1692 >  number = {1},
1693 >  month = {Jan},
1694 >  abstract = {Recently, a new class of smectic liquid crystal phases characterized
1695 >        by the spontaneous formation of macroscopic chiral domains from
1696 >        achiral bent-core molecules has been discovered. We have carried
1697 >        out Monte Carlo simulations of a minimal hard spherocylinder dimer
1698 >        model to investigate the role of excluded volume interactions in
1699 >        determining the phase behavior of bent-core materials and to probe
1700 >        the molecular origins of polar and chiral symmetry breaking. We
1701 >        present the phase diagram of hard spherocylinder dimers of length-diameter
1702 >        ratio of 5 as a function of pressure or density and dimer opening
1703 >        angle psi. With decreasing psi, a transition from a nonpolar to
1704 >        a polar smectic A phase is observed near psi=167degrees, and the
1705 >        nematic phase becomes thermodynamically unstable for psi<135degrees.
1706 >        Free energy calculations indicate that the antipolar smectic A (SmAP(A))
1707 >        phase is more stable than the polar smectic A phase (SmAP(F)). No
1708 >        chiral smectic or biaxial nematic phases were found.},
1709 >  annote = {Part 1 646CM Times Cited:15 Cited References Count:38},
1710 >  issn = {1063-651X},
1711 >  uri = {<Go to ISI>://000181017300042},
1712   }
1713  
1714 < @Article{Marrink01,
1715 <  author =   {S.~J. Marrink and E. Lindahl and O. Edholm and A.~E. Mark},
1716 <  title =    {Simulations of the Spontaneous Aggregation of Phospholipids
1717 <                  into Bilayers},
1718 <  journal =      jacs,
1719 <  year =     2001,
1720 <  volume =   123,
1517 <  pages =    {8638-8639}
1714 > @BOOK{Leach2001,
1715 >  title = {Molecular Modeling: Principles and Applications},
1716 >  publisher = {Pearson Educated Limited},
1717 >  year = {2001},
1718 >  author = {A. Leach},
1719 >  address = {Harlow, England},
1720 >  edition = {2nd},
1721   }
1722  
1723 < @Article{liu96:new_model,
1724 <  author =   {Y. Liu and T. Ichiye},
1725 <  title =    {Soft sticky dipole potential for liquid water: a new model},
1726 <  journal =      jpc,
1727 <  year =     1996,
1728 <  volume =   100,
1729 <  pages =    {2723-2730}
1723 > @ARTICLE{Leimkuhler1999,
1724 >  author = {B. Leimkuhler},
1725 >  title = {Reversible adaptive regularization: perturbed Kepler motion and classical
1726 >        atomic trajectories},
1727 >  journal = {Philosophical Transactions of the Royal Society of London Series
1728 >        a-Mathematical Physical and Engineering Sciences},
1729 >  year = {1999},
1730 >  volume = {357},
1731 >  pages = {1101-1133},
1732 >  number = {1754},
1733 >  month = {Apr 15},
1734 >  abstract = {Reversible and adaptive integration methods based on Kustaanheimo-Stiefel
1735 >        regularization and modified Sundman transformations are applied
1736 >        to simulate general perturbed Kepler motion and to compute classical
1737 >        trajectories of atomic systems (e.g. Rydberg atoms). The new family
1738 >        of reversible adaptive regularization methods also conserves angular
1739 >        momentum and exhibits superior energy conservation and numerical
1740 >        stability in long-time integrations. The schemes are appropriate
1741 >        for scattering, for astronomical calculations of escape time and
1742 >        long-term stability, and for classical and semiclassical studies
1743 >        of atomic dynamics. The components of an algorithm for trajectory
1744 >        calculations are described. Numerical experiments illustrate the
1745 >        effectiveness of the reversible approach.},
1746 >  annote = {199EE Times Cited:11 Cited References Count:48},
1747 >  issn = {1364-503X},
1748 >  uri = {<Go to ISI>://000080466800007},
1749   }
1750  
1751 < @Article{liu96:monte_carlo,
1752 <  author =   {Y. Liu and T. Ichiye},
1753 <  title =    {The static dielectric constant of the soft sticky dipole model of liquid water: $\mbox{Monte Carlo}$ simulation},
1754 <  journal =      {Chemical Physics Letters},
1755 <  year =     1996,
1756 <  volume =   256,
1535 <  pages =    {334-340}
1751 > @BOOK{Leimkuhler2004,
1752 >  title = {Simulating Hamiltonian Dynamics},
1753 >  publisher = {Cambridge University Press},
1754 >  year = {2004},
1755 >  author = {B. Leimkuhler and S. Reich},
1756 >  address = {Cambridge},
1757   }
1758  
1759 < @Article{chandra99:ssd_md,
1760 <  author =   {A. Chandra and T. Ichiye},
1761 <  title =    {Dynamical properties of the soft sticky dipole model of water: Molecular dynamics simulation},
1762 <  journal =      {Journal of Chemical Physics},
1763 <  year =     1999,
1764 <  volume =   111,
1765 <  number =   6,
1766 <  pages =    {2701-2709}
1759 > @ARTICLE{Levelut1981,
1760 >  author = {A. M. Levelut and R. J. Tarento and F. Hardouin and M. F. Achard
1761 >        and G. Sigaud},
1762 >  title = {Number of Sa Phases},
1763 >  journal = {Physical Review A},
1764 >  year = {1981},
1765 >  volume = {24},
1766 >  pages = {2180-2186},
1767 >  number = {4},
1768 >  annote = {Ml751 Times Cited:96 Cited References Count:16},
1769 >  issn = {1050-2947},
1770 >  uri = {<Go to ISI>://A1981ML75100057},
1771   }
1772  
1773 < @Book{allen87:csl,
1774 <  author =   {M.~P. Allen and D.~J. Tildesley},
1775 <  title =    {Computer Simulations of Liquids},
1776 <  publisher =    {Oxford University Press},
1777 <  year =     1987,
1778 <  address =  {New York}
1773 > @ARTICLE{Lieb1982,
1774 >  author = {W. R. Lieb and M. Kovalycsik and R. Mendelsohn},
1775 >  title = {Do Clinical-Levels of General-Anesthetics Affect Lipid Bilayers -
1776 >        Evidence from Raman-Scattering},
1777 >  journal = {Biochimica Et Biophysica Acta},
1778 >  year = {1982},
1779 >  volume = {688},
1780 >  pages = {388-398},
1781 >  number = {2},
1782 >  annote = {Nu461 Times Cited:40 Cited References Count:28},
1783 >  issn = {0006-3002},
1784 >  uri = {<Go to ISI>://A1982NU46100012},
1785   }
1786  
1787 < @Book{leach01:mm,
1788 <  author =   {A. Leach},
1789 <  title =    {Molecular Modeling: Principles and Applications},
1790 <  publisher =    {Pearson Educated Limited},
1791 <  year =     2001,
1792 <  address =  {Harlow, England},
1793 <  edition =  {2nd}
1787 > @ARTICLE{Link1997,
1788 >  author = {D. R. Link and G. Natale and R. Shao and J. E. Maclennan and N. A.
1789 >        Clark and E. Korblova and D. M. Walba},
1790 >  title = {Spontaneous formation of macroscopic chiral domains in a fluid smectic
1791 >        phase of achiral molecules},
1792 >  journal = {Science},
1793 >  year = {1997},
1794 >  volume = {278},
1795 >  pages = {1924-1927},
1796 >  number = {5345},
1797 >  month = {Dec 12},
1798 >  abstract = {A smectic liquid-crystal phase made from achiral molecules with bent
1799 >        cores was found to have fluid layers that exhibit two spontaneous
1800 >        symmetry-breaking instabilities: polar molecular orientational ordering
1801 >        about the layer normal and molecular tilt. These instabilities combine
1802 >        to form a chiral layer structure with a handedness that depends
1803 >        on the sign of the tilt. The bulk states are either antiferroelectric-racemic,
1804 >        with the layer polar direction and handedness alternating in sign
1805 >        from layer to layer, or antiferroelectric-chiral, which is of uniform
1806 >        layer handedness. Both states exhibit an electric field-induced
1807 >        transition from antiferroelectric to ferroelectric.},
1808 >  annote = {Yl002 Times Cited:407 Cited References Count:25},
1809 >  issn = {0036-8075},
1810 >  uri = {<Go to ISI>://A1997YL00200028},
1811   }
1812  
1813 <
1814 < @Article{katsaras00,
1815 <  author =   {J. Katsaras and S. Tristram-Nagle and Y. Liu and R.~L. Headrick and E. Fontes and P.~C. Mason and J.~F. Nagle},
1816 <  title =    {Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples},
1817 <  journal =      {Physical Review E},
1818 <  year =     2000,
1819 <  volume =   61,
1820 <  number =   5,
1821 <  pages =    {5668-5677}
1813 > @ARTICLE{Liwo2005,
1814 >  author = {A. Liwo and M. Khalili and H. A. Scheraga},
1815 >  title = {Ab initio simulations of protein folding pathways by molecular dynamics
1816 >        with the united-residue (UNRES) model of polypeptide chains},
1817 >  journal = {Febs Journal},
1818 >  year = {2005},
1819 >  volume = {272},
1820 >  pages = {359-360},
1821 >  month = {Jul},
1822 >  annote = {Suppl. 1 005MG Times Cited:0 Cited References Count:0},
1823 >  issn = {1742-464X},
1824 >  uri = {<Go to ISI>://000234826102043},
1825   }
1826  
1827 < @Article{sengupta00,
1828 <  author =   {K. Sengupta and V.~A. Raghunathan and J. Katsaras},
1829 <  title =    {Novel structural Features of the ripple phase of phospholipids},
1830 <  journal =      {Europhysics Letters},
1831 <  year =     2000,
1832 <  volume =   49,
1833 <  number =   6,
1834 <  pages =    {722-728}
1835 < }
1836 <
1837 < @Article{venable00,
1838 <  author =   {R.~M. Venable and B.~R. Brooks and R.~W. Pastor},
1839 <  title =    {Molecular dynamics simulations of gel ($L_{\beta I}$) phase lipid bilayers in constant pressure and constant surface area ensembles},
1840 <  journal =      jcp,
1841 <  year =     2000,
1842 <  volume =   112,
1843 <  number =   10,
1844 <  pages =    {4822-4832}
1827 > @ARTICLE{Luty1994,
1828 >  author = {B. A. Luty and M. E. Davis and I. G. Tironi and W. F. Vangunsteren},
1829 >  title = {A Comparison of Particle-Particle, Particle-Mesh and Ewald Methods
1830 >        for Calculating Electrostatic Interactions in Periodic Molecular-Systems},
1831 >  journal = {Molecular Simulation},
1832 >  year = {1994},
1833 >  volume = {14},
1834 >  pages = {11-20},
1835 >  number = {1},
1836 >  abstract = {We compare the Particle-Particle Particle-Mesh (PPPM) and Ewald methods
1837 >        for calculating electrostatic interactions in periodic molecular
1838 >        systems. A brief comparison of the theories shows that the methods
1839 >        are very similar differing mainly in the technique which is used
1840 >        to perform the ''k-space'' or mesh calculation. Because the PPPM
1841 >        utilizes the highly efficient numerical Fast Fourier Transform (FFT)
1842 >        method it requires significantly less computational effort than
1843 >        the Ewald method and scale's almost linearly with system size.},
1844 >  annote = {Qf464 Times Cited:50 Cited References Count:20},
1845 >  issn = {0892-7022},
1846 >  uri = {<Go to ISI>://A1994QF46400002},
1847   }
1848  
1849 < @Article{lindahl00,
1850 <  author =   {E. Lindahl and O. Edholm},
1851 <  title =    {Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations},
1852 <  journal =      {Biophysical Journal},
1853 <  year =     2000,
1854 <  volume =   79,
1855 <  pages =    {426-433},
1603 <  month =    {July}
1849 > @BOOK{Marion1990,
1850 >  title = {Classical Dynamics of Particles and Systems},
1851 >  publisher = {Academic Press},
1852 >  year = {1990},
1853 >  author = {J.~B. Marion},
1854 >  address = {New York},
1855 >  edition = {2rd},
1856   }
1857  
1858 <
1859 < @Article{saiz02,
1860 <  author =   {L. Saiz and M. Klein},
1861 <  title =    {Electrostatic interactions in a neutral model phospholipid bilayer by molecular dynamics simulations},
1862 <  journal =      jcp,
1863 <  year =     2002,
1864 <  volume =   116,
1865 <  number =   7,
1866 <  pages =    {3052-3057}
1858 > @ARTICLE{Marrink1994,
1859 >  author = {S. J. Marrink and H. J. C. Berendsen},
1860 >  title = {Simulation of Water Transport through a Lipid-Membrane},
1861 >  journal = {Journal of Physical Chemistry},
1862 >  year = {1994},
1863 >  volume = {98},
1864 >  pages = {4155-4168},
1865 >  number = {15},
1866 >  month = {Apr 14},
1867 >  abstract = {To obtain insight in the process of water permeation through a lipid
1868 >        membrane, we performed molecular dynamics simulations on a phospholipid
1869 >        (DPPC)/water system with atomic detail. Since the actual process
1870 >        of permeation is too slow to be studied directly, we deduced the
1871 >        permeation rate indirectly via computation of the free energy and
1872 >        diffusion rate profiles of a water molecule across the bilayer.
1873 >        We conclude that the permeation of water through a lipid membrane
1874 >        cannot be described adequately by a simple homogeneous solubility-diffusion
1875 >        model. Both the excess free energy and the diffusion rate strongly
1876 >        depend on the position in the membrane, as a result from the inhomogeneous
1877 >        nature of the membrane. The calculated excess free energy profile
1878 >        has a shallow slope and a maximum height of 26 kJ/mol. The diffusion
1879 >        rate is highest in the middle of the membrane where the lipid density
1880 >        is low. In the interfacial region almost all water molecules are
1881 >        bound by the lipid headgroups, and the diffusion turns out to be
1882 >        1 order of magnitude smaller. The total transport process is essentially
1883 >        determined by the free energy barrier. The rate-limiting step is
1884 >        the permeation through the dense part of the lipid tails, where
1885 >        the resistance is highest. We found a permeation rate of 7(+/-3)
1886 >        x 10(-2) cm/s at 350 K, comparable to experimental values for DPPC
1887 >        membranes, if corrected for the temperature of the simulation. Taking
1888 >        the inhomogeneity of the membrane into account, we define a new
1889 >        ''four-region'' model which seems to be more realistic than the
1890 >        ''two-phase'' solubility-diffusion model.},
1891 >  annote = {Ng219 Times Cited:187 Cited References Count:25},
1892 >  issn = {0022-3654},
1893 >  uri = {<Go to ISI>://A1994NG21900040},
1894   }
1895  
1896 < @Article{stevens95,
1897 <  author =   {M.~J. Stevens and G.~S. Grest},
1898 <  title =    {Phase coexistence of a Stockmayer fluid in an aplied field},
1899 <  journal =      {Physical Review E},
1900 <  year =     1995,
1901 <  volume =   51,
1902 <  number =   6,
1903 <  pages =    {5976-5983}
1896 > @ARTICLE{Marsden1998,
1897 >  author = {J. E. Marsden and G. W. Patrick and S. Shkoller},
1898 >  title = {Multisymplectic geometry, variational integrators, and nonlinear
1899 >        PDEs},
1900 >  journal = {Communications in Mathematical Physics},
1901 >  year = {1998},
1902 >  volume = {199},
1903 >  pages = {351-395},
1904 >  number = {2},
1905 >  month = {Dec},
1906 >  abstract = {This paper presents a geometric-variational approach to continuous
1907 >        and discrete mechanics and field theories. Using multisymplectic
1908 >        geometry, we show that the existence of the fundamental geometric
1909 >        structures as well as their preservation along solutions can be
1910 >        obtained directly from the variational principle. In particular,
1911 >        we prove that a unique multisymplectic structure is obtained by
1912 >        taking the derivative of an action function, and use this structure
1913 >        to prove covariant generalizations of conservation of symplecticity
1914 >        and Noether's theorem. Natural discretization schemes for PDEs,
1915 >        which have these important preservation properties, then follow
1916 >        by choosing a discrete action functional. In the case of mechanics,
1917 >        we recover the variational symplectic integrators of Veselov type,
1918 >        while for PDEs we obtain covariant spacetime integrators which conserve
1919 >        the corresponding discrete multisymplectic form as well as the discrete
1920 >        momentum mappings corresponding to symmetries. We show that the
1921 >        usual notion of symplecticity along an infinite-dimensional space
1922 >        of fields can be naturally obtained by making a spacetime split.
1923 >        All of the aspects of our method are demonstrated with a nonlinear
1924 >        sine-Gordon equation, including computational results and a comparison
1925 >        with other discretization schemes.},
1926 >  annote = {154RH Times Cited:88 Cited References Count:36},
1927 >  issn = {0010-3616},
1928 >  uri = {<Go to ISI>://000077902200006},
1929   }
1930  
1931 < @Article{darden93:pme,
1932 <  author =   {T. Darden and D. York and L. Pedersen},
1933 <  title =    {Particle mesh Ewald: An $N \log N$ method for Ewald sums in large systems},
1934 <  journal =      {Journal of Chemical Physics},
1935 <  year =     1993,
1936 <  volume =   98,
1937 <  number =   12,
1938 <  pages =    {10089-10092}
1931 > @ARTICLE{Matthey2004,
1932 >  author = {T. Matthey and T. Cickovski and S. Hampton and A. Ko and Q. Ma and
1933 >        M. Nyerges and T. Raeder and T. Slabach and J. A. Izaguirre},
1934 >  title = {ProtoMol, an object-oriented framework for prototyping novel algorithms
1935 >        for molecular dynamics},
1936 >  journal = {Acm Transactions on Mathematical Software},
1937 >  year = {2004},
1938 >  volume = {30},
1939 >  pages = {237-265},
1940 >  number = {3},
1941 >  month = {Sep},
1942 >  abstract = {PROTOMOL is a high-performance framework in C++ for rapid prototyping
1943 >        of novel algorithms for molecular dynamics and related applications.
1944 >        Its flexibility is achieved primarily through the use of inheritance
1945 >        and design patterns (object-oriented programming): Performance is
1946 >        obtained by using templates that enable generation of efficient
1947 >        code for sections critical to performance (generic programming).
1948 >        The framework encapsulates important optimizations that can be used
1949 >        by developers, such as parallelism in the force computation. Its
1950 >        design is based on domain analysis of numerical integrators for
1951 >        molecular dynamics (MD) and of fast solvers for the force computation,
1952 >        particularly due to electrostatic interactions. Several new and
1953 >        efficient algorithms are implemented in PROTOMOL. Finally, it is
1954 >        shown that PROTOMOL'S sequential performance is excellent when compared
1955 >        to a leading MD program, and that it scales well for moderate number
1956 >        of processors. Binaries and source codes for Windows, Linux, Solaris,
1957 >        IRIX, HP-UX, and AIX platforms are available under open source license
1958 >        at http://protomol.sourceforge.net.},
1959 >  annote = {860EP Times Cited:2 Cited References Count:52},
1960 >  issn = {0098-3500},
1961 >  uri = {<Go to ISI>://000224325600001},
1962   }
1963  
1964 <
1965 <
1966 < @Article{goetz98,
1967 <  author =   {R. Goetz and R. Lipowsky},
1968 <  title =    {Computer simulations of bilayer membranes: Self-assembly and interfacial tension},
1969 <  journal =      {Journal of Chemical Physics},
1970 <  year =     1998,
1644 <  volume =   108,
1645 <  number =   17,
1646 <  pages =    7397
1964 > @ARTICLE{McLachlan1993,
1965 >  author = {R.~I McLachlan},
1966 >  title = {Explicit Lie-Poisson integration and the Euler equations},
1967 >  journal = {prl},
1968 >  year = {1993},
1969 >  volume = {71},
1970 >  pages = {3043-3046},
1971   }
1972  
1973 < @Article{marrink01:undulation,
1974 <  author =   {S.~J. Marrink and A.~E. Mark},
1975 <  title =    {Effect of undulations on surface tension in simulated bilayers},
1976 <  journal =      {Journal of Physical Chemistry B},
1977 <  year =     2001,
1978 <  volume =   105,
1979 <  pages =    {6122-6127}
1973 > @ARTICLE{McLachlan1998,
1974 >  author = {R. I. McLachlan and G. R. W. Quispel},
1975 >  title = {Generating functions for dynamical systems with symmetries, integrals,
1976 >        and differential invariants},
1977 >  journal = {Physica D},
1978 >  year = {1998},
1979 >  volume = {112},
1980 >  pages = {298-309},
1981 >  number = {1-2},
1982 >  month = {Jan 15},
1983 >  abstract = {We give a survey and some new examples of generating functions for
1984 >        systems with symplectic structure, systems with a first integral,
1985 >        systems that preserve volume, and systems with symmetries and/or
1986 >        time-reversing symmetries. Both ODEs and maps are treated, and we
1987 >        discuss how generating functions may be used in the structure-preserving
1988 >        numerical integration of ODEs with the above properties.},
1989 >  annote = {Yt049 Times Cited:7 Cited References Count:26},
1990 >  issn = {0167-2789},
1991 >  uri = {<Go to ISI>://000071558900021},
1992   }
1993  
1994 < @Article{lindahl00:undulation,
1995 <  author =   {E. Lindahl and O. Edholm},
1996 <  title =    {Mesoscopic undulation and thickness fluctuations in lipid bilayers from molecular dynamics simulation},
1997 <  journal =      {Biophysical Journal},
1998 <  year =     2000,
1999 <  volume =   79,
2000 <  pages =    {426-433}
1994 > @ARTICLE{McLachlan1998a,
1995 >  author = {R. I. McLachlan and G. R. W. Quispel and G. S. Turner},
1996 >  title = {Numerical integrators that preserve symmetries and reversing symmetries},
1997 >  journal = {Siam Journal on Numerical Analysis},
1998 >  year = {1998},
1999 >  volume = {35},
2000 >  pages = {586-599},
2001 >  number = {2},
2002 >  month = {Apr},
2003 >  abstract = {We consider properties of flows, the relationships between them, and
2004 >        whether numerical integrators can be made to preserve these properties.
2005 >        This is done in the context of automorphisms and antiautomorphisms
2006 >        of a certain group generated by maps associated to vector fields.
2007 >        This new framework unifies several known constructions. We also
2008 >        use the concept of #covariance# of a numerical method with respect
2009 >        to a group of coordinate transformations. The main application is
2010 >        to explore the relationship between spatial symmetries, reversing
2011 >        symmetries, and time symmetry of flows and numerical integrators.},
2012 >  annote = {Zc449 Times Cited:14 Cited References Count:33},
2013 >  issn = {0036-1429},
2014 >  uri = {<Go to ISI>://000072580500010},
2015   }
2016  
2017 < @Article{metropolis:1949,
2018 <  author =   {N. Metropolis and S. Ulam},
2019 <  title =    {The $\mbox{Monte Carlo}$ Method},
2020 <  journal =      {J. Am. Stat. Ass.},
2021 <  year =     1949,
2022 <  volume =   44,
2023 <  pages =    {335-341}
2017 > @ARTICLE{McLachlan2005,
2018 >  author = {R. I. McLachlan and A. Zanna},
2019 >  title = {The discrete Moser-Veselov algorithm for the free rigid body, revisited},
2020 >  journal = {Foundations of Computational Mathematics},
2021 >  year = {2005},
2022 >  volume = {5},
2023 >  pages = {87-123},
2024 >  number = {1},
2025 >  month = {Feb},
2026 >  abstract = {In this paper we revisit the Moser-Veselov description of the free
2027 >        rigid body in body coordinates, which, in the 3 x 3 case, can be
2028 >        implemented as an explicit, second-order, integrable approximation
2029 >        of the continuous solution. By backward error analysis, we study
2030 >        the modified vector field which is integrated exactly by the discrete
2031 >        algorithm. We deduce that the discrete Moser-Veselov (DMV) is well
2032 >        approximated to higher order by time reparametrizations of the continuous
2033 >        equations (modified vector field). We use the modified vector field
2034 >        to scale the initial data of the DMV to improve the order of the
2035 >        approximation and show the equivalence of the DMV and the RATTLE
2036 >        algorithm. Numerical integration with these preprocessed initial
2037 >        data is several orders of magnitude more accurate than the original
2038 >        DMV and RATTLE approach.},
2039 >  annote = {911NS Times Cited:0 Cited References Count:14},
2040 >  issn = {1615-3375},
2041 >  uri = {<Go to ISI>://000228011900003},
2042   }
2043  
2044 < @Article{metropolis:1953,
2045 <  author =   {N. Metropolis and A.~W. Rosenbluth and M.~N. Rosenbluth and A.~H. Teller and E. Teller},
2046 <  title =    {Equation of State Calculations by Fast Computing Machines},
2047 <  journal =      {J. Chem. Phys.},
2048 <  year =     1953,
2049 <  volume =   21,
2050 <  pages =    {1087-1092}
2044 > @ARTICLE{Meineke2005,
2045 >  author = {M. A. Meineke and C. F. Vardeman and T. Lin and C. J. Fennell and
2046 >        J. D. Gezelter},
2047 >  title = {OOPSE: An object-oriented parallel simulation engine for molecular
2048 >        dynamics},
2049 >  journal = {Journal of Computational Chemistry},
2050 >  year = {2005},
2051 >  volume = {26},
2052 >  pages = {252-271},
2053 >  number = {3},
2054 >  month = {Feb},
2055 >  abstract = {OOPSE is a new molecular dynamics simulation program that is capable
2056 >        of efficiently integrating equations of motion for atom types with
2057 >        orientational degrees of freedom (e.g. #sticky# atoms and point
2058 >        dipoles). Transition metals can also be simulated using the embedded
2059 >        atom method (EAM) potential included in the code. Parallel simulations
2060 >        are carried out using the force-based decomposition method. Simulations
2061 >        are specified using a very simple C-based meta-data language. A
2062 >        number of advanced integrators are included, and the basic integrator
2063 >        for orientational dynamics provides substantial improvements over
2064 >        older quaternion-based schemes. (C) 2004 Wiley Periodicals, Inc.},
2065 >  annote = {891CF Times Cited:1 Cited References Count:56},
2066 >  issn = {0192-8651},
2067 >  uri = {<Go to ISI>://000226558200006},
2068   }
2069  
2070 < @Article{born:1912,
2071 <  author =   {M. Born and Th. Von~Karman},
2072 <  title =    {Uber Schwingungen in Raumgittern},
2073 <  journal =      {Physik Z.},
2074 <  year =     1912,
2075 <  volume =   13,
2076 <  number =   {297-309}
2070 > @ARTICLE{Melchionna1993,
2071 >  author = {S. Melchionna and G. Ciccotti and B. L. Holian},
2072 >  title = {Hoover Npt Dynamics for Systems Varying in Shape and Size},
2073 >  journal = {Molecular Physics},
2074 >  year = {1993},
2075 >  volume = {78},
2076 >  pages = {533-544},
2077 >  number = {3},
2078 >  month = {Feb 20},
2079 >  abstract = {In this paper we write down equations of motion (following the approach
2080 >        pioneered by Hoover) for an exact isothermal-isobaric molecular
2081 >        dynamics simulation, and we extend them to multiple thermostating
2082 >        rates, to a shape-varying cell and to molecular systems, coherently
2083 >        with the previous 'extended system method'. An integration scheme
2084 >        is proposed together with a numerical illustration of the method.},
2085 >  annote = {Kq355 Times Cited:172 Cited References Count:17},
2086 >  issn = {0026-8976},
2087 >  uri = {<Go to ISI>://A1993KQ35500002},
2088   }
2089  
2090 < @Book{chandler:1987,
2091 <  author =   {David Chandler},
2092 <  title =    {Introduction to Modern Statistical Mechanics},
2093 <  publisher =    {Oxford University Press},
2094 <  year =     1987
2090 > @ARTICLE{Memmer2002,
2091 >  author = {R. Memmer},
2092 >  title = {Liquid crystal phases of achiral banana-shaped molecules: a computer
2093 >        simulation study},
2094 >  journal = {Liquid Crystals},
2095 >  year = {2002},
2096 >  volume = {29},
2097 >  pages = {483-496},
2098 >  number = {4},
2099 >  month = {Apr},
2100 >  abstract = {The phase behaviour of achiral banana-shaped molecules was studied
2101 >        by computer simulation. The banana-shaped molecules were described
2102 >        by model intermolecular interactions based on the Gay-Berne potential.
2103 >        The characteristic molecular structure was considered by joining
2104 >        two calamitic Gay-Berne particles through a bond to form a biaxial
2105 >        molecule of point symmetry group C-2v with a suitable bending angle.
2106 >        The dependence on temperature of systems of N=1024 rigid banana-shaped
2107 >        molecules with bending angle phi=140degrees has been studied by
2108 >        means of Monte Carlo simulations in the isobaric-isothermal ensemble
2109 >        (NpT). On cooling an isotropic system, two phase transitions characterized
2110 >        by phase transition enthalpy, entropy and relative volume change
2111 >        have been observed. For the first time by computer simulation of
2112 >        a many-particle system of banana-shaped molecules, at low temperature
2113 >        an untilted smectic phase showing a global phase biaxiality and
2114 >        a spontaneous local polarization in the layers, i.e. a local polar
2115 >        arrangement of the steric dipoles, with an antiferroelectric-like
2116 >        superstructure could be proven, a phase structure which recently
2117 >        has been discovered experimentally. Additionally, at intermediate
2118 >        temperature a nematic-like phase has been proved, whereas close
2119 >        to the transition to the smectic phase hints of a spontaneous achiral
2120 >        symmetry breaking have been determined. Here, in the absence of
2121 >        a layered structure a helical superstructure has been formed. All
2122 >        phases have been characterized by visual representations of selected
2123 >        configurations, scalar and pseudoscalar correlation functions, and
2124 >        order parameters.},
2125 >  annote = {531HT Times Cited:12 Cited References Count:37},
2126 >  issn = {0267-8292},
2127 >  uri = {<Go to ISI>://000174410500001},
2128   }
2129  
2130 <
2131 < @Article{pearlman:1995,
2132 <  author =   {David~A. Pearlman and David~A. Case and James~W. Caldwell and Wilson~S. Ross and Thomas~E. Cheatham~III and Steve DeBolt and David Ferguson and George Seibel and Peter Kollman},
2133 <  title =    {{\sc amber}, a package of computer programs for applying molecular mechanics. normal mode analysis, molecular dynamics, and free energy calculations to simulate the structural and energetic properties of molecules},
2134 <  journal =      {Computer Physics Communications},
2135 <  year =     1995,
2136 <  volume =   91,
1708 <  pages =    {1-41}
2130 > @ARTICLE{Metropolis1949,
2131 >  author = {N. Metropolis and S. Ulam},
2132 >  title = {The $\mbox{Monte Carlo}$ Method},
2133 >  journal = {J. Am. Stat. Ass.},
2134 >  year = {1949},
2135 >  volume = {44},
2136 >  pages = {335-341},
2137   }
2138  
2139 < @Book{Goldstein01,
2140 <  author =   {H. Goldstein and C. Poole and J. Safko},
2141 <  title =    {Classical Mechanics},
2142 <  publisher =    {Addison Wesley},
2143 <  year =     2001,
2144 <  address =  {San Francisco},
2145 <  edition =  {3rd}
2139 > @ARTICLE{Mielke2004,
2140 >  author = {S. P. Mielke and W. H. Fink and V. V. Krishnan and N. Gronbech-Jensen
2141 >        and C. J. Benham},
2142 >  title = {Transcription-driven twin supercoiling of a DNA loop: A Brownian
2143 >        dynamics study},
2144 >  journal = {Journal of Chemical Physics},
2145 >  year = {2004},
2146 >  volume = {121},
2147 >  pages = {8104-8112},
2148 >  number = {16},
2149 >  month = {Oct 22},
2150 >  abstract = {The torque generated by RNA polymerase as it tracks along double-stranded
2151 >        DNA can potentially induce long-range structural deformations integral
2152 >        to mechanisms of biological significance in both prokaryotes and
2153 >        eukaryotes. In this paper, we introduce a dynamic computer model
2154 >        for investigating this phenomenon. Duplex DNA is represented as
2155 >        a chain of hydrodynamic beads interacting through potentials of
2156 >        linearly elastic stretching, bending, and twisting, as well as excluded
2157 >        volume. The chain, linear when relaxed, is looped to form two open
2158 >        but topologically constrained subdomains. This permits the dynamic
2159 >        introduction of torsional stress via a centrally applied torque.
2160 >        We simulate by Brownian dynamics the 100 mus response of a 477-base
2161 >        pair B-DNA template to the localized torque generated by the prokaryotic
2162 >        transcription ensemble. Following a sharp rise at early times, the
2163 >        distributed twist assumes a nearly constant value in both subdomains,
2164 >        and a succession of supercoiling deformations occurs as superhelical
2165 >        stress is increasingly partitioned to writhe. The magnitude of writhe
2166 >        surpasses that of twist before also leveling off when the structure
2167 >        reaches mechanical equilibrium with the torsional load. Superhelicity
2168 >        is simultaneously right handed in one subdomain and left handed
2169 >        in the other, as predicted by the #transcription-induced##twin-supercoiled-domain#
2170 >        model [L. F. Liu and J. C. Wang, Proc. Natl. Acad. Sci. U.S.A. 84,
2171 >        7024 (1987)]. The properties of the chain at the onset of writhing
2172 >        agree well with predictions from theory, and the generated stress
2173 >        is ample for driving secondary structural transitions in physiological
2174 >        DNA. (C) 2004 American Institute of Physics.},
2175 >  annote = {861ZF Times Cited:3 Cited References Count:34},
2176 >  issn = {0021-9606},
2177 >  uri = {<Go to ISI>://000224456500064},
2178   }
2179  
2180 < @Article{Bratko85,
2181 <  author =   {D. Bratko and L. Blum and A. Luzar},
2182 <  title =    {A simple model for the intermolecular potential of water},
2183 <  journal =      jcp,
2184 <  year =     1985,
2185 <  volume =   83,
2186 <  number =   12,
2187 <  pages =    {6367-6370}
2180 > @ARTICLE{Naess2001,
2181 >  author = {S. N. Naess and H. M. Adland and A. Mikkelsen and A. Elgsaeter},
2182 >  title = {Brownian dynamics simulation of rigid bodies and segmented polymer
2183 >        chains. Use of Cartesian rotation vectors as the generalized coordinates
2184 >        describing angular orientations},
2185 >  journal = {Physica A},
2186 >  year = {2001},
2187 >  volume = {294},
2188 >  pages = {323-339},
2189 >  number = {3-4},
2190 >  month = {May 15},
2191 >  abstract = {The three Eulerian angles constitute the classical choice of generalized
2192 >        coordinates used to describe the three degrees of rotational freedom
2193 >        of a rigid body, but it has long been known that this choice yields
2194 >        singular equations of motion. The latter is also true when Eulerian
2195 >        angles are used in Brownian dynamics analyses of the angular orientation
2196 >        of single rigid bodies and segmented polymer chains. Starting from
2197 >        kinetic theory we here show that by instead employing the three
2198 >        components of Cartesian rotation vectors as the generalized coordinates
2199 >        describing angular orientation, no singularity appears in the configuration
2200 >        space diffusion equation and the associated Brownian dynamics algorithm.
2201 >        The suitability of Cartesian rotation vectors in Brownian dynamics
2202 >        simulations of segmented polymer chains with spring-like or ball-socket
2203 >        joints is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.},
2204 >  annote = {433TA Times Cited:7 Cited References Count:19},
2205 >  issn = {0378-4371},
2206 >  uri = {<Go to ISI>://000168774800005},
2207   }
2208  
2209 < @Article{Bratko95,
2210 <  author =   {L. Blum and F. Vericat and D. Bratko},
2211 <  title =    {Towards an analytical model of water: The octupolar model},
2212 <  journal =      jcp,
2213 <  year =     1995,
2214 <  volume =   102,
2215 <  number =   3,
2216 <  pages =    {1461-1462}
2209 > @ARTICLE{Niori1996,
2210 >  author = {T. Niori and T. Sekine and J. Watanabe and T. Furukawa and H. Takezoe},
2211 >  title = {Distinct ferroelectric smectic liquid crystals consisting of banana
2212 >        shaped achiral molecules},
2213 >  journal = {Journal of Materials Chemistry},
2214 >  year = {1996},
2215 >  volume = {6},
2216 >  pages = {1231-1233},
2217 >  number = {7},
2218 >  month = {Jul},
2219 >  abstract = {The synthesis of a banana-shaped molecule is reported and it is found
2220 >        that the smectic phase which it forms is biaxial with the molecules
2221 >        packed in the best,direction into a layer. Because of this characteristic
2222 >        packing, spontaneous polarization appears parallel to the layer
2223 >        and switches on reversal of an applied electric field. This is the
2224 >        first obvious example of ferroelectricity in an achiral smectic
2225 >        phase and is ascribed to the C-2v symmetry of the molecular packing.},
2226 >  annote = {Ux855 Times Cited:447 Cited References Count:18},
2227 >  issn = {0959-9428},
2228 >  uri = {<Go to ISI>://A1996UX85500025},
2229   }
2230  
2231 < @Article{Ichiye03,
2232 <  author =   {M.-L. Tan and J.~T. Fischer and A. Chandra and B.~R. Brooks
2233 <                  and T. Ichiye},
2234 <  title =    {A temperature of maximum density in soft sticky dipole
2235 <                  water},
2236 <  journal =      cpl,
2237 <  year =     2003,
2238 <  volume =   376,
2239 <  pages =    {646-652},
2231 > @ARTICLE{Noguchi2002,
2232 >  author = {H. Noguchi and M. Takasu},
2233 >  title = {Structural changes of pulled vesicles: A Brownian dynamics simulation},
2234 >  journal = {Physical Review E},
2235 >  year = {2002},
2236 >  volume = {65},
2237 >  pages = {-},
2238 >  number = {5},
2239 >  month = {may},
2240 >  abstract = {We Studied the structural changes of bilayer vesicles induced by mechanical
2241 >        forces using a Brownian dynamics simulation. Two nanoparticles,
2242 >        which interact repulsively with amphiphilic molecules, are put inside
2243 >        a vesicle. The position of one nanoparticle is fixed, and the other
2244 >        is moved by a constant force as in optical-trapping experiments.
2245 >        First, the pulled vesicle stretches into a pear or tube shape. Then
2246 >        the inner monolayer in the tube-shaped region is deformed, and a
2247 >        cylindrical structure is formed between two vesicles. After stretching
2248 >        the cylindrical region, fission occurs near the moved vesicle. Soon
2249 >        after this the cylindrical region shrinks. The trapping force similar
2250 >        to 100 pN is needed to induce the formation of the cylindrical structure
2251 >        and fission.},
2252 >  annote = {Part 1 568PX Times Cited:5 Cited References Count:39},
2253 >  issn = {1063-651X},
2254 >  uri = {<Go to ISI>://000176552300084},
2255   }
1750
2256  
2257 < @Article{Soper86,
2258 <  author =   {A.~K. Soper and M.~G. Phillips},
2259 <  title =    {A new determination of the structure of water at 298K},
2260 <  journal =      cp,
2261 <  year =     1986,
2262 <  volume =   107,
2263 <  number =   1,
2264 <  pages =    {47-60},
2257 > @ARTICLE{Noguchi2001,
2258 >  author = {H. Noguchi and M. Takasu},
2259 >  title = {Fusion pathways of vesicles: A Brownian dynamics simulation},
2260 >  journal = {Journal of Chemical Physics},
2261 >  year = {2001},
2262 >  volume = {115},
2263 >  pages = {9547-9551},
2264 >  number = {20},
2265 >  month = {Nov 22},
2266 >  abstract = {We studied the fusion dynamics of vesicles using a Brownian dynamics
2267 >        simulation. Amphiphilic molecules spontaneously form vesicles with
2268 >        a bilayer structure. Two vesicles come into contact and form a stalk
2269 >        intermediate, in which a necklike structure only connects the outer
2270 >        monolayers, as predicted by the stalk hypothesis. We have found
2271 >        a new pathway of pore opening from stalks at high temperature: the
2272 >        elliptic stalk bends and contact between the ends of the arc-shaped
2273 >        stalk leads to pore opening. On the other hand, we have clarified
2274 >        that the pore-opening process at low temperature agrees with the
2275 >        modified stalk model: a pore is induced by contact between the inner
2276 >        monolayers inside the stalk. (C) 2001 American Institute of Physics.},
2277 >  annote = {491UW Times Cited:48 Cited References Count:25},
2278 >  issn = {0021-9606},
2279 >  uri = {<Go to ISI>://000172129300049},
2280   }
2281  
2282 < @Article{plimpton95,
2283 <  author =   {S. Plimpton},
2284 <  title =    {Fast Parallel Algorithms for Short-Range Molecular Dymanics},
2285 <  journal =      {J. Comp. Phys.},
2286 <  year =     1995,
2287 <  volume =   117,
1768 <  pages =    {1-19},
2282 > @BOOK{Olver1986,
2283 >  title = {Applications of Lie groups to differential equatitons},
2284 >  publisher = {Springer},
2285 >  year = {1986},
2286 >  author = {P.J. Olver},
2287 >  address = {New York},
2288   }
2289  
2290 < @Article{plimpton93,
2291 <  author =   {S.~J. Plimpton and B.~A. Hendrickson},
2292 <  title =    {Parallel Molecular Dynamics with the Embedded Atom Method},
2293 <  journal =      {MRS Proceedings},
2294 <  year =     1993,
2295 <  volume =   291,
2296 <  pages =    37
2290 > @ARTICLE{Omelyan1998,
2291 >  author = {I. P. Omelyan},
2292 >  title = {On the numerical integration of motion for rigid polyatomics: The
2293 >        modified quaternion approach},
2294 >  journal = {Computers in Physics},
2295 >  year = {1998},
2296 >  volume = {12},
2297 >  pages = {97-103},
2298 >  number = {1},
2299 >  month = {Jan-Feb},
2300 >  abstract = {A revised version of the quaternion approach for numerical integration
2301 >        of the equations of motion for rigid polyatomic molecules is proposed.
2302 >        The modified approach is based on a formulation of the quaternion
2303 >        dynamics with constraints. This allows one to resolve the rigidity
2304 >        problem rigorously using constraint forces. It is shown that the
2305 >        procedure for preservation of molecular rigidity can be realized
2306 >        particularly simply within the Verlet algorithm in velocity form.
2307 >        We demonstrate that the method presented leads to an improved numerical
2308 >        stability with respect to the usual quaternion rescaling scheme
2309 >        and it is roughly as good as the cumbersome atomic-constraint technique.
2310 >        (C) 1998 American Institute of Physics.},
2311 >  annote = {Yx279 Times Cited:12 Cited References Count:28},
2312 >  issn = {0894-1866},
2313 >  uri = {<Go to ISI>://000072024300025},
2314   }
2315  
2316 <
2317 < @Article{Ercolessi02,
2318 <  author =   {U. Tartaglino and E. Tosatti and D. Passerone and F. Ercolessi},
2319 <  title =    {Bending strain-driven modification of surface resconstructions: Au(111)},
2320 <  journal =      prb,
2321 <  year =     2002,
2322 <  volume =   65,
2323 <  pages =    241406
2316 > @ARTICLE{Omelyan1998a,
2317 >  author = {I. P. Omelyan},
2318 >  title = {Algorithm for numerical integration of the rigid-body equations of
2319 >        motion},
2320 >  journal = {Physical Review E},
2321 >  year = {1998},
2322 >  volume = {58},
2323 >  pages = {1169-1172},
2324 >  number = {1},
2325 >  month = {Jul},
2326 >  abstract = {An algorithm for numerical integration of the rigid-body equations
2327 >        of motion is proposed. The algorithm uses the leapfrog scheme and
2328 >        the quantities involved are angular velocities and orientational
2329 >        variables that can be expressed in terms of either principal axes
2330 >        or quaternions. Due to specific features of the algorithm, orthonormality
2331 >        and unit norms of the orientational variables are integrals of motion,
2332 >        despite an approximate character of the produced trajectories. It
2333 >        is shown that the method presented appears to be the most efficient
2334 >        among all such algorithms known.},
2335 >  annote = {101XL Times Cited:8 Cited References Count:22},
2336 >  issn = {1063-651X},
2337 >  uri = {<Go to ISI>://000074893400151},
2338   }
2339  
2340 < @Article{Ercolessi88,
2341 <  author =   {F. Ercolessi  and M. Parrinello  and E. Tosatti},
2342 <  title =    {Simulation of Gold in the Glue Model.},
2343 <  journal =      {Philosophical Magazine A},
2344 <  year =     1988,
2345 <  volume =   58,
2346 <  pages =    {213-226}
2340 > @ARTICLE{Orlandi2006,
2341 >  author = {S. Orlandi and R. Berardi and J. Steltzer and C. Zannoni},
2342 >  title = {A Monte Carlo study of the mesophases formed by polar bent-shaped
2343 >        molecules},
2344 >  journal = {Journal of Chemical Physics},
2345 >  year = {2006},
2346 >  volume = {124},
2347 >  pages = {-},
2348 >  number = {12},
2349 >  month = {Mar 28},
2350 >  abstract = {Liquid crystal phases formed by bent-shaped (or #banana#) molecules
2351 >        are currently of great interest. Here we investigate by Monte Carlo
2352 >        computer simulations the phases formed by rigid banana molecules
2353 >        modeled combining three Gay-Berne sites and containing either one
2354 >        central or two lateral and transversal dipoles. We show that changing
2355 >        the dipole position and orientation has a profound effect on the
2356 >        mesophase stability and molecular organization. In particular, we
2357 >        find a uniaxial nematic phase only for off-center dipolar models
2358 >        and tilted phases only for the one with terminal dipoles. (c) 2006
2359 >        American Institute of Physics.},
2360 >  annote = {028CP Times Cited:0 Cited References Count:42},
2361 >  issn = {0021-9606},
2362 >  uri = {<Go to ISI>://000236464000072},
2363   }
2364  
2365 < @Article{Finnis84,
2366 <  author =   {M.~W Finnis and J.~E. Sinclair },
2367 <  title =    {A Simple Empirical N-Body Potential for Transition-Metals},
2368 <  journal =      {Phil. Mag. A},
2369 <  year =     1984,
2370 <  volume =   50,
2371 <  pages =    {45-55}
2365 > @ARTICLE{Owren1992,
2366 >  author = {B. Owren and M. Zennaro},
2367 >  title = {Derivation of Efficient, Continuous, Explicit Runge-Kutta Methods},
2368 >  journal = {Siam Journal on Scientific and Statistical Computing},
2369 >  year = {1992},
2370 >  volume = {13},
2371 >  pages = {1488-1501},
2372 >  number = {6},
2373 >  month = {Nov},
2374 >  abstract = {Continuous, explicit Runge-Kutta methods with the minimal number of
2375 >        stages are considered. These methods are continuously differentiable
2376 >        if and only if one of the stages is the FSAL evaluation. A characterization
2377 >        of a subclass of these methods is developed for orders 3, 4, and
2378 >        5. It is shown how the free parameters of these methods can be used
2379 >        either to minimize the continuous truncation error coefficients
2380 >        or to maximize the stability region. As a representative for these
2381 >        methods the fifth-order method with minimized error coefficients
2382 >        is chosen, supplied with an error estimation method, and analysed
2383 >        by using the DETEST software. The results are compared with a similar
2384 >        implementation of the Dormand-Prince 5(4) pair with interpolant,
2385 >        showing a significant advantage in the new method for the chosen
2386 >        problems.},
2387 >  annote = {Ju936 Times Cited:25 Cited References Count:20},
2388 >  issn = {0196-5204},
2389 >  uri = {<Go to ISI>://A1992JU93600013},
2390   }
2391  
2392 < @Article{FBD86,
2393 <  author =       {S.~M. Foiles and M.~I. Baskes and M.~S. Daw},
2394 <  title =        {Embedded-atom-method functions for the fcc metals
2395 < $\mbox{Cu, Ag, Au, Ni, Pd, Pt}$, and their alloys},
2396 <  journal =      prb,
2397 <  year =         1986,
2398 <  volume =       33,
2399 <  number =       12,
2400 <  pages =        7983
2392 > @ARTICLE{Palacios1998,
2393 >  author = {J. L. Garcia-Palacios and F. J. Lazaro},
2394 >  title = {Langevin-dynamics study of the dynamical properties of small magnetic
2395 >        particles},
2396 >  journal = {Physical Review B},
2397 >  year = {1998},
2398 >  volume = {58},
2399 >  pages = {14937-14958},
2400 >  number = {22},
2401 >  month = {Dec 1},
2402 >  abstract = {The stochastic Landau-Lifshitz-Gilbert equation of motion for a classical
2403 >        magnetic moment is numerically solved (properly observing the customary
2404 >        interpretation of it as a Stratonovich stochastic differential equation),
2405 >        in order to study the dynamics of magnetic nanoparticles. The corresponding
2406 >        Langevin-dynamics approach allows for the study of the fluctuating
2407 >        trajectories of individual magnetic moments, where we have encountered
2408 >        remarkable phenomena in the overbarrier rotation process, such as
2409 >        crossing-back or multiple crossing of the potential barrier, rooted
2410 >        in the gyromagnetic nature of the system. Concerning averaged quantities,
2411 >        we study the linear dynamic response of the archetypal ensemble
2412 >        of noninteracting classical magnetic moments with axially symmetric
2413 >        magnetic anisotropy. The results are compared with different analytical
2414 >        expressions used to model the relaxation of nanoparticle ensembles,
2415 >        assessing their accuracy. It has been found that, among a number
2416 >        of heuristic expressions for the linear dynamic susceptibility,
2417 >        only the simple formula proposed by Shliomis and Stepanov matches
2418 >        the coarse features of the susceptibility reasonably. By comparing
2419 >        the numerical results with the asymptotic formula of Storonkin {Sov.
2420 >        Phys. Crystallogr. 30, 489 (1985) [Kristallografiya 30, 841 (1985)]},
2421 >        the effects of the intra-potential-well relaxation modes on the
2422 >        low-temperature longitudinal dynamic response have been assessed,
2423 >        showing their relatively small reflection in the susceptibility
2424 >        curves but their dramatic influence on the phase shifts. Comparison
2425 >        of the numerical results with the exact zero-damping expression
2426 >        for the transverse susceptibility by Garanin, Ishchenko, and Panina
2427 >        {Theor. Math. Phys. (USSR) 82, 169 (1990) [Teor. Mat. Fit. 82, 242
2428 >        (1990)]}, reveals a sizable contribution of the spread of the precession
2429 >        frequencies of the magnetic moment in the anisotropy field to the
2430 >        dynamic response at intermediate-to-high temperatures. [S0163-1829
2431 >        (98)00446-9].},
2432 >  annote = {146XW Times Cited:66 Cited References Count:45},
2433 >  issn = {0163-1829},
2434 >  uri = {<Go to ISI>://000077460000052},
2435   }
2436  
2437 < @Article{johnson89,
2438 <  author =   {R.~A. Johnson},
2439 <  title =    {Alloy models with the embedded-atom method},
2440 <  journal =      prb,
2441 <  year =     1989,
2442 <  volume =   39,
2443 <  number =   17,
2444 <  pages =    12554
2437 > @ARTICLE{Parr1995,
2438 >  author = {T. J. Parr and R. W. Quong},
2439 >  title = {Antlr - a Predicated-Ll(K) Parser Generator},
2440 >  journal = {Software-Practice \& Experience},
2441 >  year = {1995},
2442 >  volume = {25},
2443 >  pages = {789-810},
2444 >  number = {7},
2445 >  month = {Jul},
2446 >  abstract = {Despite the parsing power of LR/LALR algorithms, e.g. YACC, programmers
2447 >        often choose to write recursive-descent parsers by hand to obtain
2448 >        increased flexibility, better error handling, and ease of debugging.
2449 >        We introduce ANTLR, a public-domain parser generator that combines
2450 >        the flexibility of hand-coded parsing with the convenience of a
2451 >        parser generator, which is a component of PCCTS. ANTLR has many
2452 >        features that make it easier to use than other language tools. Most
2453 >        important, ANTLR provides predicates which let the programmer systematically
2454 >        direct the parse via arbitrary expressions using semantic and syntactic
2455 >        context; in practice, the use of predicates eliminates the need
2456 >        to hand-tweak the ANTLR output, even for difficult parsing problems.
2457 >        ANTLR also integrates the description of lexical and syntactic analysis,
2458 >        accepts LL(k) grammars for k > 1 with extended BNF notation, and
2459 >        can automatically generate abstract syntax trees. ANTLR is widely
2460 >        used, with over 1000 registered industrial and academic users in
2461 >        37 countries. It has been ported to many popular systems such as
2462 >        the PC, Macintosh, and a variety of UNIX platforms; a commercial
2463 >        C++ front-end has been developed as a result of one of our industrial
2464 >        collaborations.},
2465 >  annote = {Rk104 Times Cited:19 Cited References Count:10},
2466 >  issn = {0038-0644},
2467 >  uri = {<Go to ISI>://A1995RK10400004},
2468   }
2469  
2470 < @Article{Laird97,
2471 <  author =   {A. Kol and B.~B. Laird and B.~J. Leimkuhler},
2472 <  title =    {A symplectic method for rigid-body molecular simulation},
2473 <  journal =      jcp,
2474 <  year =     1997,
2475 <  volume =   107,
2476 <  number =   7,
2477 <  pages =    {2580-2588}
2470 > @ARTICLE{Pastor1988,
2471 >  author = {R. W. Pastor and B. R. Brooks and A. Szabo},
2472 >  title = {An Analysis of the Accuracy of Langevin and Molecular-Dynamics Algorithms},
2473 >  journal = {Molecular Physics},
2474 >  year = {1988},
2475 >  volume = {65},
2476 >  pages = {1409-1419},
2477 >  number = {6},
2478 >  month = {Dec 20},
2479 >  annote = {T1302 Times Cited:61 Cited References Count:26},
2480 >  issn = {0026-8976},
2481 >  uri = {<Go to ISI>://A1988T130200011},
2482   }
2483  
2484 <
2485 < @Article{hoover85,
2486 <  author =   {W.~G. Hoover},
2487 <  title =    {Canonical dynamics: Equilibrium phase-space distributions},
2488 <  journal =      pra,
2489 <  year =     1985,
2490 <  volume =   31,
2491 <  pages =    1695
2484 > @ARTICLE{Pelzl1999,
2485 >  author = {G. Pelzl and S. Diele and W. Weissflog},
2486 >  title = {Banana-shaped compounds - A new field of liquid crystals},
2487 >  journal = {Advanced Materials},
2488 >  year = {1999},
2489 >  volume = {11},
2490 >  pages = {707-724},
2491 >  number = {9},
2492 >  month = {Jul 5},
2493 >  annote = {220RC Times Cited:313 Cited References Count:49},
2494 >  issn = {0935-9648},
2495 >  uri = {<Go to ISI>://000081680400007},
2496   }
2497  
2498 < @Article{Roux91,
2499 <  author =   {B. Roux and M. Karplus},
2500 <  title =    {Ion transport in a Gramicidin-like channel: dynamics and mobility},
2501 <  journal =      jpc,
2502 <  year =     1991,
2503 <  volume =   95,
2504 <  number =   15,
2505 <  pages =    {4856-4868}
2498 > @ARTICLE{Perram1985,
2499 >  author = {J. W. Perram and M. S. Wertheim},
2500 >  title = {Statistical-Mechanics of Hard Ellipsoids .1. Overlap Algorithm and
2501 >        the Contact Function},
2502 >  journal = {Journal of Computational Physics},
2503 >  year = {1985},
2504 >  volume = {58},
2505 >  pages = {409-416},
2506 >  number = {3},
2507 >  annote = {Akb93 Times Cited:71 Cited References Count:12},
2508 >  issn = {0021-9991},
2509 >  uri = {<Go to ISI>://A1985AKB9300008},
2510   }
2511  
2512 <
2513 < @Article{Marrink94,
2514 <  author =   {S.~J Marrink and H.~J.~C. Berendsen},
2515 <  title =    {Simulation of water transport through a lipid membrane},
2516 <  journal =      jpc,
2517 <  year =     1994,
2518 <  volume =   98,
1866 <  number =   15,
1867 <  pages =    {4155-4168}
2512 > @ARTICLE{Rotne1969,
2513 >  author = {F. Perrin},
2514 >  title = {Variational treatment of hydrodynamic interaction in polymers},
2515 >  journal = {J. Chem. Phys.},
2516 >  year = {1969},
2517 >  volume = {50},
2518 >  pages = {4831¨C4837},
2519   }
2520  
2521 <
2522 < @Article{Daw89,
2523 <  author =   {Murray~S. Daw},
2524 <  title =    {Model of metallic cohesion: The embedded-atom method},
2525 <  journal =      {Physical Review B},
2526 <  year =     1989,
2527 <  volume =   39,
2528 <  pages =    {7441-7452}
2521 > @ARTICLE{Perrin1936,
2522 >  author = {F. Perrin},
2523 >  title = {Mouvement brownien d'un ellipsoid(II). Rotation libre et depolarisation
2524 >        des fluorescences. Translation et diffusion de moleculese ellipsoidales},
2525 >  journal = {J. Phys. Radium},
2526 >  year = {1936},
2527 >  volume = {7},
2528 >  pages = {1-11},
2529   }
2530  
2531 < @InBook{voter,
2532 <  author =   {A.~F. Voter},
2533 <  editor =   {J.~H. Westbrook and R.~L. Fleischer},
2534 <  title =    {Intermetallic Compounds: Principles and Practice},
2535 <  chapter =      4,
2536 <  publisher =    {John Wiley and Sons Ltd},
2537 <  year =     1995,
2538 <  volume =   1,
1888 <  pages =    77
2531 > @ARTICLE{Perrin1934,
2532 >  author = {F. Perrin},
2533 >  title = {Mouvement brownien d'un ellipsoid(I). Dispersion dielectrique pour
2534 >        des molecules ellipsoidales},
2535 >  journal = {J. Phys. Radium},
2536 >  year = {1934},
2537 >  volume = {5},
2538 >  pages = {497-511},
2539   }
2540  
2541 < @Article{marrink:2002,
2542 <  author =   {S.~J. Marrink and D.~P. Teileman},
2543 <  title =    {Molecular Dynamics Simulation of Spontaneous Membrane Fusion during a Cubic-Hexagonal Phase Transition},
2544 <  journal =      {Biophysical Journal},
2545 <  year =     2002,
2546 <  volume =   83,
2547 <  pages =    {2386-2392}
2541 > @ARTICLE{Petrache2000,
2542 >  author = {H.~I. Petrache and S.~W. Dodd and M.~F. Brown},
2543 >  title = {Area per Lipid and Acyl Length Distributions in Fluid Phosphatidylcholines
2544 >        Determined by $^2\text{H}$ {\sc nmr} Spectroscopy},
2545 >  journal = {Biophysical Journal},
2546 >  year = {2000},
2547 >  volume = {79},
2548 >  pages = {3172-3192},
2549   }
2550  
2551 < @Article{sum:2003,
2552 <  author =   {A.~K. Sum and J.~J. de~Pablo},
2553 <  title =    {Molecular Simulation Study on the influence of Dimethylsulfoxide on the structure of Phospholipid Bilayers},
2554 <  journal =      {Biophysical Journal},
2555 <  year =     2003,
2556 <  volume =   85,
2557 <  pages =    {3636-3645}
2551 > @ARTICLE{Petrache1998,
2552 >  author = {H. I. Petrache and S. Tristram-Nagle and J. F. Nagle},
2553 >  title = {Fluid phase structure of EPC and DMPC bilayers},
2554 >  journal = {Chemistry and Physics of Lipids},
2555 >  year = {1998},
2556 >  volume = {95},
2557 >  pages = {83-94},
2558 >  number = {1},
2559 >  month = {Sep},
2560 >  abstract = {X-ray diffraction data taken at high instrumental resolution were
2561 >        obtained for EPC and DMPC under various osmotic pressures, primarily
2562 >        at T = 30 degrees C. The headgroup thickness D-HH was obtained from
2563 >        relative electron density profiles. By using volumetric results
2564 >        and by comparing to gel phase DPPC we obtain areas A(EPC)(F) = 69.4
2565 >        +/- 1.1 Angstrom(2) and A(DMPC)(F) = 59.7 +/- 0.2 Angstrom(2). The
2566 >        analysis also gives estimates for the areal compressibility K-A.
2567 >        The A(F) results lead to other structural results regarding membrane
2568 >        thickness and associated waters. Using the recently determined absolute
2569 >        electrons density profile of DPPC, the AF results also lead to absolute
2570 >        electron density profiles and absolute continuous transforms \F(q)\
2571 >        for EPC and DMPC, Limited measurements of temperature dependence
2572 >        show directly that fluctuations increase with increasing temperature
2573 >        and that a small decrease in bending modulus K-c accounts for the
2574 >        increased water spacing reported by Simon et al. (1995) Biophys.
2575 >        J. 69, 1473-1483. (C) 1998 Elsevier Science Ireland Ltd. All rights
2576 >        reserved.},
2577 >  annote = {130AT Times Cited:98 Cited References Count:39},
2578 >  issn = {0009-3084},
2579 >  uri = {<Go to ISI>://000076497600007},
2580   }
2581  
2582 < @Article{gomez:2003,
2583 <  author =   {J.~D. Faraldo-Gomez and G.~R. Smith and M.~S.P. Sansom},
2584 <  title =    {Setting up and optimization of membrane protein simulations},
2585 <  journal =      {Eur. Biophys. J.},
2586 <  year =     2002,
2587 <  volume =   31,
2588 <  pages =    {217-227}
2582 > @ARTICLE{Powles1973,
2583 >  author = {J.~G. Powles},
2584 >  title = {A general ellipsoid can not always serve as a modle for the rotational
2585 >        diffusion properties of arbitrary shaped rigid molecules},
2586 >  journal = {Advan. Phys.},
2587 >  year = {1973},
2588 >  volume = {22},
2589 >  pages = {1-56},
2590   }
2591  
2592 <
2593 < @Article{smondyrev:1999,
2594 <  author =   {A.~M. Smondyrev and M.~L. Berkowitz},
2595 <  title =    {Molecular Dynamics Simulation of {\sc dppc} Bilayer in {\sc dmso}},
2596 <  journal =      {Biophysical Journal},
2597 <  year =     1999,
2598 <  volume =   76,
2599 <  pages =    {2472-2478}
2592 > @ARTICLE{Recio2004,
2593 >  author = {J. Fernandez-Recio and M. Totrov and R. Abagyan},
2594 >  title = {Identification of protein-protein interaction sites from docking
2595 >        energy landscapes},
2596 >  journal = {Journal of Molecular Biology},
2597 >  year = {2004},
2598 >  volume = {335},
2599 >  pages = {843-865},
2600 >  number = {3},
2601 >  month = {Jan 16},
2602 >  abstract = {Protein recognition is one of the most challenging and intriguing
2603 >        problems in structural biology. Despite all the available structural,
2604 >        sequence and biophysical information about protein-protein complexes,
2605 >        the physico-chemical patterns, if any, that make a protein surface
2606 >        likely to be involved in protein-protein interactions, remain elusive.
2607 >        Here, we apply protein docking simulations and analysis of the interaction
2608 >        energy landscapes to identify protein-protein interaction sites.
2609 >        The new protocol for global docking based on multi-start global
2610 >        energy optimization of an allatom model of the ligand, with detailed
2611 >        receptor potentials and atomic solvation parameters optimized in
2612 >        a training set of 24 complexes, explores the conformational space
2613 >        around the whole receptor without restrictions. The ensembles of
2614 >        the rigid-body docking solutions generated by the simulations were
2615 >        subsequently used to project the docking energy landscapes onto
2616 >        the protein surfaces. We found that highly populated low-energy
2617 >        regions consistently corresponded to actual binding sites. The procedure
2618 >        was validated on a test set of 21 known protein-protein complexes
2619 >        not used in the training set. As much as 81% of the predicted high-propensity
2620 >        patch residues were located correctly in the native interfaces.
2621 >        This approach can guide the design of mutations on the surfaces
2622 >        of proteins, provide geometrical details of a possible interaction,
2623 >        and help to annotate protein surfaces in structural proteomics.
2624 >        (C) 2003 Elsevier Ltd. All rights reserved.},
2625 >  annote = {763GQ Times Cited:21 Cited References Count:59},
2626 >  issn = {0022-2836},
2627 >  uri = {<Go to ISI>://000188066900016},
2628   }
2629  
2630 < @Article{nina:2002,
2631 <  author =   {M. Nina and T. Simonson},
2632 <  title =    {Molecular Dynamics of the $\text{tRNA}^{\text{Ala}}$ Acceptor Stem: Comparison between Continuum Reaction Field and Particle-Mesh Ewald Electrostatic Treatments},
2633 <  journal =      {J. Phys. Chem. B},
2634 <  year =     2002,
2635 <  volume =   106,
2636 <  pages =    {3696-3705}
2630 > @ARTICLE{Reddy2006,
2631 >  author = {R. A. Reddy and C. Tschierske},
2632 >  title = {Bent-core liquid crystals: polar order, superstructural chirality
2633 >        and spontaneous desymmetrisation in soft matter systems},
2634 >  journal = {Journal of Materials Chemistry},
2635 >  year = {2006},
2636 >  volume = {16},
2637 >  pages = {907-961},
2638 >  number = {10},
2639 >  abstract = {An overview on the recent developments in the field of liquid crystalline
2640 >        bent-core molecules (so-called banana liquid crystals) is given.
2641 >        After some basic issues, dealing with general aspects of the systematisation
2642 >        of the mesophases, development of polar order and chirality in this
2643 >        class of LC systems and explaining some general structure-property
2644 >        relationships, we focus on fascinating new developments in this
2645 >        field, such as modulated, undulated and columnar phases, so-called
2646 >        B7 phases, phase biaxiality, ferroelectric and antiferroelectric
2647 >        polar order in smectic and columnar phases, amplification and switching
2648 >        of chirality and the spontaneous formation of superstructural and
2649 >        supramolecular chirality.},
2650 >  annote = {021NS Times Cited:2 Cited References Count:316},
2651 >  issn = {0959-9428},
2652 >  uri = {<Go to ISI>://000235990500001},
2653   }
2654  
2655 < @Article{norberg:2000,
2656 <  author =   {J. Norberg and L. Nilsson},
2657 <  title =    {On the truncation of Long-Range Electrostatic Interactions in {\sc dna}},
2658 <  journal =      {Biophysical Journal},
2659 <  year =     2000,
2660 <  volume =   79,
2661 <  pages =    {1537-1553}
2655 > @ARTICLE{Reich1999,
2656 >  author = {S. Reich},
2657 >  title = {Backward error analysis for numerical integrators},
2658 >  journal = {Siam Journal on Numerical Analysis},
2659 >  year = {1999},
2660 >  volume = {36},
2661 >  pages = {1549-1570},
2662 >  number = {5},
2663 >  month = {Sep 8},
2664 >  abstract = {Backward error analysis has become an important tool for understanding
2665 >        the long time behavior of numerical integration methods. This is
2666 >        true in particular for the integration of Hamiltonian systems where
2667 >        backward error analysis can be used to show that a symplectic method
2668 >        will conserve energy over exponentially long periods of time. Such
2669 >        results are typically based on two aspects of backward error analysis:
2670 >        (i) It can be shown that the modified vector fields have some qualitative
2671 >        properties which they share with the given problem and (ii) an estimate
2672 >        is given for the difference between the best interpolating vector
2673 >        field and the numerical method. These aspects have been investigated
2674 >        recently, for example, by Benettin and Giorgilli in [J. Statist.
2675 >        Phys., 74 (1994), pp. 1117-1143], by Hairer in [Ann. Numer. Math.,
2676 >        1 (1994), pp. 107-132], and by Hairer and Lubich in [Numer. Math.,
2677 >        76 (1997), pp. 441-462]. In this paper we aim at providing a unifying
2678 >        framework and a simplification of the existing results and corresponding
2679 >        proofs. Our approach to backward error analysis is based on a simple
2680 >        recursive definition of the modified vector fields that does not
2681 >        require explicit Taylor series expansion of the numerical method
2682 >        and the corresponding flow maps as in the above-cited works. As
2683 >        an application we discuss the long time integration of chaotic Hamiltonian
2684 >        systems and the approximation of time averages along numerically
2685 >        computed trajectories.},
2686 >  annote = {237HV Times Cited:43 Cited References Count:41},
2687 >  issn = {0036-1429},
2688 >  uri = {<Go to ISI>://000082650600010},
2689   }
2690  
2691 < @Article{patra:2003,
2692 <  author =   {M. Patra and M. Karttunen and M.~T. Hyv\"{o}nen and E. Falk and P. Lindqvist and I. Vattulainen},
2693 <  title =    {Molecular Dynamics Simulations of Lipid Bilayers: Major Artifacts Due to Truncating Electrostatic Interactions},
2694 <  journal =      {Biophysical Journal},
2695 <  year =     2003,
2696 <  volume =   84,
2697 <  pages =    {3636-3645}
2691 > @ARTICLE{Ros2005,
2692 >  author = {M. B. Ros and J. L. Serrano and M. R. {de la Fuente} and C. L. Folcia},
2693 >  title = {Banana-shaped liquid crystals: a new field to explore},
2694 >  journal = {Journal of Materials Chemistry},
2695 >  year = {2005},
2696 >  volume = {15},
2697 >  pages = {5093-5098},
2698 >  number = {48},
2699 >  abstract = {The recent literature in the field of liquid crystals shows that banana-shaped
2700 >        mesogenic materials represent a bewitching and stimulating field
2701 >        of research that is interesting both academically and in terms of
2702 >        applications. Numerous topics are open to investigation in this
2703 >        area because of the rich phenomenology and new possibilities that
2704 >        these materials offer. The principal concepts in this area are reviewed
2705 >        along with recent results. In addition, new directions to stimulate
2706 >        further research activities are highlighted.},
2707 >  annote = {990XA Times Cited:3 Cited References Count:72},
2708 >  issn = {0959-9428},
2709 >  uri = {<Go to ISI>://000233775500001},
2710   }
2711  
2712 < @Article{marrink04,
2713 <  author =   {S.~J. Marrink and A.~H. de~Vries and A.~E. Mark},
2714 <  title =    {Coarse Grained Model for Semiquantitative Lipid Simulations},
2715 <  journal =      {J. Phys. Chem. B},
2716 <  year =     2004,
2717 <  volume =   108,
2718 <  pages =    {750-760}
2712 > @ARTICLE{Roux1991,
2713 >  author = {B. Roux and M. Karplus},
2714 >  title = {Ion-Transport in a Gramicidin-Like Channel - Dynamics and Mobility},
2715 >  journal = {Journal of Physical Chemistry},
2716 >  year = {1991},
2717 >  volume = {95},
2718 >  pages = {4856-4868},
2719 >  number = {12},
2720 >  month = {Jun 13},
2721 >  abstract = {The mobility of water, Na+. and K+ has been calculated inside a periodic
2722 >        poly-(L,D)-alanine beta-helix, a model for the interior of the gramicidin
2723 >        channel. Because of the different dynamical regimes for the three
2724 >        species (high barrier for Na+, low barrier for K+, almost free diffusion
2725 >        for water), different methods are used to calculate the mobilities.
2726 >        By use of activated dynamics and a potential of mean force determined
2727 >        previously (Roux, B.; Karplus, M. Biophys. J. 1991, 59, 961), the
2728 >        barrier crossing rate of Na+ ion is determined. The motion of Na+
2729 >        at the transition state is controlled by local interactions and
2730 >        collisions with the neighboring carbonyls and the two nearest water
2731 >        molecules. There are significant deviations from transition-state
2732 >        theory; the transmission coefficient is equal to 0.11. The water
2733 >        and K+ motions are found to be well described by a diffusive model;
2734 >        the motion of K+ appears to be controlled by the diffusion of water.
2735 >        The time-dependent friction functions of Na+ and K+ ions in the
2736 >        periodic beta-helix are calculated and analyzed by using a generalized
2737 >        Langevin equation approach. Both Na+ and K+ suffer many rapid collisions,
2738 >        and their dynamics is overdamped and noninertial. Thus, the selectivity
2739 >        sequence of ions in the beta-helix is not influenced strongly by
2740 >        their masses.},
2741 >  annote = {Fr756 Times Cited:97 Cited References Count:65},
2742 >  issn = {0022-3654},
2743 >  uri = {<Go to ISI>://A1991FR75600049},
2744   }
2745  
2746 < @Article{andersen83,
2747 <  author =   {H.~C. Andersen},
2748 <  title =    {{\sc rattle}: A Velocity Version of the Shake Algorithm for Molecular Dynamics Calculations},
2749 <  journal =      {Journal of Computational Physics},
2750 <  year =     1983,
2751 <  volume =   52,
2752 <  pages =    {24-34}
2746 > @ARTICLE{Roy2005,
2747 >  author = {A. Roy and N. V. Madhusudana},
2748 >  title = {A frustrated packing model for the B-6-B-1-SmAP(A) sequence of phases
2749 >        in banana shaped molecules},
2750 >  journal = {European Physical Journal E},
2751 >  year = {2005},
2752 >  volume = {18},
2753 >  pages = {253-258},
2754 >  number = {3},
2755 >  month = {Nov},
2756 >  abstract = {A vast majority of compounds with bent core or banana shaped molecules
2757 >        exhibit the phase sequence B-6-B-1-B-2 as the chain length is increased
2758 >        in a homologous series. The B-6 phase has an intercalated fluid
2759 >        lamellar structure with a layer spacing of half the molecular length.
2760 >        The B-1 phase has a two dimensionally periodic rectangular columnar
2761 >        structure. The B-2 phase has a monolayer fluid lamellar structure
2762 >        with molecules tilted with respect to the layer normal. Neglecting
2763 >        the tilt order of the molecules in the B-2 phase, we have developed
2764 >        a frustrated packing model to describe this phase sequence qualitatively.
2765 >        The model has some analogy with that of the frustrated smectics
2766 >        exhibited by highly polar rod like molecules.},
2767 >  annote = {985FW Times Cited:0 Cited References Count:30},
2768 >  issn = {1292-8941},
2769 >  uri = {<Go to ISI>://000233363300002},
2770   }
2771  
2772 < @Article{hura00,
2773 <  author =   {G. Hura and J.~M. Sorenson and R.~M. Glaeser and T. Head-Gordon},
2774 <  title =    {A high-quality x-ray scattering experiment on liquid water at ambient conditions},
2775 <  journal =      {J. Chem. Phys.},
2776 <  year =     2000,
2777 <  volume =   113,
2778 <  pages =    {9140-9148}
2772 > @ARTICLE{Ryckaert1977,
2773 >  author = {J. P. Ryckaert and G. Ciccotti and H. J. C. Berendsen},
2774 >  title = {Numerical-Integration of Cartesian Equations of Motion of a System
2775 >        with Constraints - Molecular-Dynamics of N-Alkanes},
2776 >  journal = {Journal of Computational Physics},
2777 >  year = {1977},
2778 >  volume = {23},
2779 >  pages = {327-341},
2780 >  number = {3},
2781 >  annote = {Cz253 Times Cited:3680 Cited References Count:7},
2782 >  issn = {0021-9991},
2783 >  uri = {<Go to ISI>://A1977CZ25300007},
2784   }
2785  
2786 <
2787 < @Article{ryckaert77,
2788 <  author =   {J.~P. Ryckaert and G. Ciccotti and H.~J.~C. Berendsen},
2789 <  title =    {Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes},
2790 <  journal =      {Journal of Computational Physics},
2791 <  year =     1977,
2792 <  volume =   23,
2793 <  pages =    {327-341}
2786 > @ARTICLE{Sagui1999,
2787 >  author = {C. Sagui and T. A. Darden},
2788 >  title = {Molecular dynamics simulations of biomolecules: Long-range electrostatic
2789 >        effects},
2790 >  journal = {Annual Review of Biophysics and Biomolecular Structure},
2791 >  year = {1999},
2792 >  volume = {28},
2793 >  pages = {155-179},
2794 >  abstract = {Current computer simulations of biomolecules typically make use of
2795 >        classical molecular dynamics methods, as a very large number (tens
2796 >        to hundreds of thousands) of atoms are involved over timescales
2797 >        of many nanoseconds. The methodology for treating short-range bonded
2798 >        and van der Waals interactions has matured. However, long-range
2799 >        electrostatic interactions still represent a bottleneck in simulations.
2800 >        In this article, we introduce the basic issues for an accurate representation
2801 >        of the relevant electrostatic interactions. In spite of the huge
2802 >        computational time demanded by most biomolecular systems, it is
2803 >        no longer necessary to resort to uncontrolled approximations such
2804 >        as the use of cutoffs. In particular, we discuss the Ewald summation
2805 >        methods, the fast particle mesh methods, and the fast multipole
2806 >        methods. We also review recent efforts to understand the role of
2807 >        boundary conditions in systems with long-range interactions, and
2808 >        conclude with a short perspective on future trends.},
2809 >  annote = {213KJ Times Cited:126 Cited References Count:73},
2810 >  issn = {1056-8700},
2811 >  uri = {<Go to ISI>://000081271400008},
2812   }
2813  
2814 <
2815 < @InBook{fowles99:lagrange,
2816 <  author =   {G.~R. Fowles and G.~L. Cassiday},
2817 <  title =    {Analytical Mechanics},
2818 <  chapter =      10,
2819 <  publisher =    {Saunders College Publishing},
2820 <  year =     1999,
2821 <  edition =  {6th}
2814 > @ARTICLE{Sandu1999,
2815 >  author = {A. Sandu and T. Schlick},
2816 >  title = {Masking resonance artifacts in force-splitting methods for biomolecular
2817 >        simulations by extrapolative Langevin dynamics},
2818 >  journal = {Journal of Computational Physics},
2819 >  year = {1999},
2820 >  volume = {151},
2821 >  pages = {74-113},
2822 >  number = {1},
2823 >  month = {May 1},
2824 >  abstract = {Numerical resonance artifacts have become recognized recently as a
2825 >        limiting factor to increasing the timestep in multiple-timestep
2826 >        (MTS) biomolecular dynamics simulations. At certain timesteps correlated
2827 >        to internal motions (e.g., 5 fs, around half the period of the fastest
2828 >        bond stretch, T-min), visible inaccuracies or instabilities can
2829 >        occur. Impulse-MTS schemes are vulnerable to these resonance errors
2830 >        since large energy pulses are introduced to the governing dynamics
2831 >        equations when the slow forces are evaluated. We recently showed
2832 >        that such resonance artifacts can be masked significantly by applying
2833 >        extrapolative splitting to stochastic dynamics. Theoretical and
2834 >        numerical analyses of force-splitting integrators based on the Verlet
2835 >        discretization are reported here for linear models to explain these
2836 >        observations and to suggest how to construct effective integrators
2837 >        for biomolecular dynamics that balance stability with accuracy.
2838 >        Analyses for Newtonian dynamics demonstrate the severe resonance
2839 >        patterns of the Impulse splitting, with this severity worsening
2840 >        with the outer timestep. Delta t: Constant Extrapolation is generally
2841 >        unstable, but the disturbances do not grow with Delta t. Thus. the
2842 >        stochastic extrapolative combination can counteract generic instabilities
2843 >        and largely alleviate resonances with a sufficiently strong Langevin
2844 >        heat-bath coupling (gamma), estimates for which are derived here
2845 >        based on the fastest and slowest motion periods. These resonance
2846 >        results generally hold for nonlinear test systems: a water tetramer
2847 >        and solvated protein. Proposed related approaches such as Extrapolation/Correction
2848 >        and Midpoint Extrapolation work better than Constant Extrapolation
2849 >        only for timesteps less than T-min/2. An effective extrapolative
2850 >        stochastic approach for biomolecules that balances long-timestep
2851 >        stability with good accuracy for the fast subsystem is then applied
2852 >        to a biomolecule using a three-class partitioning: the medium forces
2853 >        are treated by Midpoint Extrapolation via position Verlet, and the
2854 >        slow forces are incorporated by Constant Extrapolation. The resulting
2855 >        algorithm (LN) performs well on a solvated protein system in terms
2856 >        of thermodynamic properties and yields an order of magnitude speedup
2857 >        with respect to single-timestep Langevin trajectories. Computed
2858 >        spectral density functions also show how the Newtonian modes can
2859 >        be approximated by using a small gamma in the range Of 5-20 ps(-1).
2860 >        (C) 1999 Academic Press.},
2861 >  annote = {194FM Times Cited:14 Cited References Count:32},
2862 >  issn = {0021-9991},
2863 >  uri = {<Go to ISI>://000080181500004},
2864   }
2865  
2866 < @Article{petrache00,
2867 <  author =   {H.~I. Petrache and S.~W. Dodd and M.~F. Brown},
2868 <  title =    {Area per Lipid and Acyl Length Distributions in Fluid Phosphatidylcholines Determined by $^2\text{H}$ {\sc nmr} Spectroscopy},
2869 <  journal =      {Biophysical Journal},
2870 <  year =     2000,
2871 <  volume =   79,
2872 <  pages =    {3172-3192}
2866 > @ARTICLE{Sasaki2004,
2867 >  author = {Y. Sasaki and R. Shukla and B. D. Smith},
2868 >  title = {Facilitated phosphatidylserine flip-flop across vesicle and cell
2869 >        membranes using urea-derived synthetic translocases},
2870 >  journal = {Organic \& Biomolecular Chemistry},
2871 >  year = {2004},
2872 >  volume = {2},
2873 >  pages = {214-219},
2874 >  number = {2},
2875 >  abstract = {Tris(2-aminoethyl) amine derivatives with appended urea and sulfonamide
2876 >        groups are shown to facilitate the translocation of fluorescent
2877 >        phospholipid probes and endogenous phosphatidylserine across vesicle
2878 >        and erythrocyte cell membranes. The synthetic translocases appear
2879 >        to operate by binding to the phospholipid head groups and forming
2880 >        lipophilic supramolecular complexes which diffuse through the non-polar
2881 >        interior of the bilayer membrane.},
2882 >  annote = {760PX Times Cited:8 Cited References Count:25},
2883 >  issn = {1477-0520},
2884 >  uri = {<Go to ISI>://000187843800012},
2885   }
2886  
2887 < @Article{egberts88,
2888 <  author =   {E. Egberts and H.~J.~C. Berendsen},
2889 <  title =    {Molecular Dynamics Simulation of a smectic liquid crystal with atomic detail},
2890 <  journal =      {J. Chem. Phys.},
2891 <  year =     1988,
2892 <  volume =   89,
2893 <  pages =    {3718-3732}
2887 > @ARTICLE{Satoh1996,
2888 >  author = {K. Satoh and S. Mita and S. Kondo},
2889 >  title = {Monte Carlo simulations using the dipolar Gay-Berne model: Effect
2890 >        of terminal dipole moment on mesophase formation},
2891 >  journal = {Chemical Physics Letters},
2892 >  year = {1996},
2893 >  volume = {255},
2894 >  pages = {99-104},
2895 >  number = {1-3},
2896 >  month = {Jun 7},
2897 >  abstract = {The effects of dipole-dipole interaction on mesophase formation are
2898 >        investigated with a Monte Carlo simulation using the dipolar Gay-Berne
2899 >        potential. It is shown that the dipole moment at the end of a molecule
2900 >        causes a shift in the nematic-isotropic transition toward higher
2901 >        temperature and a spread of the temperature range of the nematic
2902 >        phase and that layer structures with various interdigitations are
2903 >        formed in the smectic phase.},
2904 >  annote = {Uq975 Times Cited:32 Cited References Count:33},
2905 >  issn = {0009-2614},
2906 >  uri = {<Go to ISI>://A1996UQ97500017},
2907   }
2908  
2909 < @Article{Holz00,
2910 <  author =       {M. Holz and S.~R. Heil and A. Sacco},
2911 <  title =        {Temperature-dependent self-diffusion coefficients of
2912 <                  water and six selected molecular liquids for calibration
2913 <                  in accurate $^1${\sc h} {\sc nmr pfg} measurements},
2914 <  journal =      {Phys. Chem. Chem. Phys.},
2915 <  year =         2000,
2916 <  volume =       2,
2917 <  pages =        {4740-4742},
2909 > @ARTICLE{Schaps1999,
2910 >  author = {G. L. Schaps},
2911 >  title = {Compiler construction with ANTLR and Java - Tools for building tools},
2912 >  journal = {Dr Dobbs Journal},
2913 >  year = {1999},
2914 >  volume = {24},
2915 >  pages = {84-+},
2916 >  number = {3},
2917 >  month = {Mar},
2918 >  annote = {163EC Times Cited:0 Cited References Count:0},
2919 >  issn = {1044-789X},
2920 >  uri = {<Go to ISI>://000078389200023},
2921   }
2922  
2923 < @InCollection{zannoni94,
2924 <  author =   {C. Zannoni},
2925 <  title =    {An introduction to the molecular dynamics method and to orientational dynamics in liquid crystals},
2926 <  booktitle =    {The Molecular Dynamics of Liquid Crstals},
2927 <  pages =    {139-169},
2928 <  publisher =    {Kluwer Academic Publishers},
2929 <  year =     1994,
2930 <  editor =   {G.~R. Luckhurst and C.~A. Veracini},
2931 <  chapter =  6
2923 > @ARTICLE{Shen2002,
2924 >  author = {M. Y. Shen and K. F. Freed},
2925 >  title = {Long time dynamics of met-enkephalin: Comparison of explicit and
2926 >        implicit solvent models},
2927 >  journal = {Biophysical Journal},
2928 >  year = {2002},
2929 >  volume = {82},
2930 >  pages = {1791-1808},
2931 >  number = {4},
2932 >  month = {Apr},
2933 >  abstract = {Met-enkephalin is one of the smallest opiate peptides. Yet, its dynamical
2934 >        structure and receptor docking mechanism are still not well understood.
2935 >        The conformational dynamics of this neuron peptide in liquid water
2936 >        are studied here by using all-atom molecular dynamics (MID) and
2937 >        implicit water Langevin dynamics (LD) simulations with AMBER potential
2938 >        functions and the three-site transferable intermolecular potential
2939 >        (TIP3P) model for water. To achieve the same simulation length in
2940 >        physical time, the full MID simulations require 200 times as much
2941 >        CPU time as the implicit water LID simulations. The solvent hydrophobicity
2942 >        and dielectric behavior are treated in the implicit solvent LD simulations
2943 >        by using a macroscopic solvation potential, a single dielectric
2944 >        constant, and atomic friction coefficients computed using the accessible
2945 >        surface area method with the TIP3P model water viscosity as determined
2946 >        here from MID simulations for pure TIP3P water. Both the local and
2947 >        the global dynamics obtained from the implicit solvent LD simulations
2948 >        agree very well with those from the explicit solvent MD simulations.
2949 >        The simulations provide insights into the conformational restrictions
2950 >        that are associated with the bioactivity of the opiate peptide dermorphin
2951 >        for the delta-receptor.},
2952 >  annote = {540MH Times Cited:36 Cited References Count:45},
2953 >  issn = {0006-3495},
2954 >  uri = {<Go to ISI>://000174932400010},
2955   }
2956  
2957 <
2958 < @Article{melchionna93,
2959 <  author =   {S. Melchionna and G. Ciccotti and B.~L. Holian},
2960 <  title =    {Hoover {\sc npt} dynamics for systems varying in shape and size},
2961 <  journal =      {Molecular Physics},
2962 <  year =     1993,
2963 <  volume =   78,
2964 <  pages =    {533-544}
2957 > @ARTICLE{Shillcock2005,
2958 >  author = {J. C. Shillcock and R. Lipowsky},
2959 >  title = {Tension-induced fusion of bilayer membranes and vesicles},
2960 >  journal = {Nature Materials},
2961 >  year = {2005},
2962 >  volume = {4},
2963 >  pages = {225-228},
2964 >  number = {3},
2965 >  month = {Mar},
2966 >  annote = {901QJ Times Cited:9 Cited References Count:23},
2967 >  issn = {1476-1122},
2968 >  uri = {<Go to ISI>://000227296700019},
2969   }
2970  
2971 < @Article{fennell04,
2972 <  author =   {C.~J. Fennell and J.~D. Gezelter},
2973 <  title =    {On the structural and transport properties of the soft sticky dipole(SSD) and related single point water models},
2974 <  journal =      {J. Chem. Phys},
2975 <  year =     {in press 2004}
2971 > @ARTICLE{Shimada1993,
2972 >  author = {J. Shimada and H. Kaneko and T. Takada},
2973 >  title = {Efficient Calculations of Coulombic Interactions in Biomolecular
2974 >        Simulations with Periodic Boundary-Conditions},
2975 >  journal = {Journal of Computational Chemistry},
2976 >  year = {1993},
2977 >  volume = {14},
2978 >  pages = {867-878},
2979 >  number = {7},
2980 >  month = {Jul},
2981 >  abstract = {To make improved treatments of electrostatic interactions in biomacromolecular
2982 >        simulations, two possibilities are considered. The first is the
2983 >        famous particle-particle and particle-mesh (PPPM) method developed
2984 >        by Hockney and Eastwood, and the second is a new one developed here
2985 >        in their spirit but by the use of the multipole expansion technique
2986 >        suggested by Ladd. It is then numerically found that the new PPPM
2987 >        method gives more accurate results for a two-particle system at
2988 >        small separation of particles. Preliminary numerical examination
2989 >        of the various computational methods for a single configuration
2990 >        of a model BPTI-water system containing about 24,000 particles indicates
2991 >        that both of the PPPM methods give far more accurate values with
2992 >        reasonable computational cost than do the conventional truncation
2993 >        methods. It is concluded the two PPPM methods are nearly comparable
2994 >        in overall performance for the many-particle systems, although the
2995 >        first method has the drawback that the accuracy in the total electrostatic
2996 >        energy is not high for configurations of charged particles randomly
2997 >        generated.},
2998 >  annote = {Lh164 Times Cited:27 Cited References Count:47},
2999 >  issn = {0192-8651},
3000 >  uri = {<Go to ISI>://A1993LH16400011},
3001   }
3002  
3003 < @Article{klein01,
3004 <  author =   {J.~C. Shelley andf M.~Y. Shelley and R.~C. Reeder and S. Bandyopadhyay and M.~L. Klein},
3005 <  title =    {A coarse Grain Model for Phospholipid Simulations},
3006 <  journal =      {J. Phys. Chem. B},
3007 <  year =     2001,
3008 <  volume =   105,
3009 <  pages =    {4464-4470}
3003 > @ARTICLE{Skeel2002,
3004 >  author = {R. D. Skeel and J. A. Izaguirre},
3005 >  title = {An impulse integrator for Langevin dynamics},
3006 >  journal = {Molecular Physics},
3007 >  year = {2002},
3008 >  volume = {100},
3009 >  pages = {3885-3891},
3010 >  number = {24},
3011 >  month = {Dec 20},
3012 >  abstract = {The best simple method for Newtonian molecular dynamics is indisputably
3013 >        the leapfrog Stormer-Verlet method. The appropriate generalization
3014 >        to simple Langevin dynamics is unclear. An analysis is presented
3015 >        comparing an 'impulse method' (kick; fluctuate; kick), the 1982
3016 >        method of van Gunsteren and Berendsen, and the Brunger-Brooks-Karplus
3017 >        (BBK) method. It is shown how the impulse method and the van Gunsteren-Berendsen
3018 >        methods can be implemented as efficiently as the BBK method. Other
3019 >        considerations suggest that the impulse method is the best basic
3020 >        method for simple Langevin dynamics, with the van Gunsteren-Berendsen
3021 >        method a close contender.},
3022 >  annote = {633RX Times Cited:8 Cited References Count:22},
3023 >  issn = {0026-8976},
3024 >  uri = {<Go to ISI>://000180297200014},
3025   }
3026  
3027 <
3028 < @Article{marrink03:vesicles,
3029 <  author =   {S.~J. Marrink and A.~E. Mark},
3030 <  title =    {Molecular Dynaimcs Simulation of the Formation, Structure, and Dynamics of Small Phospholipid Vesicles},
3031 <  journal =      {J. Am. Chem. Soc.},
3032 <  year =     2003,
3033 <  volume =   125,
3034 <  pages =    {15233-15242}
3027 > @ARTICLE{Skeel1997,
3028 >  author = {R. D. Skeel and G. H. Zhang and T. Schlick},
3029 >  title = {A family of symplectic integrators: Stability, accuracy, and molecular
3030 >        dynamics applications},
3031 >  journal = {Siam Journal on Scientific Computing},
3032 >  year = {1997},
3033 >  volume = {18},
3034 >  pages = {203-222},
3035 >  number = {1},
3036 >  month = {Jan},
3037 >  abstract = {The following integration methods for special second-order ordinary
3038 >        differential equations are studied: leapfrog, implicit midpoint,
3039 >        trapezoid, Stormer-Verlet, and Cowell-Numerov. We show that all
3040 >        are members, or equivalent to members, of a one-parameter family
3041 >        of schemes. Some methods have more than one common form, and we
3042 >        discuss a systematic enumeration of these forms. We also present
3043 >        a stability and accuracy analysis based on the idea of ''modified
3044 >        equations'' and a proof of symplecticness. It follows that Cowell-Numerov
3045 >        and ''LIM2'' (a method proposed by Zhang and Schlick) are symplectic.
3046 >        A different interpretation of the values used by these integrators
3047 >        leads to higher accuracy and better energy conservation. Hence,
3048 >        we suggest that the straightforward analysis of energy conservation
3049 >        is misleading.},
3050 >  annote = {We981 Times Cited:30 Cited References Count:35},
3051 >  issn = {1064-8275},
3052 >  uri = {<Go to ISI>://A1997WE98100012},
3053   }
3054  
3055 < @Book{gamma94,
3056 <  author =       {E. Gamma, R. Helm, R. Johnson and J. Vlissides},
3057 <  title =        {Design Patterns: Elements of Reusable Object-Oriented Software},
3058 <  chapter =      7,
3059 <  publisher =    {Perason Education},
3060 <  year =         1994,
3061 <  address =      {London},
3055 > @ARTICLE{Tao2005,
3056 >  author = {Y. G. Tao and W. K. {den Otter} and J. T. Padding and J. K. G. Dhont
3057 >        and W. J. Briels},
3058 >  title = {Brownian dynamics simulations of the self- and collective rotational
3059 >        diffusion coefficients of rigid long thin rods},
3060 >  journal = {Journal of Chemical Physics},
3061 >  year = {2005},
3062 >  volume = {122},
3063 >  pages = {-},
3064 >  number = {24},
3065 >  month = {Jun 22},
3066 >  abstract = {Recently a microscopic theory for the dynamics of suspensions of long
3067 >        thin rigid rods was presented, confirming and expanding the well-known
3068 >        theory by Doi and Edwards [The Theory of Polymer Dynamics (Clarendon,
3069 >        Oxford, 1986)] and Kuzuu [J. Phys. Soc. Jpn. 52, 3486 (1983)]. Here
3070 >        this theory is put to the test by comparing it against computer
3071 >        simulations. A Brownian dynamics simulation program was developed
3072 >        to follow the dynamics of the rods, with a length over a diameter
3073 >        ratio of 60, on the Smoluchowski time scale. The model accounts
3074 >        for excluded volume interactions between rods, but neglects hydrodynamic
3075 >        interactions. The self-rotational diffusion coefficients D-r(phi)
3076 >        of the rods were calculated by standard methods and by a new, more
3077 >        efficient method based on calculating average restoring torques.
3078 >        Collective decay of orientational order was calculated by means
3079 >        of equilibrium and nonequilibrium simulations. Our results show
3080 >        that, for the currently accessible volume fractions, the decay times
3081 >        in both cases are virtually identical. Moreover, the observed decay
3082 >        of diffusion coefficients with volume fraction is much quicker than
3083 >        predicted by the theory, which is attributed to an oversimplification
3084 >        of dynamic correlations in the theory. (c) 2005 American Institute
3085 >        of Physics.},
3086 >  annote = {943DN Times Cited:3 Cited References Count:26},
3087 >  issn = {0021-9606},
3088 >  uri = {<Go to ISI>://000230332400077},
3089   }
3090  
3091 < @Book{alexander,
3092 <  author =       {C. Alexander},
3093 <  title =        {A Pattern Language: Towns, Buildings, Construction},
3094 <  publisher =    {Oxford University Press},
3095 <  year =         1987,
3096 <  address =      {New York}
3091 > @BOOK{Tolman1979,
3092 >  title = {The Principles of Statistical Mechanics},
3093 >  publisher = {Dover Publications, Inc.},
3094 >  year = {1979},
3095 >  author = {R.~C. Tolman},
3096 >  address = {New York},
3097 >  chapter = {2},
3098 >  pages = {19-22},
3099   }
3100  
3101 < @Article{wilson,
3102 <  author =   {G.~V. Wilson },
3103 <  title =    {Where's the Real Bottleneck in Scientific Computing?},
3104 <  journal =      {American Scientist},
3105 <  year =     2006,
3106 <  volume =   94
3101 > @ARTICLE{Tu1995,
3102 >  author = {K. Tu and D. J. Tobias and M. L. Klein},
3103 >  title = {Constant pressure and temperature molecular dynamics simulation of
3104 >        a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine
3105 >        bilayer},
3106 >  journal = {Biophysical Journal},
3107 >  year = {1995},
3108 >  volume = {69},
3109 >  pages = {2558-2562},
3110 >  number = {6},
3111 >  month = {Dec},
3112 >  abstract = {We report a constant pressure and temperature molecular dynamics simulation
3113 >        of a fully hydrated liquid crystal (L(alpha) phase bilayer of dipalmitoylphosphatidylcholine
3114 >        at 50 degrees C and 28 water molecules/lipid. We have shown that
3115 >        the bilayer is stable throughout the 1550-ps simulation and have
3116 >        demonstrated convergence of the system dimensions. Several important
3117 >        aspects of the bilayer structure have been investigated and compared
3118 >        favorably with experimental results. For example, the average positions
3119 >        of specific carbon atoms along the bilayer normal agree well with
3120 >        neutron diffraction data, and the electron density profile is in
3121 >        accord with x-ray diffraction results. The hydrocarbon chain deuterium
3122 >        order parameters agree reasonably well with NMR results for the
3123 >        middles of the chains, but the simulation predicts too much order
3124 >        at the chain ends. In spite of the deviations in the order parameters,
3125 >        the hydrocarbon chain packing density appears to be essentially
3126 >        correct, inasmuch as the area/lipid and bilayer thickness are in
3127 >        agreement with the most refined experimental estimates. The deuterium
3128 >        order parameters for the glycerol and choline groups, as well as
3129 >        the phosphorus chemical shift anisotropy, are in qualitative agreement
3130 >        with those extracted from NMR measurements.},
3131 >  annote = {Tv018 Times Cited:108 Cited References Count:34},
3132 >  issn = {0006-3495},
3133 >  uri = {<Go to ISI>://A1995TV01800037},
3134   }
3135  
3136 < @article{Meineke05,
3137 <        Author = {M.~A. Meineke and C.~F. {Vardeman II} and T. Lin and C.~J. Fennell and J.~D. Gezelter},
3138 <        Date-Modified = {2006-03-05 12:37:31 -0500},
3139 <        Journal = {J. Comp. Chem.},
3140 <        Pages = {252-271},
3141 <        Title = {OOPSE: An Open Source Object-Oriented Parallel Simulation Engine for Molecular Dynamics},
3142 <        Volume = 26,
3143 <        Year = 2005
3136 > @ARTICLE{Tuckerman1992,
3137 >  author = {M. Tuckerman and B. J. Berne and G. J. Martyna},
3138 >  title = {Reversible Multiple Time Scale Molecular-Dynamics},
3139 >  journal = {Journal of Chemical Physics},
3140 >  year = {1992},
3141 >  volume = {97},
3142 >  pages = {1990-2001},
3143 >  number = {3},
3144 >  month = {Aug 1},
3145 >  abstract = {The Trotter factorization of the Liouville propagator is used to generate
3146 >        new reversible molecular dynamics integrators. This strategy is
3147 >        applied to derive reversible reference system propagator algorithms
3148 >        (RESPA) that greatly accelerate simulations of systems with a separation
3149 >        of time scales or with long range forces. The new algorithms have
3150 >        all of the advantages of previous RESPA integrators but are reversible,
3151 >        and more stable than those methods. These methods are applied to
3152 >        a set of paradigmatic systems and are shown to be superior to earlier
3153 >        methods. It is shown how the new RESPA methods are related to predictor-corrector
3154 >        integrators. Finally, we show how these methods can be used to accelerate
3155 >        the integration of the equations of motion of systems with Nose
3156 >        thermostats.},
3157 >  annote = {Je891 Times Cited:680 Cited References Count:19},
3158 >  issn = {0021-9606},
3159 >  uri = {<Go to ISI>://A1992JE89100044},
3160   }
3161  
3162 < @article{Matthey05,
3163 <        Author = {T. Matthey, T. Cickovski and \textit{et al}},
3164 <        Date-Modified = {2006-03-05 12:37:31 -0500},
3165 <        Journal = {ACM Transactions on Mathematical Software},
3166 <        Pages = {237-265},
3167 <        Title = {ProtoMol, an Object-Oriented Framework for Prototyping Novel Algorithms for Molecular Dynamics},
2119 <        Volume = 20,
2120 <        Year = 2004
3162 > @BOOK{Varadarajan1974,
3163 >  title = {Lie groups, Lie algebras, and their representations},
3164 >  publisher = {Prentice-Hall},
3165 >  year = {1974},
3166 >  author = {V.S. Varadarajan},
3167 >  address = {New York},
3168   }
3169  
3170 < @Book{tolman79,
3171 <  author =       {R.~C. Tolman},
3172 <  title =        {The Principles of Statistical Mechanics},
3173 <  chapter =      2,
3174 <  publisher =    {Dover Publications, Inc.},
3175 <  year =         1979,
3176 <  address =      {New York},
3177 <  pages =        {19-22}
3170 > @ARTICLE{Wegener1979,
3171 >  author = {W.~A. Wegener, V.~J. Koester and R.~M. Dowben},
3172 >  title = {A general ellipsoid can not always serve as a modle for the rotational
3173 >        diffusion properties of arbitrary shaped rigid molecules},
3174 >  journal = {Proc. Natl. Acad. Sci.},
3175 >  year = {1979},
3176 >  volume = {76},
3177 >  pages = {6356-6360},
3178 >  number = {12},
3179   }
3180  
3181 < @Book{Marion90,
3182 <  author =   {J.~B. Marion},
3183 <  title =    {Classical Dynamics of Particles and Systems},
3184 <  publisher =    {Academic Press},
3185 <  year =     1990,
3186 <  address =  {New York},
2139 <  edition =  {2rd}
3181 > @ARTICLE{Wilson2006,
3182 >  author = {G.~V. Wilson },
3183 >  title = {Where's the Real Bottleneck in Scientific Computing?},
3184 >  journal = {American Scientist},
3185 >  year = {2006},
3186 >  volume = {94},
3187   }
3188  
3189 < @Book{Leimkuhler04,
3190 <  author =   {B. Leimkuhler and S. Reich},
3191 <  title =    {Simulating Hamiltonian Dynamics},
3192 <  publisher =    {Cambridge University Press},
3193 <  year =     2004,
3194 <  address =  {Cambridge}
3189 > @ARTICLE{Withers2003,
3190 >  author = {I. M. Withers},
3191 >  title = {Effects of longitudinal quadrupoles on the phase behavior of a Gay-Berne
3192 >        fluid},
3193 >  journal = {Journal of Chemical Physics},
3194 >  year = {2003},
3195 >  volume = {119},
3196 >  pages = {10209-10223},
3197 >  number = {19},
3198 >  month = {Nov 15},
3199 >  abstract = {The effects of longitudinal quadrupole moments on the formation of
3200 >        liquid crystalline phases are studied by means of constant NPT Monte
3201 >        Carlo simulation methods. The popular Gay-Berne model mesogen is
3202 >        used as the reference fluid, which displays the phase sequences
3203 >        isotropic-smectic A-smectic B and isotropic-smectic B at high (T*=2.0)
3204 >        and low (T*=1.5) temperatures, respectively. With increasing quadrupole
3205 >        magnitude the smectic phases are observed to be stabilized with
3206 >        respect to the isotropic liquid, while the smectic B is destabilized
3207 >        with respect to the smectic A. At the lower temperature, a sufficiently
3208 >        large quadrupole magnitude results in the injection of the smectic
3209 >        A phase into the phase sequence and the replacement of the smectic
3210 >        B phase by the tilted smectic J phase. The nematic phase is also
3211 >        injected into the phase sequence at both temperatures considered,
3212 >        and ultimately for sufficiently large quadrupole magnitudes no coherent
3213 >        layered structures were observed. The stabilization of the smectic
3214 >        A phase supports the commonly held belief that, while the inclusion
3215 >        of polar groups is not a prerequisite for the formation of the smectic
3216 >        A phase, quadrupolar interactions help to increase the temperature
3217 >        and pressure range for which the smectic A phase is observed. The
3218 >        quality of the layered structure is worsened with increasing quadrupole
3219 >        magnitude. This behavior, along with the injection of the nematic
3220 >        phase into the phase sequence, indicate that the general tendency
3221 >        of the quadrupolar interactions is to destabilize the layered structure.
3222 >        A pressure dependence upon the smectic layer spacing is observed.
3223 >        This behavior is in much closer agreement with experimental findings
3224 >        than has been observed previously for nonpolar Gay-Berne and hard
3225 >        spherocylinder models. (C) 2003 American Institute of Physics.},
3226 >  annote = {738EF Times Cited:3 Cited References Count:43},
3227 >  issn = {0021-9606},
3228 >  uri = {<Go to ISI>://000186273200027},
3229   }
3230  
3231 < @Article{Gray03,
3232 <  author =       {J.~J Gray,S. Moughon, C. Wang },
3233 <  title =        {Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations},
3234 <  journal =      {jmb},
3235 <  year =         2003,
3236 <  volume =       331,
3237 <  pages =        {281-299}
3231 > @ARTICLE{Wolf1999,
3232 >  author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
3233 >  title = {Exact method for the simulation of Coulombic systems by spherically
3234 >        truncated, pairwise r(-1) summation},
3235 >  journal = {Journal of Chemical Physics},
3236 >  year = {1999},
3237 >  volume = {110},
3238 >  pages = {8254-8282},
3239 >  number = {17},
3240 >  month = {May 1},
3241 >  abstract = {Based on a recent result showing that the net Coulomb potential in
3242 >        condensed ionic systems is rather short ranged, an exact and physically
3243 >        transparent method permitting the evaluation of the Coulomb potential
3244 >        by direct summation over the r(-1) Coulomb pair potential is presented.
3245 >        The key observation is that the problems encountered in determining
3246 >        the Coulomb energy by pairwise, spherically truncated r(-1) summation
3247 >        are a direct consequence of the fact that the system summed over
3248 >        is practically never neutral. A simple method is developed that
3249 >        achieves charge neutralization wherever the r(-1) pair potential
3250 >        is truncated. This enables the extraction of the Coulomb energy,
3251 >        forces, and stresses from a spherically truncated, usually charged
3252 >        environment in a manner that is independent of the grouping of the
3253 >        pair terms. The close connection of our approach with the Ewald
3254 >        method is demonstrated and exploited, providing an efficient method
3255 >        for the simulation of even highly disordered ionic systems by direct,
3256 >        pairwise r(-1) summation with spherical truncation at rather short
3257 >        range, i.e., a method which fully exploits the short-ranged nature
3258 >        of the interactions in ionic systems. The method is validated by
3259 >        simulations of crystals, liquids, and interfacial systems, such
3260 >        as free surfaces and grain boundaries. (C) 1999 American Institute
3261 >        of Physics. [S0021-9606(99)51517-1].},
3262 >  annote = {189PD Times Cited:70 Cited References Count:34},
3263 >  issn = {0021-9606},
3264 >  uri = {<Go to ISI>://000079913000008},
3265   }
3266  
3267 < @Article{McLachlan93,
3268 <  author =       {R.~I McLachlan},
3269 <  title =        {Explicit Lie-Poisson integration and the Euler equations},
3270 <  journal =      {prl},
3271 <  year =         1993,
3272 <  volume =       71,
3273 <  pages =        {3043-3046}
3267 > @ARTICLE{Yoshida1990,
3268 >  author = {H. Yoshida},
3269 >  title = {Construction of Higher-Order Symplectic Integrators},
3270 >  journal = {Physics Letters A},
3271 >  year = {1990},
3272 >  volume = {150},
3273 >  pages = {262-268},
3274 >  number = {5-7},
3275 >  month = {Nov 12},
3276 >  annote = {Ej798 Times Cited:492 Cited References Count:9},
3277 >  issn = {0375-9601},
3278 >  uri = {<Go to ISI>://A1990EJ79800009},
3279   }
2167 @ARTICLE{Wegener79,
2168  AUTHOR =       {W.~A. Wegener, V.~J. Koester and R.~M. Dowben},
2169  TITLE =        {A general ellipsoid can not always serve as a modle for the rotational diffusion properties of arbitrary shaped rigid molecules},
2170  JOURNAL =      {Proc. Natl. Acad. Sci.},
2171  YEAR =         {1979},
2172  volume =       {76},
2173  number =       {12},
2174  pages =        {6356-6360}
2175 }
3280  
2177 @ARTICLE{Powles73,
2178  AUTHOR =       {J.~G. Powles},
2179  TITLE =        {A general ellipsoid can not always serve as a modle for the rotational diffusion properties of arbitrary shaped rigid molecules},
2180  JOURNAL =      {Advan. Phys.},
2181  YEAR =         {1973},
2182  volume =       {22},
2183  pages =        {1-56}
2184 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines