ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/dissertation.bib
(Generate patch)

Comparing trunk/tengDissertation/dissertation.bib (file contents):
Revision 2730 by tim, Mon Apr 24 18:49:32 2006 UTC vs.
Revision 2886 by tim, Sun Jun 25 18:46:09 2006 UTC

# Line 1 | Line 1
1 < @string{jcp = "J. Chem. Phys."}
2 < @string{cpl = "Chem. Phys. Lett."}
3 < @string{jpc = "J. Phys. Chem."}
4 < @string{jpcA = "J. Phys. Chem. A"}
5 < @string{jpcB = "J. Phys. Chem. B"}
6 < @string{cp  = "Chem. Phys."}
7 < @string{acp = "Adv. Chem. Phys."}
8 < @string{pra = "Phys. Rev. A"}
9 < @string{prb = "Phys. Rev. B"}
10 < @string{pre = "Phys. Rev. E"}
11 < @string{prl = "Phys. Rev. Lett."}
12 < @string{rmp = "Rev. Mod. Phys."}
13 < @string{jml = "J. Mol. Liq."}
14 < @string{mp = "Mol. Phys."}
15 < @string{pnas = "Proc. Natl. Acad. Sci. USA"}
16 < @string{jacs = "J. Am. Chem. Soc."}
17 < @string{jmb = "J. Mol. Biol."}
18 <
19 <
20 < @Book{Berne90,
21 <  author =       {B.~J. Berne and R. Pecora},
22 <  title =        {Dynamic Light Scattering},
23 <  publisher =    {Robert E. Krieger Publishing Company, Inc.},
24 <  year =         1990,
25 <  address =      {Malabar, Florida}
26 < }
27 <
28 < @Article{Evans77,
29 <  author =       {D.~J. Evans},
30 <  title =        {On the representation of orientation space},
31 <  journal =      {Mol. Phys.},
32 <  year =         1977,
33 <  volume =       34,
34 <  pages =        {317-325}
35 < }
36 <
37 < @Article{Tuckerman92,
38 <  author =       {M. Tuckerman and B.~J. Berne and G.~J. Martyna},
39 <  title =        {Reversible multiple time scale molecular dynamics},
40 <  journal =      jcp,
41 <  year =         1992,
42 <  volume =       97,
43 <  pages =        {1990-2001}
44 < }
45 <
46 < @Book{Hansen86,
47 <  author =       {J.~P. Hansen and I.~R. McDonald},
48 <  title =        {Theory of Simple Liquids},
49 <  chapter =      7,
50 <  publisher =    {Academic Press},
51 <  year =         1986,
52 <  address =      {London},
53 <  pages =        {199-206}
54 < }
55 <
56 < @Article{Angelani98,
57 <  author =       {L. Angelani and G. Parisi and G. Ruocco and G. Viliani},
58 <  title =        {Connected Network of Minima as a Model Glass: Long
59 <                  Time Dynamics},
60 <  journal =      prl,
61 <  year =         1998,
62 <  volume =       81,
63 <  number =       21,
64 <  pages =        {4648-4651}
65 < }
66 <
67 < @Article{Stillinger82,
68 <  author =       {F.~H. Stillinger and T.~A. Weber},
69 <  title =        {Hidden structure in liquids},
70 <  journal =      pra,
71 <  year =         1982,
72 <  volume =       25,
73 <  number =       2,
74 <  pages =        {978-989}
75 < }
76 <
77 < @Article{Stillinger83,
78 <  author =       {F.~H. Stillinger and T.~A. Weber},
79 <  title =        {Dynamics of structural transitions in liquids},
80 <  journal =      pra,
81 <  year =         1983,
82 <  volume =       28,
83 <  number =       4,
84 <  pages =        {2408-2416}
85 < }
86 <
87 < @Article{Weber84,
88 <  author =       {T.~A. Weber and F.~H. Stillinger},
89 <  title =        {The effect of density on the inherent structure in
90 <                  liquids},
91 <  journal =      jcp,
92 <  year =         1984,
93 <  volume =       80,
94 <  number =       6,
95 <  pages =        {2742-2746}
96 < }
97 <
98 < @Article{Stillinger85,
99 <  author =       {F.~H. Stillinger and T.~A. Weber},
100 <  title =        {Inherent structure theory of liquids in the
101 <                  hard-sphere limit},
102 <  journal =      jcp,
103 <  year =         1985,
104 <  volume =       83,
105 <  number =       9,
106 <  pages =        {4767-4775}
107 < }
108 <
109 < @Article{Stillinger98,
110 <  author =       {S. Sastry and P.~G. Debenedetti and F.~H. Stillinger},
111 <  title =        {Signatures of distinct dynamical regimes in the
112 <                  energy landscape of a glass-forming liquid},
113 <  journal =      {Nature},
114 <  year =         1998,
115 <  volume =       393,
116 <  pages =        {554-557}
117 < }
118 <
119 <
120 < @Article{Parkhurst75a,
121 <  author =       {H.~J. {Parkhurst, Jr.} and J. Jonas},
122 <  title =        {Dense liquids. I. The effect of density and
123 <                  temperature on viscosity of tetramethylsilane and
124 <                  benzene-$\mbox{D}_6$},
125 <  journal =      jcp,
126 <  year =         1975,
127 <  volume =       63,
128 <  number =       6,
129 <  pages =        {2698-2704}
130 < }
131 <
132 < @Article{Parkhurst75b,
133 <  author =       {H.~J. {Parkhurst, Jr.} and J. Jonas},
134 <  title =        {Dense liquids. II. The effect of density and
135 <                  temperature on viscosity of tetramethylsilane and
136 <                  benzene },
137 <  journal =      jcp,
138 <  year =         1975,
139 <  volume =       63,
140 <  number =       6,
141 <  pages =        {2705-2709}
142 < }
143 <
144 < @Article{Forester97,
145 <  author =       {T.~R. Forester and W. Smith and J.~H.~R. Clarke},
146 <  title =        {Antibiotic activity of valinomycin - Molecular
147 <                  dynamics simulations involving the water/membrane
148 <                  interface},
149 <  journal =      {J. Chem. Soc. - Faraday Transactions},
150 <  year =         1997,
151 <  volume =       93,
152 <  pages =        {613-619}
153 < }
154 <
155 < @Article{Tieleman98,
156 <  author =       {D.~P. Tieleman and H.~J.~C. Berendsen},
157 <  title =        {A molecular dynamics study of the pores formed by
158 <                  Escherichia coli OmpF porin in a fully hydrated
159 <                  palmitoyloleoylphosphatidylcholine bilayer},
160 <  journal =      {Biophys. J.},
161 <  year =         1998,
162 <  volume =       74,
163 <  pages =        {2786-2801}
164 < }
165 <
166 < @Article{Cascales98,
167 <  author =       {J.~J.~L. Cascales and J.~G.~H. Cifre and J.~G. de~la~Torre},
168 <  title =        {Anaesthetic mechanism on a model biological
169 <                  membrane: A molecular dynamics simulation study},
170 <  journal =      {J. Phys. Chem. B},
171 <  year =         1998,
172 <  volume =       102,
173 <  pages =        {625-631}
174 < }
175 <
176 < @Article{Bassolino95,
177 <  author =       {D. Bassolino and H.~E. Alper and T.~R. Stouch},
178 <  title =        {MECHANISM OF SOLUTE DIFFUSION THROUGH LIPID
179 <                  BILAYER-MEMBRANES BY MOLECULAR-DYNAMICS SIMULATION},
180 <  journal =      {J. Am. Chem. Soc.},
181 <  year =         1995,
182 <  volume =       117,
183 <  pages =        {4118-4129}
184 < }
185 <
186 < @Article{Alper95,
187 <  author =       {H.~E. Alper and T.~R. Stouch},
188 <  title =        {ORIENTATION AND DIFFUSION OF A DRUG ANALOG IN
189 <                  BIOMEMBRANES - MOLECULAR-DYNAMICS SIMULATIONS},
190 <  journal =      {J. Phys. Chem.},
191 <  year =         1995,
192 <  volume =       99,
193 <  pages =        {5724-5731}
194 < }
195 <
196 < @Article{Sok92,
197 <  author =       {R.~M. Sok and H.~J.~C. Berendsen and W.~F. van~Gunsteren},
198 <  title =        {MOLECULAR-DYNAMICS SIMULATION OF THE TRANSPORT OF
199 <                  SMALL MOLECULES ACROSS A POLYMER MEMBRANE},
200 <  journal =      {J. Chem. Phys.},
201 <  year =         1992,
202 <  volume =       96,
203 <  pages =        {4699-4704}
204 < }
205 <
206 < @Article{Rabani99,
207 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
208 <  title =        {Direct Observation of Stretched-Exponential
209 <                  Relaxation in Low-Temperature Lennard-Jones Systems
210 <                  Using the Cage Correlation Function},
211 <  journal =      prl,
212 <  year =         {1999},
213 <  volume =       82,
214 <  pages =        {3649}
215 < }
216 <
217 < @Article{Rabani97,
218 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
219 <  title =        {Calculating the hopping rate for self-diffusion on
220 <                  rough potential energy surfaces: Cage correlations},
221 <  journal =      {J. Chem. Phys.},
222 <  year =         1997,
223 <  volume =       107,
224 <  pages =        {6867-6876}
225 < }
226 <
227 < @Article{Gezelter99,
228 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
229 <  title =        {Methods for calculating the hopping rate for
230 <                  orientational and spatial diffusion in a molecular
231 <                  liquid: $\mbox{CS}_{2}$},
232 <  journal =      jcp,
233 <  year =         1999,
234 <  volume =       110,
235 <  pages =        3444
236 < }
237 <
238 < @Article{Gezelter98a,
239 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
240 <  title =        {Response to 'Comment on a Critique of the
241 <                  Instantaneous Normal Mode (INM) Approach to
242 <                  Diffusion'},
243 <  journal =      jcp,
244 <  year =         1998,
245 <  volume =       109,
246 <  pages =        4695
247 < }
248 <
249 < @Article{Gezelter97,
250 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
251 <  title =        {Can imaginary instantaneous normal mode frequencies
252 <                  predict barriers to self-diffusion?},
253 <  journal =      jcp,
254 <  year =         1997,
255 <  volume =       107,
256 <  pages =        4618
257 < }
258 <
259 < @Article{Zwanzig83,
260 <  author =       {R. Zwanzig},
261 <  title =        {On the relation between self-diffusion and viscosity
262 <                  of liquids},
263 <  journal =      jcp,
264 <  year =         1983,
265 <  volume =       79,
266 <  pages =        {4507-4508}
267 < }
268 <
269 < @Article{Zwanzig88,
270 <  author =       {R. Zwanzig},
271 <  title =        {Diffusion in rough potential},
272 <  journal =      {Proc. Natl. Acad. Sci. USA},
273 <  year =         1988,
274 <  volume =       85,
275 <  pages =        2029
276 < }
277 <
278 < @Article{Stillinger95,
279 <  author =       {F.~H. Stillinger},
280 <  title =        {A Topographic View of Supercooled Liquids and Glass
281 <                  Formation},
282 <  journal =      {Science},
283 <  year =         1995,
284 <  volume =       267,
285 <  pages =        {1935-1939}
286 < }
287 <
288 < @InCollection{Angell85,
289 <  author =       {C.~A. Angell},
290 <  title =        {unknown},
291 <  booktitle =    {Relaxations in Complex Systems},
292 <  publisher =    {National Technical Information Service,
293 <                  U.S. Department of Commerce},
294 <  year =         1985,
295 <  editor =       {K.~Ngai and G.~B. Wright},
296 <  address =      {Springfield, VA},
297 <  pages =        1
298 < }
299 <
300 < @Article{Bembenek96,
301 <  author =       {S.~D. Bembenek and B.~B. Laird},
302 <  title =        {The role of localization in glasses and supercooled liquids},
303 <  journal =      jcp,
304 <  year =         1996,
305 <  volume =       104,
306 <  pages =        5199
307 < }
308 <
309 < @Article{Sun97,
310 <  author =       {X. Sun and W.~H. Miller},
311 <  title =        {Semiclassical initial value representation for
312 <                  electronically nonadiabatic molecular dynamics},
313 <  journal =      jcp,
314 <  year =         1997,
315 <  volume =       106,
316 <  pages =        6346
317 < }
318 <
319 < @Article{Spath96,
320 <  author =       {B.~W. Spath and W.~H. Miller},
321 <  title =        {SEMICLASSICAL CALCULATION OF CUMULATIVE REACTION
322 <                  PROBABILITIES},
323 <  journal =      jcp,
324 <  year =         1996,
325 <  volume =       104,
326 <  pages =        95
327 < }
328 <
329 < @Book{Warshel91,
330 <  author =       {Arieh Warshel},
331 <  title =        {Computer modeling of chemical reactions in enzymes
332 <                  and solutions},
333 <  publisher =    {Wiley},
334 <  year =         1991,
335 <  address =      {New York}
336 < }
337 <
338 < @Article{Vuilleumier97,
339 <  author =       {Rodolphe Vuilleumier and Daniel Borgis},
340 <  title =        {Molecular Dynamics of an excess proton in water
341 <                  using a non-additive valence bond force field},
342 <  journal =      jpc,
343 <  year =         1997,
344 <  volume =       {in press}
345 < }
346 <
347 < @Article{Kob95a,
348 <  author =       {W. Kob and H.~C. Andersen},
349 <  title =        {Testing mode-coupling theory for a supercooled
350 <                  binary Lennard-Jones mixtures: The van Hove
351 <                  corraltion function},
352 <  journal =      pre,
353 <  year =         1995,
354 <  volume =       51,
355 <  pages =        {4626-4641}
356 < }
357 <
358 < @Article{Kob95b,
359 <  author =       {W. Kob and H.~C. Andersen},
360 <  title =        {Testing mode-coupling theory for a supercooled
361 <                  binary Lennard-Jones mixtures. II. Intermediate
362 <                  scattering function and dynamic susceptibility},
363 <  journal =      pre,
364 <  year =         1995,
365 <  volume =       52,
366 <  pages =        {4134-4153}
367 < }
368 <
369 < @InProceedings{Gotze89,
370 <  author =       "W. G{\"{o}}tze",
371 <  title =        "Aspects of Structural Glass Transitions",
372 <  editor =       "J.~P. Hansen and D. Levesque and J. Zinn-Justin",
373 <  volume =       "I",
374 <  pages =        "287-503",
375 <  booktitle =    "Liquids, Freezing and Glass Transitions",
376 <  year =         1989,
377 <  publisher =    "North-Holland",
378 <  address =      "Amsterdam"
379 < }
380 <
381 < @Article{Sun97a,
382 <  author =       "X. Sun and W.~H. Miller",
383 <  title =        {Mixed semiclassical-classical approaches to the
384 <                  dynamics of complex molecular systems},
385 <  journal =      jcp,
386 <  year =         1997,
387 <  pages =        916
388 < }
389 <
390 < @Article{Keshavamurthy94,
391 <  author =       "S. Keshavamurthy and W.~H. Miller",
392 <  title =        "ivr",
393 <  journal =      cpl,
394 <  year =         1994,
395 <  volume =       218,
396 <  pages =        189
397 < }
398 <
399 < @Article{Billing75,
400 <  author =       "G.~D. Billing",
401 <  title =        "ehrenfest",
402 <  journal =      cpl,
403 <  year =         1975,
404 <  volume =       30,
405 <  pages =        391
406 < }
407 <
408 < @Article{Chang90,
409 <  author =       {Y.-T. Chang and W.~H. Miller},
410 <  title =        {An Empirical Valence Bond Model for Constructing
411 <                  Global Potential Energy Surfaces for Chemical
412 <                  Reactions of Polyatomic Molecular Systems},
413 <  journal =      jpc,
414 <  year =         1990,
415 <  volume =       94,
416 <  pages =        {5884-5888}
417 < }
418 <
419 < @Article{Shor94,
420 <  author =       {P.W. Shor},
421 <  title =        {Algorithms for quantum computation: discrete
422 <                  logarithms and factoring},
423 <  journal =      {Proceedings of the 35th Annual Symposium
424 < on Foundations of Computer Science},
425 <  year =         1994,
426 <  pages =        {124-134}
427 < }
428 <
429 < @Article{Feynman82,
430 <  author =       {R.~P. Feynman},
431 <  title =        {Simulating physics with computers},
432 <  journal =      {Int. J. Theor. Phys.},
433 <  year =         1982,
434 <  volume =       21,
435 <  pages =        {467-488}
436 < }
437 <
438 < @Article{Grover97,
439 <  author =       {L.~K. Grover},
440 <  title =        {Quantum computers can search arbitrarily large
441 <                  databases by a single query},
442 <  journal =      prl,
443 <  year =         1997,
444 <  volume =       79,
445 <  pages =        {4709-4712}
446 < }
447 <
448 < @Article{Chuang98,
449 <  author =       {I. Chuang and N. Gershenfeld and M. Kubinec},
450 <  title =        {Experimental Implementation of Fast Quantum Searching},
451 <  journal =      prl,
452 <  year =         1998,
453 <  volume =       80,
454 <  pages =        {3408-3411}
455 < }
456 <
457 < @Article{Monroe95,
458 <  author =       "C. Monroe and D.~M. Meekhof and B.~E. King and
459 <                  W.~M. Itano and D.~J. Wineland",
460 <  title =        {Demonstration of a fundamental quantum logic gate},
461 <  journal =      prl,
462 <  year =         1995,
463 <  volume =       75,
464 <  pages =        4714
465 < }
466 <
467 < @Article{Lent93,
468 <  author =       "C.~S. Lent and P.~D. Tougaw and W.~Porod and
469 <                  G.~H. Bernstein",
470 <  title =        {Quantum Cellular Automata},
471 <  journal =      {Nanotechnology},
472 <  year =         1993,
473 <  volume =       4,
474 <  pages =        {49-57}
475 < }
476 <
477 < @Article{Barenco95,
478 <  author =       "A. Barenco and C.~H. Bennett and R. Cleve and
479 <                  D.~P. DiVincenzo and N. Margolus and P. Shor and
480 <                  T. Sleator and J.~A. Smolin and H. Weinfurter",
481 <  title =        {elementary gates for quantum computation},
482 <  journal =      {Phys. Rev. A},
483 <  year =         1995,
484 <  volume =       52,
485 <  pages =        {3457-3467}
486 < }
487 <
488 < @Article{Small97,
489 <  author =       {T. Reinot and J.~M. Hayes and G.~J. Small},
490 <  title =        {Electronic dephasing and electron-phonon coupling of
491 <                  aluminum phthalocyanine tetrasulphonate in
492 <                  hyperquenched and annealed glassy films of ethanol
493 <                  and methanol over a broad temperature range},
494 <  journal =      jcp,
495 <  year =         1997,
496 <  volume =       106,
497 <  pages =        {457-466}
498 < }
1 > This file was created with JabRef 2.0.1.
2 > Encoding: GBK
3  
4 < @Article{Laflamme96,
5 <  author =       {R. Laflamme and C. Miquel and J.~P. Paz and W.~H. Zurek},
6 <  title =        {A perfect quantum error correcting code: 5 bit code
7 <                  correcting a general 1 qubit error to encode 1 qubit
8 <                  of information},
9 <  journal =      prl,
10 <  year =         1996,
11 <  volume =       98,
12 <  pages =        77
13 < }
14 <
15 < @Article{Shor95,
16 <  author =       {P.~W. Shor},
17 <  title =        {SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY},
18 <  journal =      {Phys. Rev. A},
19 <  year =         1995,
20 <  volume =       52,
21 <  pages =        {2493-2496}
22 < }
23 <
24 < @Article{Calderbank96,
25 <  author =       {A.~R. Calderbank and P.~W. Shor},
26 <  title =        {Good quantum error-correcting codes exist},
27 <  journal =      {Phys. Rev. A},
28 <  year =         1996,
29 <  volume =       54,
30 <  pages =        {1098-1105}
31 < }
32 <
33 < @Article{Steane96,
34 <  author =       {A.~M. Steane},
35 <  title =        {Error correcting codes in quantum theory},
36 <  journal =      prl,
37 <  year =         1996,
38 <  volume =       77,
39 <  pages =        {793-797}
536 < }
537 <
538 < @Article{Gezelter95,
539 <  author =       {J.~D. Gezelter and W.~H. Miller},
540 <  title =        {RESONANT FEATURES IN THE ENERGY-DEPENDENCE OF THE
541 <                  RATE OF KETENE ISOMERIZATION},
542 <  journal =      jcp,
543 <  year =         1995,
544 <  volume =       103,
545 <  pages =        {7868-7876}
546 < }
547 <
548 < @Article{Chakrabarti92,
549 <  author =       {A.~C. Chakrabarti and D.~W. Deamer},
550 <  title =        {PERMEABILITY OF LIPID BILAYERS TO AMINO-ACIDS AND PHOSPHATE},
551 <  journal =      {Biochimica et Biophysica Acta},
552 <  year =         1992,
553 <  volume =       1111,
554 <  pages =        {171-177}
555 < }
556 <
557 < @Article{Paula96,
558 <  author =       {S. Paula and A.~G. Volkov and A.~N. VanHoek and
559 <                  T.~H. Haines and D.~W. Deamer},
560 <  title =        {Permeation of protons, potassium ions, and small
561 <                  polar molecules through phospholipid bilayers as a
562 <                  function of membrane thickness},
563 <  journal =      {Biophys. J.},
564 <  year =         1996,
565 <  volume =       70,
566 <  pages =        {339-348}
567 < }
568 <
569 < @Article{Little96,
570 <  author =       {H.~J. Little},
571 <  title =        {How has molecular pharmacology contributed to our
572 <                  understanding of the mechanism(s) of general
573 <                  anesthesia?},
574 <  journal =      {Pharmacology \& Therapeutics},
575 <  year =         1996,
576 <  volume =       69,
577 <  pages =        {37-58}
578 < }
579 <
580 < @Article{McKinnon92,
581 <  author =       {S.~J. McKinnon and S.~L. Whittenburg and B. Brooks},
582 <  title =        {Nonequilibrium Molecular Dynamics Simulation of
583 <                  Oxygen Diffusion through Hexadecane Monolayers with
584 <                  Varying Concentrations of Cholesterol},
585 <  journal =      jpc,
586 <  year =         1992,
587 <  volume =       96,
588 <  pages =        {10497-10506}
589 < }
590 <
591 < @Article{Venable93,
592 <  author =       {R.~M. Venable and Y. Zhang and B.~J. Hardy and
593 <                  R.~W. Pastor},
594 <  title =        {Molecular Dynamics Simulations of a Lipid Bilayer
595 <                  and of Hexadecane: An Investigation of Membrane Fluidity},
596 <  journal =      {Science},
597 <  year =         1993,
598 <  volume =       262,
599 <  pages =        {223-226}
600 < }
601 <
602 < @Article{Essmann99,
603 <  author =       {U. Essmann and M.~L. Berkowitz},
604 <  title =        {Dynamical properties of phospholipid bilayers from
605 <                  computer simulation},
606 <  journal =      {Biophys. J.},
607 <  year =         1999,
608 <  volume =       76,
609 <  pages =        {2081-2089}
610 < }
611 <
612 < @Article{Tu98,
613 <  author =       {K.~C. Tu and M. Tarek and M.~L. Klein and D. Scharf},
614 <  title =        {Effects of anesthetics on the structure of a
615 <                  phospholipid bilayer: Molecular dynamics
616 <                  investigation of halothane in the hydrated liquid
617 <                  crystal phase of dipalmitoylphosphatidylcholine},
618 <  journal =      {Biophys. J.},
619 <  year =         1998,
620 <  volume =       75,
621 <  pages =        {2123-2134}
622 < }
623 <
624 < @Article{Pomes96,
625 <  author =       {R. Pomes and B. Roux},
626 <  title =        {Structure and dynamics of a proton wire: A
627 <                  theoretical study of H+ translocation along the
628 <                  single-file water chain in the gramicidin a channel},
629 <  journal =      {Biophys. J.},
630 <  year =         1996,
631 <  volume =       71,
632 <  pages =        {19-39}
633 < }
634 <
635 < @Article{Duwez60,
636 <  author =       {P. Duwez and R.~H. Willens and W. {Klement~Jr.}},
637 <  title =        {Continuous Series of Metastable Solid Solutions in
638 <                  Silver-Copper Alloys},
639 <  journal =      {J. Appl. Phys.},
640 <  year =         1960,
641 <  volume =       31,
642 <  pages =        {1136-1137}
643 < }
644 <
645 < @Article{Peker93,
646 <  author =       {A. Peker and W.~L. Johnson},
647 <  title =        {A highly processable metallic-glass -
648 <                  $\mbox{Zr}_{41.2}\mbox{Ti}_{13.8}\mbox{Cu}_{12.5}\mbox{Ni}_{10.0}\mbox{Be}_{22.5}$},
649 <  journal =      {Appl. Phys. Lett.},
650 <  year =         1993,
651 <  volume =       63,
652 <  pages =        {2342-2344}
653 < }
654 <
655 < @Article{ChoiYim97,
656 <  author =       {H. Choi-Yim and W.~L. Johnson},
657 <  title =        {Bulk metallic glass matrix composites},
658 <  journal =      {Appl. Phys. Lett.},
659 <  year =         1997,
660 <  volume =       71,
661 <  pages =        {3808-3810}
662 < }
663 <
664 < @Article{Sun96,
665 <  author =       {X. Sun and S. Schneider and U. Geyer and
666 <                  W.~L. Johnson and M.~A. Nicolet},
667 <  title =        {Oxidation and crystallization of an amorphous
668 <                  $\mbox{Zr}_{60}\mbox{Al}_{15}\mbox{Ni}_{25}$ alloy},
669 <  journal =      {J. Mater. Res.},
670 <  year =         1996,
671 <  volume =       11,
672 <  pages =        {2738-2743}
673 < }
674 <
675 < @Article{Heller93,
676 <  author =       {H. Heller and M. Schaefer and K. Schulten},
677 <  title =        {MOLECULAR DYNAMICS SIMULATION OF A BILAYER OF 200
678 <                  LIPIDS IN THE GEL AND IN THE LIQUID-CRYSTAL PHASES},
679 <  journal =      jpc,
680 <  year =         1993,
681 <  volume =       97,
682 <  pages =        {8343-8360}
683 < }
684 <
685 < @Article{Kushick76,
686 <  author =       {J. Kushick and B.~J. Berne},
687 <  title =        {Computer Simulation of anisotropic molecular fluids},
688 <  journal =      jcp,
689 <  year =         1976,
690 <  volume =       64,
691 <  pages =        {1362-1367}
692 < }
693 <
694 < @Article{Berardi96,
695 <  author =       {R. Berardi and S. Orlandi and C Zannoni},
696 <  title =        {Antiphase structures in polar smectic liquid
697 <                  crystals and their molecular origin},
698 <  journal =      cpl,
699 <  year =         1996,
700 <  volume =       261,
701 <  pages =        {357-362}
702 < }
703 <
704 < @Article{Berardi99,
705 <  author =       {R. Berardi and S. Orlandi and C. Zannoni},
706 <  title =        {Monte Carlo simulations of rod-like Gay-Berne
707 <                  mesogens with transverse dipoles},
708 <  journal =      {Int. J. Mod. Phys. C},
709 <  year =         1999,
710 <  volume =       10,
711 <  pages =        {477-484}
712 < }
713 <
714 < @Article{Pasterny2000,
715 <  author =       {K. Pasterny and E. Gwozdz and A. Brodka},
716 <  title =        {Properties of a model liquid crystal: Polar
717 <                  Gay-Berne particles},
718 <  journal =      {J. Mol. Liq.},
719 <  year =         2000,
720 <  volume =       85,
721 <  pages =        {173-184}
722 < }
723 <
724 < @Article{Jorgensen83,
725 <  author =       {W.~L. Jorgensen and J. Chandrasekhar and
726 <                  J.~D. Madura and R.~W. Impey and M.~L. Klein},
727 <  title =        {COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR
728 <                  SIMULATING LIQUID WATER},
729 <  journal =      jcp,
730 <  year =         1983,
731 <  volume =       79,
732 <  pages =        {926-935}
733 < }
734 <
735 < @Article{Berardi98,
736 <  author =       {R. Berardi and C. Fava and C. Zannoni},
737 <  title =        {A Gay-Berne potential for dissimilar biaxial particles},
738 <  journal =      cpl,
739 <  year =         1998,
740 <  volume =       297,
741 <  pages =        {8-14}
4 > @ARTICLE{Torre2003,
5 >  author = {J. G. {de la Torre} and H. E. Sanchez and A. Ortega and J. G. Hernandez
6 >    and M. X. Fernandes and F. G. Diaz and M. C. L. Martinez},
7 >  title = {Calculation of the solution properties of flexible macromolecules:
8 >    methods and applications},
9 >  journal = {European Biophysics Journal with Biophysics Letters},
10 >  year = {2003},
11 >  volume = {32},
12 >  pages = {477-486},
13 >  number = {5},
14 >  month = {Aug},
15 >  abstract = {While the prediction of hydrodynamic properties of rigid particles
16 >    is nowadays feasible using simple and efficient computer programs,
17 >    the calculation of such properties and, in general, the dynamic
18 >    behavior of flexible macromolecules has not reached a similar situation.
19 >    Although the theories are available, usually the computational work
20 >    is done using solutions specific for each problem. We intend to
21 >    develop computer programs that would greatly facilitate the task
22 >    of predicting solution behavior of flexible macromolecules. In this
23 >    paper, we first present an overview of the two approaches that are
24 >    most practical: the Monte Carlo rigid-body treatment, and the Brownian
25 >    dynamics simulation technique. The Monte Carlo procedure is based
26 >    on the calculation of properties for instantaneous conformations
27 >    of the macromolecule that are regarded as if they were instantaneously
28 >    rigid. We describe how a Monte Carlo program can be interfaced to
29 >    the programs in the HYDRO suite for rigid particles, and provide
30 >    an example of such calculation, for a hypothetical particle: a protein
31 >    with two domains connected by a flexible linker. We also describe
32 >    briefly the essentials of Brownian dynamics, and propose a general
33 >    mechanical model that includes several kinds of intramolecular interactions,
34 >    such as bending, internal rotation, excluded volume effects, etc.
35 >    We provide an example of the application of this methodology to
36 >    the dynamics of a semiflexible, wormlike DNA.},
37 >  annote = {724XK Times Cited:6 Cited References Count:64},
38 >  issn = {0175-7571},
39 >  uri = {<Go to ISI>://000185513400011},
40   }
41  
42 < @Article{Luckhurst90,
43 <  author =       {G.~R. Luckhurst and R.~A. Stephens and R.~W. Phippen},
44 <  title =        {Computer simulation studies of anisotropic systems
45 <                  {XIX}. Mesophases formed by the Gay-Berne model mesogen},
46 <  journal =      {Liquid Crystals},
47 <  year =         1990,
48 <  volume =       8,
49 <  pages =        {451-464}
42 > @ARTICLE{Alakent2005,
43 >  author = {B. Alakent and M. C. Camurdan and P. Doruker},
44 >  title = {Hierarchical structure of the energy landscape of proteins revisited
45 >    by time series analysis. II. Investigation of explicit solvent effects},
46 >  journal = {Journal of Chemical Physics},
47 >  year = {2005},
48 >  volume = {123},
49 >  pages = {-},
50 >  number = {14},
51 >  month = {Oct 8},
52 >  abstract = {Time series analysis tools are employed on the principal modes obtained
53 >    from the C-alpha trajectories from two independent molecular-dynamics
54 >    simulations of alpha-amylase inhibitor (tendamistat). Fluctuations
55 >    inside an energy minimum (intraminimum motions), transitions between
56 >    minima (interminimum motions), and relaxations in different hierarchical
57 >    energy levels are investigated and compared with those encountered
58 >    in vacuum by using different sampling window sizes and intervals.
59 >    The low-frequency low-indexed mode relationship, established in
60 >    vacuum, is also encountered in water, which shows the reliability
61 >    of the important dynamics information offered by principal components
62 >    analysis in water. It has been shown that examining a short data
63 >    collection period (100 ps) may result in a high population of overdamped
64 >    modes, while some of the low-frequency oscillations (< 10 cm(-1))
65 >    can be captured in water by using a longer data collection period
66 >    (1200 ps). Simultaneous analysis of short and long sampling window
67 >    sizes gives the following picture of the effect of water on protein
68 >    dynamics. Water makes the protein lose its memory: future conformations
69 >    are less dependent on previous conformations due to the lowering
70 >    of energy barriers in hierarchical levels of the energy landscape.
71 >    In short-time dynamics (< 10 ps), damping factors extracted from
72 >    time series model parameters are lowered. For tendamistat, the friction
73 >    coefficient in the Langevin equation is found to be around 40-60
74 >    cm(-1) for the low-indexed modes, compatible with literature. The
75 >    fact that water has increased the friction and that on the other
76 >    hand has lubrication effect at first sight contradicts. However,
77 >    this comes about because water enhances the transitions between
78 >    minima and forces the protein to reduce its already inherent inability
79 >    to maintain oscillations observed in vacuum. Some of the frequencies
80 >    lower than 10 cm(-1) are found to be overdamped, while those higher
81 >    than 20 cm(-1) are slightly increased. As for the long-time dynamics
82 >    in water, it is found that random-walk motion is maintained for
83 >    approximately 200 ps (about five times of that in vacuum) in the
84 >    low-indexed modes, showing the lowering of energy barriers between
85 >    the higher-level minima.},
86 >  annote = {973OH Times Cited:1 Cited References Count:33},
87 >  issn = {0021-9606},
88 >  uri = {<Go to ISI>://000232532000064},
89   }
90  
91 < @Article{Gay81,
92 <  author =       {J.~G. Gay and B.~J. Berne},
93 <  title =        {MODIFICATION OF THE OVERLAP POTENTIAL TO MIMIC A
94 <                  LINEAR SITE-SITE POTENTIAL},
95 <  journal =      jcp,
96 <  year =         1981,
760 <  volume =       74,
761 <  pages =        {3316-3319}
91 > @BOOK{Alexander1987,
92 >  title = {A Pattern Language: Towns, Buildings, Construction},
93 >  publisher = {Oxford University Press},
94 >  year = {1987},
95 >  author = {C. Alexander},
96 >  address = {New York},
97   }
98  
99 < @Article{Berne72,
100 <  author =       {B.~J. Berne and P. Pechukas},
101 <  title =        {Gaussian Model Potentials for Molecular Interactions},
102 <  journal =      jcp,
103 <  year =         1972,
104 <  volume =       56,
770 <  pages =        {4213-4216}
99 > @BOOK{Allen1987,
100 >  title = {Computer Simulations of Liquids},
101 >  publisher = {Oxford University Press},
102 >  year = {1987},
103 >  author = {M.~P. Allen and D.~J. Tildesley},
104 >  address = {New York},
105   }
106  
107 < @Article{Perram96,
108 <  author =       {J.~W. Perram and J. Rasmussen and E. Praestgaard and
109 <                  J.~L. Lebowitz},
110 <  title =        {Ellipsoid contact potential: Theory and relation to
111 <                  overlap potentials},
112 <  journal =      pre,
113 <  year =         1996,
114 <  volume =       54,
115 <  pages =        {6565-6572}
107 > @ARTICLE{Allison1991,
108 >  author = {S. A. Allison},
109 >  title = {A Brownian Dynamics Algorithm for Arbitrary Rigid Bodies - Application
110 >    to Polarized Dynamic Light-Scattering},
111 >  journal = {Macromolecules},
112 >  year = {1991},
113 >  volume = {24},
114 >  pages = {530-536},
115 >  number = {2},
116 >  month = {Jan 21},
117 >  abstract = {A Brownian dynamics algorithm is developed to simulate dynamics experiments
118 >    of rigid macromolecules. It is applied to polarized dynamic light
119 >    scattering from rodlike sturctures and from a model of a DNA fragment
120 >    (762 base pairs). A number of rod cases are examined in which the
121 >    translational anisotropy is increased form zero to a large value.
122 >    Simulated first cumulants as well as amplitudes and lifetimes of
123 >    the dynamic form factor are compared with predictions of analytic
124 >    theories and found to be in very good agreement with them. For DNA
125 >    fragments 762 base pairs in length or longer, translational anisotropy
126 >    does not contribute significantly to dynamic light scattering. In
127 >    a comparison of rigid and flexible simulations on semistiff models
128 >    of this fragment, it is shown directly that flexing contributes
129 >    to the faster decay processes probed by light scattering and that
130 >    the flexible model studies are in good agreement with experiment.},
131 >  annote = {Eu814 Times Cited:8 Cited References Count:32},
132 >  issn = {0024-9297},
133 >  uri = {<Go to ISI>://A1991EU81400029},
134   }
135  
136 < @Article{Cornell95,
137 <  author =       {W.~D. Cornell and P. Cieplak and C.~I. Bayly and
138 <                  I.~R. Gould and K.~M. {Merz, Jr.} and D.~M. Ferguson
139 <                  and D.~C. Spellmeyer and T. Fox and J.~W. Caldwell
140 <                  and P.~A. Kollman},
141 <  title =        {A second generation force field for the simulation
142 <                  of proteins and nucleic acids},
143 <  journal =      jacs,
144 <  year =         1995,
145 <  volume =       117,
146 <  pages =        {5179-5197}
136 > @ARTICLE{Andersen1983,
137 >  author = {H. C. Andersen},
138 >  title = {Rattle - a Velocity Version of the Shake Algorithm for Molecular-Dynamics
139 >    Calculations},
140 >  journal = {Journal of Computational Physics},
141 >  year = {1983},
142 >  volume = {52},
143 >  pages = {24-34},
144 >  number = {1},
145 >  annote = {Rq238 Times Cited:559 Cited References Count:14},
146 >  issn = {0021-9991},
147 >  uri = {<Go to ISI>://A1983RQ23800002},
148   }
149  
150 < @Article{Brooks83,
151 <  author =       {B.~R. Brooks and R.~E. Bruccoleri and B.~D. Olafson
152 <                  and D.~J. States and S. Swaminathan and M. Karplus},
153 <  title =        {{\sc charmm}: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations},
154 <  journal =      {J. Comp. Chem.},
155 <  year =         1983,
156 <  volume =       4,
157 <  pages =        {187-217}
158 < }
159 <
160 < @InCollection{MacKerell98,
161 <  author =       {A.~D. {MacKerell, Jr.} and B. Brooks and
162 <                  C.~L. {Brooks III} and L. Nilsson and B. Roux and
163 <                  Y. Won and and M. Karplus},
164 <  title =        {{\sc charmm}: The Energy Function and Its Parameterization
165 <                  with an Overview of the Program},
166 <  booktitle =    {The Encyclopedia of Computational Chemistry},
167 <  pages =        {271-277},
168 <  publisher =    {John Wiley \& Sons},
169 <  year =         1998,
170 <  editor =       {P.~v.~R. {Schleyer, {\it et al.}}},
171 <  volume =       1,
172 <  address =      {New York}
173 < }
174 <
175 < @InCollection{Jorgensen98,
176 <  author =       {W.~L. Jorgensen},
177 <  title =        {OPLS Force Fields},
178 <  booktitle =    {The Encyclopedia of Computational Chemistry},
179 <  pages =        {1986-1989},
180 <  publisher =    {John Wiley \& Sons},
181 <  year =         1998,
182 <  editor =       {P.~v.~R. {Schleyer, {\it et al.}}},
830 <  volume =       3,
831 <  address =      {New York}
832 < }
833 <
834 < @Article{Rabani2000,
835 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
836 <  title =        {Reply to `Comment on ``Direct Observation of
837 <                  Stretched-Exponential Relaxation in Low-Temperature
838 <                  Lennard-Jones Systems Using th eCage Correlation
839 <                  Function'' '},
840 <  journal =      prl,
841 <  year =         2000,
842 <  volume =       85,
843 <  pages =        467
844 < }
845 <
846 < @Book{Cevc87,
847 <  author =       {G. Cevc and D. Marsh},
848 <  title =        {Phospholipid Bilayers},
849 <  publisher =    {John Wiley \& Sons},
850 <  year =         1987,
851 <  address =      {New York}
150 > @ARTICLE{Auerbach2005,
151 >  author = {A. Auerbach},
152 >  title = {Gating of acetylcholine receptor channels: Brownian motion across
153 >    a broad transition state},
154 >  journal = {Proceedings of the National Academy of Sciences of the United States
155 >    of America},
156 >  year = {2005},
157 >  volume = {102},
158 >  pages = {1408-1412},
159 >  number = {5},
160 >  month = {Feb 1},
161 >  abstract = {Acetylcholine receptor channels (AChRs) are proteins that switch between
162 >    stable #closed# and #open# conformations. In patch clamp recordings,
163 >    diliganded AChR gating appears to be a simple, two-state reaction.
164 >    However, mutagenesis studies indicate that during gating dozens
165 >    of residues across the protein move asynchronously and are organized
166 >    into rigid body gating domains (#blocks#). Moreover, there is an
167 >    upper limit to the apparent channel opening rate constant. These
168 >    observations suggest that the gating reaction has a broad, corrugated
169 >    transition state region, with the maximum opening rate reflecting,
170 >    in part, the mean first-passage time across this ensemble. Simulations
171 >    reveal that a flat, isotropic energy profile for the transition
172 >    state can account for many of the essential features of AChR gating.
173 >    With this mechanism, concerted, local structural transitions that
174 >    occur on the broad transition state ensemble give rise to fractional
175 >    measures of reaction progress (Phi values) determined by rate-equilibrium
176 >    free energy relationship analysis. The results suggest that the
177 >    coarse-grained AChR gating conformational change propagates through
178 >    the protein with dynamics that are governed by the Brownian motion
179 >    of individual gating blocks.},
180 >  annote = {895QF Times Cited:9 Cited References Count:33},
181 >  issn = {0027-8424},
182 >  uri = {<Go to ISI>://000226877300030},
183   }
184  
185 < @Article{Janiak79,
186 <  author =       {M.~J. Janiak and D.~M. Small and G.~G. Shipley},
187 <  title =        {Temperature and Compositional Dependence of the
188 <                  Structure of Hydrated Dimyristoyl Lecithin},
189 <  journal =      {J. Biol. Chem.},
190 <  year =         1979,
191 <  volume =       254,
192 <  pages =        {6068-6078}
185 > @ARTICLE{Baber1995,
186 >  author = {J. Baber and J. F. Ellena and D. S. Cafiso},
187 >  title = {Distribution of General-Anesthetics in Phospholipid-Bilayers Determined
188 >    Using H-2 Nmr and H-1-H-1 Noe Spectroscopy},
189 >  journal = {Biochemistry},
190 >  year = {1995},
191 >  volume = {34},
192 >  pages = {6533-6539},
193 >  number = {19},
194 >  month = {May 16},
195 >  abstract = {The effect of the general anesthetics halothane, enflurane, and isoflurane
196 >    on hydrocarbon chain packing in palmitoyl(d(31))oleoylphosphatidylcholine
197 >    membranes in the liquid crystalline phase was investigated using
198 >    H-2 NMR. Upon the addition of the anesthetics, the first five methylene
199 >    units near the interface generally show a very small increase in
200 >    segmental order, while segments deeper within the bilayer show a
201 >    small decrease in segmental order. From the H-2 NMR results, the
202 >    chain length for the perdeuterated palmitoyl chain in the absence
203 >    of anesthetic was found to be 12.35 Angstrom. Upon the addition
204 >    of halothane enflurane, or isoflurane, the acyl chain undergoes
205 >    slight contractions of 0.11, 0.20, or 0.16 Angstrom, respectively,
206 >    at 50 mol % anesthetic. A simple model was used to estimate the
207 >    relative amounts of anesthetic located near the interface and deeper
208 >    in the bilayer hydrocarbon region, and only a slight preference
209 >    for an interfacial location was observed. Intermolecular H-1-H-1
210 >    nuclear Overhauser effects (NOEs) were measured between phospholipid
211 >    and halothane protons. These NOEs are consistent with the intramembrane
212 >    location of the anesthetics suggested by the H-2 NMR data. In addition,
213 >    the NOE data indicate that anesthetics prefer the interfacial and
214 >    hydrocarbon regions of the membrane and are not found in high concentrations
215 >    in the phospholipid headgroup.},
216 >  annote = {Qz716 Times Cited:38 Cited References Count:37},
217 >  issn = {0006-2960},
218 >  uri = {<Go to ISI>://A1995QZ71600035},
219   }
220  
221 < @Book{Tobias90,
222 <  author =       {Sheila Tobias},
223 <  title =        {They're not Dumb. They're Different: Stalking the
224 <                  Second Tier},
225 <  publisher =    {Research Corp.},
226 <  year =         1990,
227 <  address =      {Tucson}
221 > @ARTICLE{Banerjee2004,
222 >  author = {D. Banerjee and B. C. Bag and S. K. Banik and D. S. Ray},
223 >  title = {Solution of quantum Langevin equation: Approximations, theoretical
224 >    and numerical aspects},
225 >  journal = {Journal of Chemical Physics},
226 >  year = {2004},
227 >  volume = {120},
228 >  pages = {8960-8972},
229 >  number = {19},
230 >  month = {May 15},
231 >  abstract = {Based on a coherent state representation of noise operator and an
232 >    ensemble averaging procedure using Wigner canonical thermal distribution
233 >    for harmonic oscillators, a generalized quantum Langevin equation
234 >    has been recently developed [Phys. Rev. E 65, 021109 (2002); 66,
235 >    051106 (2002)] to derive the equations of motion for probability
236 >    distribution functions in c-number phase-space. We extend the treatment
237 >    to explore several systematic approximation schemes for the solutions
238 >    of the Langevin equation for nonlinear potentials for a wide range
239 >    of noise correlation, strength and temperature down to the vacuum
240 >    limit. The method is exemplified by an analytic application to harmonic
241 >    oscillator for arbitrary memory kernel and with the help of a numerical
242 >    calculation of barrier crossing, in a cubic potential to demonstrate
243 >    the quantum Kramers' turnover and the quantum Arrhenius plot. (C)
244 >    2004 American Institute of Physics.},
245 >  annote = {816YY Times Cited:8 Cited References Count:35},
246 >  issn = {0021-9606},
247 >  uri = {<Go to ISI>://000221146400009},
248   }
249  
250 < @Article{Mazur92,
251 <  author =       {E. Mazur},
252 <  title =        {Qualitative vs. Quantititative Thinking: Are we
253 <                  teaching the right thing? },
254 <  journal =      {Optics and Photonics News},
255 <  year =         1992,
256 <  volume =       3,
880 <  pages =        38
250 > @ARTICLE{Barojas1973,
251 >  author = {J. Barojas and D. Levesque},
252 >  title = {Simulation of Diatomic Homonuclear Liquids},
253 >  journal = {Phys. Rev. A},
254 >  year = {1973},
255 >  volume = {7},
256 >  pages = {1092-1105},
257   }
258  
259 < @Book{Mazur97,
260 <  author =       {Eric Mazur},
261 <  title =        {Peer Instruction: A User's Manual},
262 <  publisher =    {Prentice Hall},
263 <  year =         1997,
264 <  address =      {New Jersey}
259 > @ARTICLE{Barth1998,
260 >  author = {E. Barth and T. Schlick},
261 >  title = {Overcoming stability limitations in biomolecular dynamics. I. Combining
262 >    force splitting via extrapolation with Langevin dynamics in LN},
263 >  journal = {Journal of Chemical Physics},
264 >  year = {1998},
265 >  volume = {109},
266 >  pages = {1617-1632},
267 >  number = {5},
268 >  month = {Aug 1},
269 >  abstract = {We present an efficient new method termed LN for propagating biomolecular
270 >    dynamics according to the Langevin equation that arose fortuitously
271 >    upon analysis of the range of harmonic validity of our normal-mode
272 >    scheme LIN. LN combines force linearization with force splitting
273 >    techniques and disposes of LIN'S computationally intensive minimization
274 >    (anharmonic correction) component. Unlike the competitive multiple-timestepping
275 >    (MTS) schemes today-formulated to be symplectic and time-reversible-LN
276 >    merges the slow and fast forces via extrapolation rather than impulses;
277 >    the Langevin heat bath prevents systematic energy drifts. This combination
278 >    succeeds in achieving more significant speedups than these MTS methods
279 >    which are Limited by resonance artifacts to an outer timestep less
280 >    than some integer multiple of half the period of the fastest motion
281 >    (around 4-5 fs for biomolecules). We show that LN achieves very
282 >    good agreement with small-timestep solutions of the Langevin equation
283 >    in terms of thermodynamics (energy means and variances), geometry,
284 >    and dynamics (spectral densities) for two proteins in vacuum and
285 >    a large water system. Significantly, the frequency of updating the
286 >    slow forces extends to 48 fs or more, resulting in speedup factors
287 >    exceeding 10. The implementation of LN in any program that employs
288 >    force-splitting computations is straightforward, with only partial
289 >    second-derivative information required, as well as sparse Hessian/vector
290 >    multiplication routines. The linearization part of LN could even
291 >    be replaced by direct evaluation of the fast components. The application
292 >    of LN to biomolecular dynamics is well suited for configurational
293 >    sampling, thermodynamic, and structural questions. (C) 1998 American
294 >    Institute of Physics.},
295 >  annote = {105HH Times Cited:29 Cited References Count:49},
296 >  issn = {0021-9606},
297 >  uri = {<Go to ISI>://000075066300006},
298   }
299  
300 < @Article{Wigner55,
301 <  author =       {E.~P. Wigner},
302 <  title =        {Characteristic Vectors of Bordered Matrices with
303 <                  Infinite Dimensions},
304 <  journal =      {Annals of Mathematics},
305 <  year =         1955,
306 <  volume =       62,
307 <  pages =        {548-564}
300 > @ARTICLE{Batcho2001,
301 >  author = {P. F. Batcho and T. Schlick},
302 >  title = {Special stability advantages of position-Verlet over velocity-Verlet
303 >    in multiple-time step integration},
304 >  journal = {Journal of Chemical Physics},
305 >  year = {2001},
306 >  volume = {115},
307 >  pages = {4019-4029},
308 >  number = {9},
309 >  month = {Sep 1},
310 >  abstract = {We present an analysis for a simple two-component harmonic oscillator
311 >    that compares the use of position-Verlet to velocity-Verlet for
312 >    multiple-time step integration. The numerical stability analysis
313 >    based on the impulse-Verlet splitting shows that position-Verlet
314 >    has enhanced stability, in terms of the largest allowable time step,
315 >    for cases where an ample separation of time scales exists. Numerical
316 >    investigations confirm the advantages of the position-Verlet scheme
317 >    when used for the fastest time scales of the system. Applications
318 >    to a biomolecule. a solvated protein, for both Newtonian and Langevin
319 >    dynamics echo these trends over large outer time-step regimes. (C)
320 >    2001 American Institute of Physics.},
321 >  annote = {469KV Times Cited:6 Cited References Count:30},
322 >  issn = {0021-9606},
323 >  uri = {<Go to ISI>://000170813800005},
324   }
325  
326 < @Article{Gaukel98,
327 <  author =       {C. Gaukel and H.~R. Schober},
328 <  title =        {Diffusion Mechanisms in under-cooled Binary Metal
329 <                  Liquids of $\mbox{Zr}_{67}\mbox{Cu}_{33}$},
330 <  journal =      {Solid State Comm.},
331 <  year =         1998,
332 <  volume =       107,
333 <  pages =        {1-5}
326 > @ARTICLE{Bates2005,
327 >  author = {M. A. Bates and G. R. Luckhurst},
328 >  title = {Biaxial nematic phases and V-shaped molecules: A Monte Carlo simulation
329 >    study},
330 >  journal = {Physical Review E},
331 >  year = {2005},
332 >  volume = {72},
333 >  pages = {-},
334 >  number = {5},
335 >  month = {Nov},
336 >  abstract = {Inspired by recent claims that compounds composed of V-shaped molecules
337 >    can exhibit the elusive biaxial nematic phase, we have developed
338 >    a generic simulation model for such systems. This contains the features
339 >    of the molecule that are essential to its liquid crystal behavior,
340 >    namely the anisotropies of the two arms and the angle between them.
341 >    The behavior of the model has been investigated using Monte Carlo
342 >    simulations for a wide range of these structural parameters. This
343 >    allows us to establish the relationship between the V-shaped molecule
344 >    and its ability to form a biaxial nematic phase. Of particular importance
345 >    are the criteria of geometry and the relative anisotropy necessary
346 >    for the system to exhibit a Landau point, at which the biaxial nematic
347 >    is formed directly from the isotropic phase. The simulations have
348 >    also been used to determine the orientational order parameters for
349 >    a selection of molecular axes. These are especially important because
350 >    they reveal the phase symmetry and are connected to the experimental
351 >    determination of this. The simulation results show that, whereas
352 >    some positions are extremely sensitive to the phase biaxiality,
353 >    others are totally blind to this.},
354 >  annote = {Part 1 988LQ Times Cited:0 Cited References Count:38},
355 >  issn = {1539-3755},
356 >  uri = {<Go to ISI>://000233603100030},
357   }
358  
359 < @Article{Qi99,
360 <  author =       {Y. Qi and T. \c{C}a\v{g}in and Y.
361 <                  Kimura and W.~A. {Goddard III}},
362 <  title =        {Molecular-dynamics simulations of glass formation
363 <                  and crystallization in binary liquid metals: $\mbox{Cu-Ag}$
364 <                  and $\mbox{Cu-Ni}$},
365 <  journal =      prb,
366 <  year =         1999,
367 <  volume =    59,
368 <  number =    5,
369 <  pages =     {3527-3533}
359 > @ARTICLE{Beard2003,
360 >  author = {D. A. Beard and T. Schlick},
361 >  title = {Unbiased rotational moves for rigid-body dynamics},
362 >  journal = {Biophysical Journal},
363 >  year = {2003},
364 >  volume = {85},
365 >  pages = {2973-2976},
366 >  number = {5},
367 >  month = {Nov 1},
368 >  abstract = {We introduce an unbiased protocol for performing rotational moves
369 >    in rigid-body dynamics simulations. This approach - based on the
370 >    analytic solution for the rotational equations of motion for an
371 >    orthogonal coordinate system at constant angular velocity - removes
372 >    deficiencies that have been largely ignored in Brownian dynamics
373 >    simulations, namely errors for finite rotations that result from
374 >    applying the noncommuting rotational matrices in an arbitrary order.
375 >    Our algorithm should thus replace standard approaches to rotate
376 >    local coordinate frames in Langevin and Brownian dynamics simulations.},
377 >  annote = {736UA Times Cited:0 Cited References Count:11},
378 >  issn = {0006-3495},
379 >  uri = {<Go to ISI>://000186190500018},
380   }
381  
382 < @Article{Khorunzhy97,
383 <  author =       {A. Khorunzhy and G.~J. Rodgers},
384 <  title =        {Eigenvalue distribution of large dilute random matrices},
385 <  journal =      {J. Math. Phys.},
386 <  year =         1997,
387 <  volume =       38,
388 <  pages =        {3300-3320}
382 > @ARTICLE{Beloborodov1998,
383 >  author = {I. S. Beloborodov and V. Y. Orekhov and A. S. Arseniev},
384 >  title = {Effect of coupling between rotational and translational Brownian
385 >    motions on NMR spin relaxation: Consideration using green function
386 >    of rigid body diffusion},
387 >  journal = {Journal of Magnetic Resonance},
388 >  year = {1998},
389 >  volume = {132},
390 >  pages = {328-329},
391 >  number = {2},
392 >  month = {Jun},
393 >  abstract = {Using the Green function of arbitrary rigid Brownian diffusion (Goldstein,
394 >    Biopolymers 33, 409-436, 1993), it was analytically shown that coupling
395 >    between translation and rotation diffusion degrees of freedom does
396 >    not affect the correlation functions relevant to the NMR intramolecular
397 >    relaxation. It follows that spectral densities usually used for
398 >    the anisotropic rotation diffusion (Woessner, J. Chem. Phys. 37,
399 >    647-654, 1962) can be regarded as exact in respect to the rotation-translation
400 >    coupling for the spin system connected with a rigid body. (C) 1998
401 >    Academic Press.},
402 >  annote = {Zu605 Times Cited:2 Cited References Count:6},
403 >  issn = {1090-7807},
404 >  uri = {<Go to ISI>://000074214800017},
405   }
406  
407 < @Article{Rodgers88,
408 <  author =       {G.~J. Rodgers and A. Bray},
409 <  title =        {Density of States of a Sparse Random Matrix},
410 <  journal =      {Phys. Rev. B},
411 <  year =         1988,
412 <  volume =       37,
413 <  pages =        355703562
407 > @ARTICLE{Berardi1996,
408 >  author = {R. Berardi and S. Orlandi and C. Zannoni},
409 >  title = {Antiphase structures in polar smectic liquid crystals and their molecular
410 >    origin},
411 >  journal = {Chemical Physics Letters},
412 >  year = {1996},
413 >  volume = {261},
414 >  pages = {357-362},
415 >  number = {3},
416 >  month = {Oct 18},
417 >  abstract = {We demonstrate that the overall molecular dipole organization in a
418 >    smectic liquid crystal formed of polar molecules can be strongly
419 >    influenced by the position of the dipole in the molecule. We study
420 >    by large scale Monte Carlo simulations systems of attractive-repulsive
421 >    ''Gay-Berne'' elongated ellipsoids with an axial dipole at the center
422 >    or near the end of the molecule and we show that monolayer smectic
423 >    liquid crystals and modulated antiferroelectric bilayer stripe domains
424 >    similar to the experimentally observed ''antiphase'' structures
425 >    are obtained in the two cases.},
426 >  annote = {Vn637 Times Cited:49 Cited References Count:26},
427 >  issn = {0009-2614},
428 >  uri = {<Go to ISI>://A1996VN63700023},
429   }
430  
431 < @Article{Rodgers90,
432 <  author =       {G.~J. Rodgers and C. {De Dominicis}},
433 <  title =        {Density of states of sparse random matrices},
434 <  journal =      {J. Phys. A: Math. Gen.},
435 <  year =         1990,
436 <  volume =       23,
437 <  pages =        {1567-1573}
431 > @ARTICLE{Berkov2005,
432 >  author = {D. V. Berkov and N. L. Gorn},
433 >  title = {Magnetization precession due to a spin-polarized current in a thin
434 >    nanoelement: Numerical simulation study},
435 >  journal = {Physical Review B},
436 >  year = {2005},
437 >  volume = {72},
438 >  pages = {-},
439 >  number = {9},
440 >  month = {Sep},
441 >  abstract = {In this paper a detailed numerical study (in frames of the Slonczewski
442 >    formalism) of magnetization oscillations driven by a spin-polarized
443 >    current through a thin elliptical nanoelement is presented. We show
444 >    that a sophisticated micromagnetic model, where a polycrystalline
445 >    structure of a nanoelement is taken into account, can explain qualitatively
446 >    all most important features of the magnetization oscillation spectra
447 >    recently observed experimentally [S. I. Kiselev , Nature 425, 380
448 >    (2003)], namely, existence of several equidistant spectral bands,
449 >    sharp onset and abrupt disappearance of magnetization oscillations
450 >    with increasing current, absence of the out-of-plane regime predicted
451 >    by a macrospin model, and the relation between frequencies of so-called
452 >    small-angle and quasichaotic oscillations. However, a quantitative
453 >    agreement with experimental results (especially concerning the frequency
454 >    of quasichaotic oscillations) could not be achieved in the region
455 >    of reasonable parameter values, indicating that further model refinement
456 >    is necessary for a complete understanding of the spin-driven magnetization
457 >    precession even in this relatively simple experimental situation.},
458 >  annote = {969IT Times Cited:2 Cited References Count:55},
459 >  issn = {1098-0121},
460 >  uri = {<Go to ISI>://000232228500058},
461   }
462  
463 < @InProceedings{Barker80,
464 <  author =       {J.~A. Barker},
465 <  title =        {Reaction field method for polar fluids},
466 <  booktitle =    {The problem of long-range forces in the computer
467 <                  simulation of condensed matter},
468 <  pages =        {45-6},
469 <  year =         1980,
470 <  editor =       {D. Ceperley},
471 <  volume =       9,
472 <  series =       {NRCC Workshop Proceedings}
463 > @ARTICLE{Berkov2005a,
464 >  author = {D. V. Berkov and N. L. Gorn},
465 >  title = {Stochastic dynamic simulations of fast remagnetization processes:
466 >    recent advances and applications},
467 >  journal = {Journal of Magnetism and Magnetic Materials},
468 >  year = {2005},
469 >  volume = {290},
470 >  pages = {442-448},
471 >  month = {Apr},
472 >  abstract = {Numerical simulations of fast remagnetization processes using stochastic
473 >    dynamics are widely used to study various magnetic systems. In this
474 >    paper, we first address several crucial methodological problems
475 >    of such simulations: (i) the influence of finite-element discretization
476 >    on simulated dynamics, (ii) choice between Ito and Stratonovich
477 >    stochastic calculi by the solution of micromagnetic stochastic equations
478 >    of motion and (iii) non-trivial correlation properties of the random
479 >    (thermal) field. Next, we discuss several examples to demonstrate
480 >    the great potential of the Langevin dynamics for studying fast remagnetization
481 >    processes in technically relevant applications: we present numerical
482 >    analysis of equilibrium magnon spectra in patterned structures,
483 >    study thermal noise effects on the magnetization dynamics of nanoelements
484 >    in pulsed fields and show some results for a remagnetization dynamics
485 >    induced by a spin-polarized current. (c) 2004 Elsevier B.V. All
486 >    rights reserved.},
487 >  annote = {Part 1 Sp. Iss. SI 922KU Times Cited:2 Cited References Count:25},
488 >  issn = {0304-8853},
489 >  uri = {<Go to ISI>://000228837600109},
490   }
491  
492 < @Article{Smith82,
493 <  author =       {W. Smith},
494 <  title =        {Point multipoles in the Ewald summation},
495 <  journal =      {CCP5 Quarterly},
496 <  year =         1982,
497 <  volume =       4,
498 <  pages =        {13-25}
492 > @ARTICLE{Berkov2002,
493 >  author = {D. V. Berkov and N. L. Gorn and P. Gornert},
494 >  title = {Magnetization dynamics in nanoparticle systems: Numerical simulation
495 >    using Langevin dynamics},
496 >  journal = {Physica Status Solidi a-Applied Research},
497 >  year = {2002},
498 >  volume = {189},
499 >  pages = {409-421},
500 >  number = {2},
501 >  month = {Feb 16},
502 >  abstract = {We report on recent progress achieved by the development of numerical
503 >    methods based on the stochastic (Langevin) dynamics applied to systems
504 >    of interacting magnetic nanoparticles. The method enables direct
505 >    simulations of the trajectories of magnetic moments taking into
506 >    account (i) all relevant interactions, (ii) precession dynamics,
507 >    and (iii) temperature fluctuations included via the random (thermal)
508 >    field. We present several novel results obtained using new methods
509 >    developed for the solution of the Langevin equations. In particular,
510 >    we have investigated magnetic nanodots and disordered granular systems
511 >    of single-domain magnetic particles. For the first case we have
512 >    calculated the spectrum and the spatial distribution of spin excitations.
513 >    For the second system the complex ac susceptibility chi(omega, T)
514 >    for various particle concentrations and particle anisotropies were
515 >    computed and compared with numerous experimental results.},
516 >  annote = {526TF Times Cited:4 Cited References Count:37},
517 >  issn = {0031-8965},
518 >  uri = {<Go to ISI>://000174145200026},
519   }
520  
521 < @Article{Daw84,
522 <  author =       {M.~S. Daw and M.~I. Baskes},
523 <  title =        {Embedded-atom method: Derivation and application to
524 <                  impurities, surfaces, and other defects in metals},
525 <  journal =      prb,
526 <  year =         1984,
527 <  volume =    29,
528 <  number =    12,
980 <  pages =     {6443-6453}
521 > @ARTICLE{Bernal1980,
522 >  author = {J.M. Bernal and J. G. {de la Torre}},
523 >  title = {Transport Properties and Hydrodynamic Centers of Rigid Macromolecules
524 >    with Arbitrary Shape},
525 >  journal = {Biopolymers},
526 >  year = {1980},
527 >  volume = {19},
528 >  pages = {751-766},
529   }
530  
531 <
532 < @Article{Chen90,
533 <  author =       {A.~P. Sutton and J. Chen},
534 <  title =        {Long-Range $\mbox{Finnis Sinclair}$ Potentials},
535 <  journal =      {Phil. Mag. Lett.},
536 <  year =         1990,
537 <  volume =    61,
538 <  pages =     {139-146}
531 > @ARTICLE{Brenner1967,
532 >  author = {H. Brenner },
533 >  title = {Coupling between the Translational and Rotational Brownian Motions
534 >    of Rigid Particles of Arbitrary shape},
535 >  journal = {J. Collid. Int. Sci.},
536 >  year = {1967},
537 >  volume = {23},
538 >  pages = {407-436},
539   }
540  
541 < @Article{Lu97,
542 <  author =       {J. Lu and J.~A. Szpunar},
543 <  title =        {Applications of the embedded-atom method to glass
544 <                  formation and crystallization of liquid and glass
545 <                  transition-metal nickel},
546 <  journal =      {Phil. Mag. A},
547 <  year =         {1997},
548 <  volume =    {75},
549 <  pages =        {1057-1066},
541 > @ARTICLE{Brooks1983,
542 >  author = {B. R. Brooks and R. E. Bruccoleri and B. D. Olafson and D. J. States
543 >    and S. Swaminathan and M. Karplus},
544 >  title = {Charmm - a Program for Macromolecular Energy, Minimization, and Dynamics
545 >    Calculations},
546 >  journal = {Journal of Computational Chemistry},
547 >  year = {1983},
548 >  volume = {4},
549 >  pages = {187-217},
550 >  number = {2},
551 >  annote = {Qp423 Times Cited:6414 Cited References Count:96},
552 >  issn = {0192-8651},
553 >  uri = {<Go to ISI>://A1983QP42300010},
554   }
555  
556 < @Article{Shlesinger99,
557 <  author =       {M.~F. Shlesinger and J. Klafter and G. Zumofen},
558 <  title =        {Above, below, and beyond Brownian motion},
559 <  journal =      {Am. J. Phys.},
560 <  year =         1999,
561 <  volume =       67,
562 <  pages =        {1253-1259}
556 > @ARTICLE{Brunger1984,
557 >  author = {A. Brunger and C. L. Brooks and M. Karplus},
558 >  title = {Stochastic Boundary-Conditions for Molecular-Dynamics Simulations
559 >    of St2 Water},
560 >  journal = {Chemical Physics Letters},
561 >  year = {1984},
562 >  volume = {105},
563 >  pages = {495-500},
564 >  number = {5},
565 >  annote = {Sm173 Times Cited:143 Cited References Count:22},
566 >  issn = {0009-2614},
567 >  uri = {<Go to ISI>://A1984SM17300007},
568   }
569  
570 < @Article{Klafter96,
571 <  author =       {J. Klafter and M. Shlesinger and G. Zumofen},
572 <  title =        {Beyond Brownian Motion},
573 <  journal =      {Physics Today},
574 <  year =         1996,
575 <  volume =       49,
576 <  pages =        {33-39}
570 > @ARTICLE{Budd1999,
571 >  author = {C. J. Budd and G. J. Collins and W. Z. Huang and R. D. Russell},
572 >  title = {Self-similar numerical solutions of the porous-medium equation using
573 >    moving mesh methods},
574 >  journal = {Philosophical Transactions of the Royal Society of London Series
575 >    a-Mathematical Physical and Engineering Sciences},
576 >  year = {1999},
577 >  volume = {357},
578 >  pages = {1047-1077},
579 >  number = {1754},
580 >  month = {Apr 15},
581 >  abstract = {This paper examines a synthesis of adaptive mesh methods with the
582 >    use of symmetry to study a partial differential equation. In particular,
583 >    it considers methods which admit discrete self-similar solutions,
584 >    examining the convergence of these to the true self-similar solution
585 >    as well as their stability. Special attention is given to the nonlinear
586 >    diffusion equation describing flow in a porous medium.},
587 >  annote = {199EE Times Cited:4 Cited References Count:14},
588 >  issn = {1364-503X},
589 >  uri = {<Go to ISI>://000080466800005},
590   }
591  
592 < @Article{Blumen83,
593 <  author =       {A. Blumen and J. Klafter and G. Zumofen},
594 <  title =        {Recombination in amorphous materials as a
595 <                  continuous-time random-walk problem},
596 <  journal =      {Phys. Rev. B},
597 <  year =         1983,
598 <  volume =       27,
599 <  pages =        {3429-3435}
592 > @ARTICLE{Camp1999,
593 >  author = {P. J. Camp and M. P. Allen and A. J. Masters},
594 >  title = {Theory and computer simulation of bent-core molecules},
595 >  journal = {Journal of Chemical Physics},
596 >  year = {1999},
597 >  volume = {111},
598 >  pages = {9871-9881},
599 >  number = {21},
600 >  month = {Dec 1},
601 >  abstract = {Fluids of hard bent-core molecules have been studied using theory
602 >    and computer simulation. The molecules are composed of two hard
603 >    spherocylinders, with length-to-breadth ratio L/D, joined by their
604 >    ends at an angle 180 degrees - gamma. For L/D = 2 and gamma = 0,10,20
605 >    degrees, the simulations show isotropic, nematic, smectic, and solid
606 >    phases. For L/D = 2 and gamma = 30 degrees, only isotropic, nematic,
607 >    and solid phases are in evidence, which suggests that there is a
608 >    nematic-smectic-solid triple point at an angle in the range 20 degrees
609 >    < gamma < 30 degrees. In all of the orientationally ordered fluid
610 >    phases the order is purely uniaxial. For gamma = 10 degrees and
611 >    20 degrees, at the studied densities, the solid is also uniaxially
612 >    ordered, whilst for gamma = 30 degrees the solid layers are biaxially
613 >    ordered. For L/D = 2 and gamma = 60 degrees and 90 degrees we find
614 >    no spontaneous orientational ordering. This is shown to be due to
615 >    the interlocking of dimer pairs which precludes alignment. We find
616 >    similar results for L/D = 9.5 and gamma = 72 degrees, where an isotropic-biaxial
617 >    nematic transition is predicted by Onsager theory. Simulations in
618 >    the biaxial nematic phase show it to be at least mechanically stable
619 >    with respect to the isotropic phase, however. We have compared the
620 >    quasi-exact simulation results in the isotropic phase with the predicted
621 >    equations of state from three theories: the virial expansion containing
622 >    the second and third virial coefficients; the Parsons-Lee equation
623 >    of state; an application of Wertheim's theory of associating fluids
624 >    in the limit of infinite attractive association energy. For all
625 >    of the molecule elongations and geometries we have simulated, the
626 >    Wertheim theory proved to be the most accurate. Interestingly, the
627 >    isotropic equation of state is virtually independent of the dimer
628 >    bond angle-a feature that is also reflected in the lack of variation
629 >    with angle of the calculated second and third virial coefficients.
630 >    (C) 1999 American Institute of Physics. [S0021-9606(99)50445-5].},
631 >  annote = {255TC Times Cited:24 Cited References Count:38},
632 >  issn = {0021-9606},
633 >  uri = {<Go to ISI>://000083685400056},
634   }
635  
636 < @Article{Klafter94,
637 <  author =       {J. Klafter and G. Zumofen},
638 <  title =        {Probability Distributions for Continuous-Time Random
639 <                  Walks with Long Tails},
640 <  journal =      jpc,
641 <  year =         1994,
642 <  volume =       98,
643 <  pages =        {7366-7370}
636 > @ARTICLE{Care2005,
637 >  author = {C. M. Care and D. J. Cleaver},
638 >  title = {Computer simulation of liquid crystals},
639 >  journal = {Reports on Progress in Physics},
640 >  year = {2005},
641 >  volume = {68},
642 >  pages = {2665-2700},
643 >  number = {11},
644 >  month = {Nov},
645 >  abstract = {A review is presented of molecular and mesoscopic computer simulations
646 >    of liquid crystalline systems. Molecular simulation approaches applied
647 >    to such systems are described, and the key findings for bulk phase
648 >    behaviour are reported. Following this, recently developed lattice
649 >    Boltzmann approaches to the mesoscale modelling of nemato-dynanics
650 >    are reviewed. This paper concludes with a discussion of possible
651 >    areas for future development in this field.},
652 >  annote = {989TU Times Cited:2 Cited References Count:258},
653 >  issn = {0034-4885},
654 >  uri = {<Go to ISI>://000233697600004},
655   }
656  
657 <
658 < @Article{Dzugutov92,
659 <  author =       {M. Dzugutov},
660 <  title =        {Glass formation in a simple monatomic liquid with
661 <                  icosahedral inherent local order},
662 <  journal =      pra,
663 <  year =         1992,
664 <  volume =       46,
665 <  pages =        {R2984-R2987}
657 > @ARTICLE{Carrasco1999,
658 >  author = {B. Carrasco and J. G. {de la Torre}},
659 >  title = {Hydrodynamic properties of rigid particles: Comparison of different
660 >    modeling and computational procedures},
661 >  journal = {Biophysical Journal},
662 >  year = {1999},
663 >  volume = {76},
664 >  pages = {3044-3057},
665 >  number = {6},
666 >  month = {Jun},
667 >  abstract = {The hydrodynamic properties of rigid particles are calculated from
668 >    models composed of spherical elements (beads) using theories developed
669 >    by Kirkwood, Bloomfield, and their coworkers. Bead models have usually
670 >    been built in such a way that the beads fill the volume occupied
671 >    by the particles. Sometimes the beads are few and of varying sizes
672 >    (bead models in the strict sense), and other times there are many
673 >    small beads (filling models). Because hydrodynamic friction takes
674 >    place at the molecular surface, another possibility is to use shell
675 >    models, as originally proposed by Bloomfield. In this work, we have
676 >    developed procedures to build models of the various kinds, and we
677 >    describe the theory and methods for calculating their hydrodynamic
678 >    properties, including approximate methods that may be needed to
679 >    treat models with a very large number of elements. By combining
680 >    the various possibilities of model building and hydrodynamic calculation,
681 >    several strategies can be designed. We have made a quantitative
682 >    comparison of the performance of the various strategies by applying
683 >    them to some test cases, for which the properties are known a priori.
684 >    We provide guidelines and computational tools for bead modeling.},
685 >  annote = {200TT Times Cited:46 Cited References Count:57},
686 >  issn = {0006-3495},
687 >  uri = {<Go to ISI>://000080556700016},
688   }
689  
690 < @Article{Moore94,
691 <  author =       {P. Moore and T. Keyes},
692 <  title =        {Normal Mode Analysis of Liquid $\mbox{CS}_2$: Velocity
693 <                  Correlation Functions and Self-Diffusion Constants},
694 <  journal =      jcp,
695 <  year =         1994,
696 <  volume =       100,
697 <  pages =        6709
690 > @ARTICLE{Chandra1999,
691 >  author = {A. Chandra and T. Ichiye},
692 >  title = {Dynamical properties of the soft sticky dipole model of water: Molecular
693 >    dynamics simulations},
694 >  journal = {Journal of Chemical Physics},
695 >  year = {1999},
696 >  volume = {111},
697 >  pages = {2701-2709},
698 >  number = {6},
699 >  month = {Aug 8},
700 >  abstract = {Dynamical properties of the soft sticky dipole (SSD) model of water
701 >    are calculated by means of molecular dynamics simulations. Since
702 >    this is not a simple point model, the forces and torques arising
703 >    from the SSD potential are derived here. Simulations are carried
704 >    out in the microcanonical ensemble employing the Ewald method for
705 >    the electrostatic interactions. Various time correlation functions
706 >    and dynamical quantities associated with the translational and rotational
707 >    motion of water molecules are evaluated and compared with those
708 >    of two other commonly used models of liquid water, namely the transferable
709 >    intermolecular potential-three points (TIP3P) and simple point charge/extended
710 >    (SPC/E) models, and also with experiments. The dynamical properties
711 >    of the SSD water model are found to be in good agreement with the
712 >    experimental results and appear to be better than the TIP3P and
713 >    SPC/E models in most cases, as has been previously shown for its
714 >    thermodynamic, structural, and dielectric properties. Also, molecular
715 >    dynamics simulations of the SSD model are found to run much faster
716 >    than TIP3P, SPC/E, and other multisite models. (C) 1999 American
717 >    Institute of Physics. [S0021-9606(99)51430-X].},
718 >  annote = {221EN Times Cited:14 Cited References Count:66},
719 >  issn = {0021-9606},
720 >  uri = {<Go to ISI>://000081711200038},
721   }
722  
723 < @Article{Seeley89,
724 <  author =       {G. Seeley and T. Keyes},
725 <  title =        {Normal-mode analysis of liquid-state dynamics},
726 <  journal =      jcp,
727 <  year =         1989,
728 <  volume =       91,
729 <  pages =        {5581-5586}
723 > @ARTICLE{Channell1990,
724 >  author = {P. J. Channell and C. Scovel},
725 >  title = {Symplectic Integration of Hamiltonian-Systems},
726 >  journal = {Nonlinearity},
727 >  year = {1990},
728 >  volume = {3},
729 >  pages = {231-259},
730 >  number = {2},
731 >  month = {may},
732 >  annote = {Dk631 Times Cited:152 Cited References Count:34},
733 >  issn = {0951-7715},
734 >  uri = {<Go to ISI>://A1990DK63100001},
735   }
736  
737 < @Article{Madan90,
738 <  author =       {B. Madan and T. Keyes and G. Seeley},
739 <  title =        {Diffusion in supercooled liquids via normal mode
740 <                  analysis},
741 <  journal =      jcp,
742 <  year =         1990,
743 <  volume =       92,
744 <  pages =        {7565-7569}
737 > @ARTICLE{Chen2003,
738 >  author = {B. Chen and F. Solis},
739 >  title = {Explicit mixed finite order Runge-Kutta methods},
740 >  journal = {Applied Numerical Mathematics},
741 >  year = {2003},
742 >  volume = {44},
743 >  pages = {21-30},
744 >  number = {1-2},
745 >  month = {Jan},
746 >  abstract = {We investigate the asymptotic behavior of systems of nonlinear differential
747 >    equations and introduce a family of mixed methods from combinations
748 >    of explicit Runge-Kutta methods. These methods have better stability
749 >    behavior than traditional Runge-Kutta methods and generally extend
750 >    the range of validity of the calculated solutions. These methods
751 >    also give a way of determining if the numerical solutions are real
752 >    or spurious. Emphasis is put on examples coming from mathematical
753 >    models in ecology. (C) 2002 IMACS. Published by Elsevier Science
754 >    B.V. All rights reserved.},
755 >  annote = {633ZD Times Cited:0 Cited References Count:9},
756 >  issn = {0168-9274},
757 >  uri = {<Go to ISI>://000180314200002},
758   }
759  
760 < @Article{Madan91,
761 <  author =       {B. Madan and T. Keyes and G. Seeley},
762 <  title =        {Normal mode analysis of the velocity correlation
763 <                  function in supercooled liquids},
764 <  journal =      jcp,
765 <  year =         1991,
766 <  volume =       94,
767 <  pages =        {6762-6769}
760 > @ARTICLE{Cheung2004,
761 >  author = {D. L. Cheung and S. J. Clark and M. R. Wilson},
762 >  title = {Calculation of flexoelectric coefficients for a nematic liquid crystal
763 >    by atomistic simulation},
764 >  journal = {Journal of Chemical Physics},
765 >  year = {2004},
766 >  volume = {121},
767 >  pages = {9131-9139},
768 >  number = {18},
769 >  month = {Nov 8},
770 >  abstract = {Equilibrium molecular dynamics calculations have been performed for
771 >    the liquid crystal molecule n-4-(trans-4-n-pentylcyclohexyl)benzonitrile
772 >    (PCH5) using a fully atomistic model. Simulation data have been
773 >    obtained for a series of temperatures in the nematic phase. The
774 >    simulation data have been used to calculate the flexoelectric coefficients
775 >    e(s) and e(b) using the linear response formalism of Osipov and
776 >    Nemtsov [M. A. Osipov and V. B. Nemtsov, Sov. Phys. Crstallogr.
777 >    31, 125 (1986)]. The temperature and order parameter dependence
778 >    of e(s) and e(b) are examined, as are separate contributions from
779 >    different intermolecular interactions. Values of e(s) and e(b) calculated
780 >    from simulation are consistent with those found from experiment.
781 >    (C) 2004 American Institute of Physics.},
782 >  annote = {866UM Times Cited:4 Cited References Count:61},
783 >  issn = {0021-9606},
784 >  uri = {<Go to ISI>://000224798900053},
785   }
786  
787 < @Article{Buchner92,
788 <  author =       {M. Buchner, B.~M. Ladanyi and R.~M. Stratt},
789 <  title =        {The short-time dynamics of molecular
790 <                  liquids. Instantaneous-normal-mode theory},
791 <  journal =      jcp,
792 <  year =         1992,
793 <  volume =       97,
794 <  pages =        {8522-8535}
787 > @ARTICLE{Cheung2002,
788 >  author = {D. L. Cheung and S. J. Clark and M. R. Wilson},
789 >  title = {Calculation of the rotational viscosity of a nematic liquid crystal},
790 >  journal = {Chemical Physics Letters},
791 >  year = {2002},
792 >  volume = {356},
793 >  pages = {140-146},
794 >  number = {1-2},
795 >  month = {Apr 15},
796 >  abstract = {Equilibrium molecular dynamics calculations have been performed for
797 >    the liquid crystal molecule n-4-(trans-4-npentylcyclohexyl)benzonitrile
798 >    (PCH5) using a fully atomistic model. Simulation data has been obtained
799 >    for a series of temperatures in the nematic phase. The rotational
800 >    viscosity co-efficient gamma(1), has been calculated using the angular
801 >    velocity correlation function of the nematic director, n, the mean
802 >    squared diffusion of n and statistical mechanical methods based
803 >    on the rotational diffusion co-efficient. We find good agreement
804 >    between the first two methods and experimental values. (C) 2002
805 >    Published by Elsevier Science B.V.},
806 >  annote = {547KF Times Cited:8 Cited References Count:31},
807 >  issn = {0009-2614},
808 >  uri = {<Go to ISI>://000175331000020},
809   }
810  
811 < @Article{Wan94,
812 <  author =       {Yi. Wan and R.~M. Stratt},
813 <  title =        {Liquid theory for the instantaneous normal modes of
814 <                  a liquid},
815 <  journal =      jcp,
816 <  year =         1994,
817 <  volume =       100,
818 <  pages =        {5123-5138}
811 > @ARTICLE{Chin2004,
812 >  author = {S. A. Chin},
813 >  title = {Dynamical multiple-time stepping methods for overcoming resonance
814 >    instabilities},
815 >  journal = {Journal of Chemical Physics},
816 >  year = {2004},
817 >  volume = {120},
818 >  pages = {8-13},
819 >  number = {1},
820 >  month = {Jan 1},
821 >  abstract = {Current molecular dynamics simulations of biomolecules using multiple
822 >    time steps to update the slowly changing force are hampered by instabilities
823 >    beginning at time steps near the half period of the fastest vibrating
824 >    mode. These #resonance# instabilities have became a critical barrier
825 >    preventing the long time simulation of biomolecular dynamics. Attempts
826 >    to tame these instabilities by altering the slowly changing force
827 >    and efforts to damp them out by Langevin dynamics do not address
828 >    the fundamental cause of these instabilities. In this work, we trace
829 >    the instability to the nonanalytic character of the underlying spectrum
830 >    and show that a correct splitting of the Hamiltonian, which renders
831 >    the spectrum analytic, restores stability. The resulting Hamiltonian
832 >    dictates that in addition to updating the momentum due to the slowly
833 >    changing force, one must also update the position with a modified
834 >    mass. Thus multiple-time stepping must be done dynamically. (C)
835 >    2004 American Institute of Physics.},
836 >  annote = {757TK Times Cited:1 Cited References Count:22},
837 >  issn = {0021-9606},
838 >  uri = {<Go to ISI>://000187577400003},
839   }
840  
841 < @article{Stratt95,
842 <  author =       {R.~M. Stratt},
843 <  title =        {The instantaneous normal modes of liquids},
844 <  journal =      {Acc. Chem. Res.},
845 <  year =         1995,
846 <  volume =       28,
847 <  pages =        {201-207}
841 > @ARTICLE{Cook2000,
842 >  author = {M. J. Cook and M. R. Wilson},
843 >  title = {Simulation studies of dipole correlation in the isotropic liquid
844 >    phase},
845 >  journal = {Liquid Crystals},
846 >  year = {2000},
847 >  volume = {27},
848 >  pages = {1573-1583},
849 >  number = {12},
850 >  month = {Dec},
851 >  abstract = {The Kirkwood correlation factor g(1) determines the preference for
852 >    local parallel or antiparallel dipole association in the isotropic
853 >    phase. Calamitic mesogens with longitudinal dipole moments and Kirkwood
854 >    factors greater than 1 have an enhanced effective dipole moment
855 >    along the molecular long axis. This leads to higher values of Delta
856 >    epsilon in the nematic phase. This paper describes state-of-the-art
857 >    molecular dynamics simulations of two calamitic mesogens 4-(trans-4-n-pentylcyclohexyl)benzonitrile
858 >    (PCH5) and 4-(trans-4-n-pentylcyclohexyl) chlorobenzene (PCH5-Cl)
859 >    in the isotropic liquid phase using an all-atom force field and
860 >    taking long range electrostatics into account using an Ewald summation.
861 >    Using this methodology, PCH5 is seen to prefer antiparallel dipole
862 >    alignment with a negative g(1) and PCH5-Cl is seen to prefer parallel
863 >    dipole alignment with a positive g(1); this is in accordance with
864 >    experimental dielectric measurements. Analysis of the molecular
865 >    dynamics trajectories allows an assessment of why these molecules
866 >    behave differently.},
867 >  annote = {376BF Times Cited:10 Cited References Count:16},
868 >  issn = {0267-8292},
869 >  uri = {<Go to ISI>://000165437800002},
870   }
871  
872 < @Article{Nitzan95,
873 <  author =       {G.~V. Vijayadamodar and A. Nitzan},
874 <  title =        {On the application of instantaneous normal mode
875 <                  analysis to long time dynamics of liquids},
876 <  journal =      jcp,
877 <  year =         1995,
878 <  volume =       103,
879 <  pages =        {2169-2177}
872 > @ARTICLE{Cui2003,
873 >  author = {B. X. Cui and M. Y. Shen and K. F. Freed},
874 >  title = {Folding and misfolding of the papillomavirus E6 interacting peptide
875 >    E6ap},
876 >  journal = {Proceedings of the National Academy of Sciences of the United States
877 >    of America},
878 >  year = {2003},
879 >  volume = {100},
880 >  pages = {7087-7092},
881 >  number = {12},
882 >  month = {Jun 10},
883 >  abstract = {All-atom Langevin dynamics simulations have been performed to study
884 >    the folding pathways of the 18-residue binding domain fragment E6ap
885 >    of the human papillomavirus E6 interacting peptide. Six independent
886 >    folding trajectories, with a total duration of nearly 2 mus, all
887 >    lead to the same native state in which the E6ap adopts a fluctuating
888 >    a-helix structure in the central portion (Ser-4-Leu-13) but with
889 >    very flexible N and C termini. Simulations starting from different
890 >    core configurations exhibit the E6ap folding dynamics as either
891 >    a two- or three-state folder with an intermediate misfolded state.
892 >    The essential leucine hydrophobic core (Leu-9, Leu-12, and Leu-13)
893 >    is well conserved in the native-state structure but absent in the
894 >    intermediate structure, suggesting that the leucine core is not
895 >    only essential for the binding activity of E6ap but also important
896 >    for the stability of the native structure. The free energy landscape
897 >    reveals a significant barrier between the basins separating the
898 >    native and misfolded states. We also discuss the various underlying
899 >    forces that drive the peptide into its native state.},
900 >  annote = {689LC Times Cited:3 Cited References Count:48},
901 >  issn = {0027-8424},
902 >  uri = {<Go to ISI>://000183493500037},
903   }
904  
905 < @Article{Ribeiro98,
906 <  author =       "M.~C.~C. Ribeiro and P.~A. Madden",
907 <  title =        "Unstable Modes in Ionic Melts",
908 <  journal =      jcp,
909 <  year =         1998,
910 <  volume =       108,
911 <  pages =        {3256-3263}
905 > @ARTICLE{Denisov2003,
906 >  author = {S. I. Denisov and T. V. Lyutyy and K. N. Trohidou},
907 >  title = {Magnetic relaxation in finite two-dimensional nanoparticle ensembles},
908 >  journal = {Physical Review B},
909 >  year = {2003},
910 >  volume = {67},
911 >  pages = {-},
912 >  number = {1},
913 >  month = {Jan 1},
914 >  abstract = {We study the slow phase of thermally activated magnetic relaxation
915 >    in finite two-dimensional ensembles of dipolar interacting ferromagnetic
916 >    nanoparticles whose easy axes of magnetization are perpendicular
917 >    to the distribution plane. We develop a method to numerically simulate
918 >    the magnetic relaxation for the case that the smallest heights of
919 >    the potential barriers between the equilibrium directions of the
920 >    nanoparticle magnetic moments are much larger than the thermal energy.
921 >    Within this framework, we analyze in detail the role that the correlations
922 >    of the nanoparticle magnetic moments and the finite size of the
923 >    nanoparticle ensemble play in magnetic relaxation.},
924 >  annote = {642XH Times Cited:11 Cited References Count:31},
925 >  issn = {1098-0121},
926 >  uri = {<Go to ISI>://000180830400056},
927   }
928  
929 < @Article{Keyes98a,
930 <  author =       {T. Keyes and W.-X. Li and U.~Z{\"{u}}rcher},
931 <  title =        {Comment on a critique of the instantaneous normal
932 <                  mode (INM) approach to diffusion
933 <                  (J. Chem. Phys. {\bf 107}, 4618 (1997))},
934 <  journal =      jcp,
935 <  year =         1998,
936 <  volume =       109,
937 <  pages =        {4693-4694}
929 > @ARTICLE{Derreumaux1998,
930 >  author = {P. Derreumaux and T. Schlick},
931 >  title = {The loop opening/closing motion of the enzyme triosephosphate isomerase},
932 >  journal = {Biophysical Journal},
933 >  year = {1998},
934 >  volume = {74},
935 >  pages = {72-81},
936 >  number = {1},
937 >  month = {Jan},
938 >  abstract = {To explore the origin of the large-scale motion of triosephosphate
939 >    isomerase's flexible loop (residues 166 to 176) at the active site,
940 >    several simulation protocols are employed both for the free enzyme
941 >    in vacuo and for the free enzyme with some solvent modeling: high-temperature
942 >    Langevin dynamics simulations, sampling by a #dynamics##driver#
943 >    approach, and potential-energy surface calculations. Our focus is
944 >    on obtaining the energy barrier to the enzyme's motion and establishing
945 >    the nature of the loop movement. Previous calculations did not determine
946 >    this energy barrier and the effect of solvent on the barrier. High-temperature
947 >    molecular dynamics simulations and crystallographic studies have
948 >    suggested a rigid-body motion with two hinges located at both ends
949 >    of the loop; Brownian dynamics simulations at room temperature pointed
950 >    to a very flexible behavior. The present simulations and analyses
951 >    reveal that although solute/solvent hydrogen bonds play a crucial
952 >    role in lowering the energy along the pathway, there still remains
953 >    a high activation barrier, This finding clearly indicates that,
954 >    if the loop opens and closes in the absence of a substrate at standard
955 >    conditions (e.g., room temperature, appropriate concentration of
956 >    isomerase), the time scale for transition is not in the nanosecond
957 >    but rather the microsecond range. Our results also indicate that
958 >    in the context of spontaneous opening in the free enzyme, the motion
959 >    is of rigid-body type and that the specific interaction between
960 >    residues Ala(176) and Tyr(208) plays a crucial role in the loop
961 >    opening/closing mechanism.},
962 >  annote = {Zl046 Times Cited:30 Cited References Count:29},
963 >  issn = {0006-3495},
964 >  uri = {<Go to ISI>://000073393400009},
965   }
966  
967 < @Article{Alemany98,
968 <  author =       {M.~M.~G. Alemany and C. Rey and L.~J. Gallego},
969 <  title =        {Transport coefficients of liquid transition metals:
970 <                  A computer simulation study using the embedded atom
971 <                  model},
972 <  journal =      jcp,
973 <  year =         1998,
974 <  volume =       109,
975 <  pages =        {5175-5176}
967 > @ARTICLE{Dullweber1997,
968 >  author = {A. Dullweber and B. Leimkuhler and R. McLachlan},
969 >  title = {Symplectic splitting methods for rigid body molecular dynamics},
970 >  journal = {Journal of Chemical Physics},
971 >  year = {1997},
972 >  volume = {107},
973 >  pages = {5840-5851},
974 >  number = {15},
975 >  month = {Oct 15},
976 >  abstract = {Rigid body molecular models possess symplectic structure and time-reversal
977 >    symmetry. Standard numerical integration methods destroy both properties,
978 >    introducing nonphysical dynamical behavior such as numerically induced
979 >    dissipative states and drift in the energy during long term simulations.
980 >    This article describes the construction, implementation, and practical
981 >    application of fast explicit symplectic-reversible integrators for
982 >    multiple rigid body molecular simulations, These methods use a reduction
983 >    to Euler equations for the free rigid body, together with a symplectic
984 >    splitting technique. In every time step, the orientational dynamics
985 >    of each rigid body is integrated by a sequence of planar rotations.
986 >    Besides preserving the symplectic and reversible structures of the
987 >    flow, this scheme accurately conserves the total angular momentum
988 >    of a system of interacting rigid bodies. Excellent energy conservation
989 >    fan be obtained relative to traditional methods, especially in long-time
990 >    simulations. The method is implemented in a research code, ORIENT
991 >    and compared with a quaternion/extrapolation scheme for the TIP4P
992 >    model of water. Our experiments show that the symplectic-reversible
993 >    scheme is far superior to the more traditional quaternion method.
994 >    (C) 1997 American Institute of Physics.},
995 >  annote = {Ya587 Times Cited:35 Cited References Count:32},
996 >  issn = {0021-9606},
997 >  uri = {<Go to ISI>://A1997YA58700024},
998   }
999  
1000 < @Article{Belonoshko00,
1001 <  author =       {A.~B. Belonoshko and R. Ahuja and O. Eriksson and
1002 <                  B. Johansson},
1003 <  title =        {Quasi ab initio molecular dynamic study of Cu melting},
1004 <  journal =      prb,
1005 <  year =         2000,
1006 <  volume =       61,
1169 <  pages =        {3838-3844}
1000 > @BOOK{Gamma1994,
1001 >  title = {Design Patterns: Elements of Reusable Object-Oriented Software},
1002 >  publisher = {Perason Education},
1003 >  year = {1994},
1004 >  author = {E. Gamma, R. Helm, R. Johnson and J. Vlissides},
1005 >  address = {London},
1006 >  chapter = {7},
1007   }
1008  
1009 < @Article{Banhart92,
1010 <  author =       {J. Banhart and H. Ebert and R. Kuentzler and
1011 <                  J. Voitl\"{a}nder},
1012 <  title =        {Electronic properties of single-phased metastable
1013 <                  Ag-Cu alloys},
1014 <  journal =      prb,
1015 <  year =         1992,
1016 <  volume =       46,
1017 <  pages =        {9968-9975}
1009 > @ARTICLE{Edwards2005,
1010 >  author = {S. A. Edwards and D. R. M. Williams},
1011 >  title = {Stretching a single diblock copolymer in a selective solvent: Langevin
1012 >    dynamics simulations},
1013 >  journal = {Macromolecules},
1014 >  year = {2005},
1015 >  volume = {38},
1016 >  pages = {10590-10595},
1017 >  number = {25},
1018 >  month = {Dec 13},
1019 >  abstract = {Using the Langevin dynamics technique, we have carried out simulations
1020 >    of a single-chain flexible diblock copolymer. The polymer consists
1021 >    of two blocks of equal length, one very poorly solvated and the
1022 >    other close to theta-conditions. We study what happens when such
1023 >    a polymer is stretched, for a range of different stretching speeds,
1024 >    and correlate our observations with features in the plot of force
1025 >    vs extension. We find that at slow speeds this force profile does
1026 >    not increase monotonically, in disagreement with earlier predictions,
1027 >    and that at high speeds there is a strong dependence on which end
1028 >    of the polymer is pulled, as well as a high level of hysteresis.},
1029 >  annote = {992EC Times Cited:0 Cited References Count:13},
1030 >  issn = {0024-9297},
1031 >  uri = {<Go to ISI>://000233866200035},
1032   }
1033  
1034 < @Article{Wendt78,
1035 <  author =       {H. Wendt and F.~F. Abraham},
1036 <  title =        {},
1037 <  journal =      prl,
1038 <  year =         1978,
1039 <  volume =       41,
1040 <  pages =        1244
1034 > @ARTICLE{Egberts1988,
1035 >  author = {E. Egberts and H. J. C. Berendsen},
1036 >  title = {Molecular-Dynamics Simulation of a Smectic Liquid-Crystal with Atomic
1037 >    Detail},
1038 >  journal = {Journal of Chemical Physics},
1039 >  year = {1988},
1040 >  volume = {89},
1041 >  pages = {3718-3732},
1042 >  number = {6},
1043 >  month = {Sep 15},
1044 >  annote = {Q0188 Times Cited:219 Cited References Count:43},
1045 >  issn = {0021-9606},
1046 >  uri = {<Go to ISI>://A1988Q018800036},
1047   }
1048  
1049 < @Article{Lewis91,
1050 <  author =       {L.~J. Lewis},
1051 <  title =        {Atomic dynamics through the glass transition},
1052 <  journal =      prb,
1053 <  year =         1991,
1054 <  volume =       44,
1055 <  pages =        {4245-4254}
1049 > @ARTICLE{Ermak1978,
1050 >  author = {D. L. Ermak and J. A. Mccammon},
1051 >  title = {Brownian Dynamics with Hydrodynamic Interactions},
1052 >  journal = {Journal of Chemical Physics},
1053 >  year = {1978},
1054 >  volume = {69},
1055 >  pages = {1352-1360},
1056 >  number = {4},
1057 >  annote = {Fp216 Times Cited:785 Cited References Count:42},
1058 >  issn = {0021-9606},
1059 >  uri = {<Go to ISI>://A1978FP21600004},
1060   }
1061  
1062 < @Article{Liu92,
1063 <  author =       {R.~S. Liu and D.~W. Qi and S. Wang},
1064 <  title =        {Subpeaks of structure factors for rapidly quenched metals},
1065 <  journal =      prb,
1066 <  year =         1992,
1067 <  volume =       45,
1068 <  pages =        {451-453}
1062 > @ARTICLE{Evans1977,
1063 >  author = {D. J. Evans},
1064 >  title = {Representation of Orientation Space},
1065 >  journal = {Molecular Physics},
1066 >  year = {1977},
1067 >  volume = {34},
1068 >  pages = {317-325},
1069 >  number = {2},
1070 >  annote = {Ds757 Times Cited:271 Cited References Count:18},
1071 >  issn = {0026-8976},
1072 >  uri = {<Go to ISI>://A1977DS75700002},
1073   }
1074  
1075 < @Book{pliny,
1076 <  author =       {Pliny},
1077 <  title =        {Hist. Nat.},
1078 <  publisher =    { },
1079 <  year =         { },
1080 <  volume =       {XXXVI}
1075 > @ARTICLE{Fennell2004,
1076 >  author = {C. J. Fennell and J. D. Gezelter},
1077 >  title = {On the structural and transport properties of the soft sticky dipole
1078 >    and related single-point water models},
1079 >  journal = {Journal of Chemical Physics},
1080 >  year = {2004},
1081 >  volume = {120},
1082 >  pages = {9175-9184},
1083 >  number = {19},
1084 >  month = {May 15},
1085 >  abstract = {The density maximum and temperature dependence of the self-diffusion
1086 >    constant were investigated for the soft sticky dipole (SSD) water
1087 >    model and two related reparametrizations of this single-point model.
1088 >    A combination of microcanonical and isobaric-isothermal molecular
1089 >    dynamics simulations was used to calculate these properties, both
1090 >    with and without the use of reaction field to handle long-range
1091 >    electrostatics. The isobaric-isothermal simulations of the melting
1092 >    of both ice-I-h and ice-I-c showed a density maximum near 260 K.
1093 >    In most cases, the use of the reaction field resulted in calculated
1094 >    densities which were significantly lower than experimental densities.
1095 >    Analysis of self-diffusion constants shows that the original SSD
1096 >    model captures the transport properties of experimental water very
1097 >    well in both the normal and supercooled liquid regimes. We also
1098 >    present our reparametrized versions of SSD for use both with the
1099 >    reaction field or without any long-range electrostatic corrections.
1100 >    These are called the SSD/RF and SSD/E models, respectively. These
1101 >    modified models were shown to maintain or improve upon the experimental
1102 >    agreement with the structural and transport properties that can
1103 >    be obtained with either the original SSD or the density-corrected
1104 >    version of the original model (SSD1). Additionally, a novel low-density
1105 >    ice structure is presented which appears to be the most stable ice
1106 >    structure for the entire SSD family. (C) 2004 American Institute
1107 >    of Physics.},
1108 >  annote = {816YY Times Cited:5 Cited References Count:39},
1109 >  issn = {0021-9606},
1110 >  uri = {<Go to ISI>://000221146400032},
1111   }
1112  
1113 < @Article{Anheuser94,
1114 <  author =       {K. Anheuser and J.P. Northover},
1115 <  title =        {Silver plating of Roman and Celtic coins from Britan - a technical study},
1116 <  journal =      {Brit. Num. J.},
1117 <  year =         1994,
1118 <  volume =       64,
1119 <  pages =        22
1113 > @ARTICLE{Fernandes2002,
1114 >  author = {M. X. Fernandes and J. G. {de la Torre}},
1115 >  title = {Brownian dynamics simulation of rigid particles of arbitrary shape
1116 >    in external fields},
1117 >  journal = {Biophysical Journal},
1118 >  year = {2002},
1119 >  volume = {83},
1120 >  pages = {3039-3048},
1121 >  number = {6},
1122 >  month = {Dec},
1123 >  abstract = {We have developed a Brownian dynamics simulation algorithm to generate
1124 >    Brownian trajectories of an isolated, rigid particle of arbitrary
1125 >    shape in the presence of electric fields or any other external agents.
1126 >    Starting from the generalized diffusion tensor, which can be calculated
1127 >    with the existing HYDRO software, the new program BROWNRIG (including
1128 >    a case-specific subprogram for the external agent) carries out a
1129 >    simulation that is analyzed later to extract the observable dynamic
1130 >    properties. We provide a variety of examples of utilization of this
1131 >    method, which serve as tests of its performance, and also illustrate
1132 >    its applicability. Examples include free diffusion, transport in
1133 >    an electric field, and diffusion in a restricting environment.},
1134 >  annote = {633AD Times Cited:2 Cited References Count:43},
1135 >  issn = {0006-3495},
1136 >  uri = {<Go to ISI>://000180256300012},
1137   }
1138  
1139 < @Article{Pense92,
1140 <  author =       {A. W. Pense},
1141 <  title =        {The Decline and Fall of the Roman Denarius},
1142 <  journal =      {Mat. Char.},
1143 <  year =         1992,
1144 <  volume =       29,
1233 <  pages =        213
1139 > @BOOK{Frenkel1996,
1140 >  title = {Understanding Molecular Simulation : From Algorithms to Applications},
1141 >  publisher = {Academic Press},
1142 >  year = {1996},
1143 >  author = {D. Frenkel and B. Smit},
1144 >  address = {New York},
1145   }
1146  
1147 < @Article{Ngai81,
1148 <  author =       {K.~L. Ngai and F.-S. Liu},
1149 <  title =        {Dispersive diffusion transport and noise,
1150 <                  time-dependent diffusion coefficient, generalized
1151 <                  Einstein-Nernst relation, and dispersive
1152 <                  diffusion-controlled unimolecular and bimolecular
1153 <                  reactions},
1154 <  journal =      prb,
1155 <  year =         1981,
1156 <  volume =       24,
1157 <  pages =        {1049-1065}
1158 < }
1248 <
1249 < @Unpublished{Truhlar00,
1250 <  author =       {D.~G. Truhlar and A. Kohen},
1251 <  note =         {private correspondence}
1252 < }
1253 <
1254 < @Article{Truhlar78,
1255 <  author =       {Donald G. Truhlar},
1256 <  title =        {Interpretation of the Activation Energy},
1257 <  journal =      {J. Chem. Ed.},
1258 <  year =         1978,
1259 <  volume =       55,
1260 <  pages =        309
1147 > @ARTICLE{Gay1981,
1148 >  author = {J. G. Gay and B. J. Berne},
1149 >  title = {Modification of the Overlap Potential to Mimic a Linear Site-Site
1150 >    Potential},
1151 >  journal = {Journal of Chemical Physics},
1152 >  year = {1981},
1153 >  volume = {74},
1154 >  pages = {3316-3319},
1155 >  number = {6},
1156 >  annote = {Lj347 Times Cited:482 Cited References Count:13},
1157 >  issn = {0021-9606},
1158 >  uri = {<Go to ISI>://A1981LJ34700029},
1159   }
1160  
1161 < @Book{Tolman27,
1162 <  author =       {R. C. Tolman},
1163 <  title =        {Statistical Mechanics with Applications to Physics and Chemistry},
1164 <  chapter =      {},
1165 <  publisher =    {Chemical Catalog Co.},
1166 <  address =      {New York},
1167 <  year =         1927,
1168 <  pages =        {260-270}
1161 > @ARTICLE{Gelin1999,
1162 >  author = {M. F. Gelin},
1163 >  title = {Inertial effects in the Brownian dynamics with rigid constraints},
1164 >  journal = {Macromolecular Theory and Simulations},
1165 >  year = {1999},
1166 >  volume = {8},
1167 >  pages = {529-543},
1168 >  number = {6},
1169 >  month = {Nov},
1170 >  abstract = {To investigate the influence of inertial effects on the dynamics of
1171 >    an assembly of beads subjected to rigid constraints and placed in
1172 >    a buffer medium, a convenient method to introduce suitable generalized
1173 >    coordinates is presented. Without any restriction on the nature
1174 >    of the soft forces involved (both stochastic and deterministic),
1175 >    pertinent Langevin equations are derived. Provided that the Brownian
1176 >    forces are Gaussian and Markovian, the corresponding Fokker-Planck
1177 >    equation (FPE) is obtained in the complete phase space of generalized
1178 >    coordinates and momenta. The correct short time behavior for correlation
1179 >    functions (CFs) of generalized coordinates is established, and the
1180 >    diffusion equation with memory (DEM) is deduced from the FPE in
1181 >    the high friction Limit. The DEM is invoked to perform illustrative
1182 >    calculations in two dimensions of the orientational CFs for once
1183 >    broken nonrigid rods immobilized on a surface. These calculations
1184 >    reveal that the CFs under certain conditions exhibit an oscillatory
1185 >    behavior, which is irreproducible within the standard diffusion
1186 >    equation. Several methods are considered for the approximate solution
1187 >    of the DEM, and their application to three dimensional DEMs is discussed.},
1188 >  annote = {257MM Times Cited:2 Cited References Count:82},
1189 >  issn = {1022-1344},
1190 >  uri = {<Go to ISI>://000083785700002},
1191   }
1192  
1193 < @Article{Tolman20,
1194 <  author =       {R. C. Tolman},
1195 <  title =        {Statistical Mechanics Applied to Chemical Kinetics},
1196 <  journal =      jacs,
1197 <  year =         1920,
1198 <  volume =       42,
1199 <  pages =        2506
1193 > @ARTICLE{Goetz1998,
1194 >  author = {R. Goetz and R. Lipowsky},
1195 >  title = {Computer simulations of bilayer membranes: Self-assembly and interfacial
1196 >    tension},
1197 >  journal = {Journal of Chemical Physics},
1198 >  year = {1998},
1199 >  volume = {108},
1200 >  pages = {7397},
1201 >  number = {17},
1202   }
1203  
1204 < @Article{Nagel96,
1205 <  author =       {M.D. Ediger and  C.A. Angell and Sidney R. Nagel},
1206 <  title =        {Supercooled Liquids and Glasses},
1207 <  journal =      jpc,
1208 <  year =         1996,
1209 <  volume =       100,
1210 <  pages =        13200
1204 > @BOOK{Goldstein2001,
1205 >  title = {Classical Mechanics},
1206 >  publisher = {Addison Wesley},
1207 >  year = {2001},
1208 >  author = {H. Goldstein and C. Poole and J. Safko},
1209 >  address = {San Francisco},
1210 >  edition = {3rd},
1211   }
1212  
1213 < @InBook{Blumen86,
1214 <  author =       {A. Blumen and J. Klafter and G. Zumofen},
1215 <  editor =       {Luciano Peitronero and E. Tosatti},
1216 <  title =        {Fractals in Physics},
1217 <  chapter =      {Reactions in Disordered Media Modelled by Fractals},
1218 <  publisher =    {North-Holland},
1219 <  year =         1986,
1220 <  series =       {International Symposium on Fractals in Physics},
1221 <  address =      {Amsterdam},
1222 <  pages =        399
1213 > @ARTICLE{Gray2003,
1214 >  author = {J. J. Gray and S. Moughon and C. Wang and O. Schueler-Furman and
1215 >    B. Kuhlman and C. A. Rohl and D. Baker},
1216 >  title = {Protein-protein docking with simultaneous optimization of rigid-body
1217 >    displacement and side-chain conformations},
1218 >  journal = {Journal of Molecular Biology},
1219 >  year = {2003},
1220 >  volume = {331},
1221 >  pages = {281-299},
1222 >  number = {1},
1223 >  month = {Aug 1},
1224 >  abstract = {Protein-protein docking algorithms provide a means to elucidate structural
1225 >    details for presently unknown complexes. Here, we present and evaluate
1226 >    a new method to predict protein-protein complexes from the coordinates
1227 >    of the unbound monomer components. The method employs a low-resolution,
1228 >    rigid-body, Monte Carlo search followed by simultaneous optimization
1229 >    of backbone displacement and side-chain conformations using Monte
1230 >    Carlo minimization. Up to 10(5) independent simulations are carried
1231 >    out, and the resulting #decoys# are ranked using an energy function
1232 >    dominated by van der Waals interactions, an implicit solvation model,
1233 >    and an orientation-dependent hydrogen bonding potential. Top-ranking
1234 >    decoys are clustered to select the final predictions. Small-perturbation
1235 >    studies reveal the formation of binding funnels in 42 of 54 cases
1236 >    using coordinates derived from the bound complexes and in 32 of
1237 >    54 cases using independently determined coordinates of one or both
1238 >    monomers. Experimental binding affinities correlate with the calculated
1239 >    score function and explain the predictive success or failure of
1240 >    many targets. Global searches using one or both unbound components
1241 >    predict at least 25% of the native residue-residue contacts in 28
1242 >    of the 32 cases where binding funnels exist. The results suggest
1243 >    that the method may soon be useful for generating models of biologically
1244 >    important complexes from the structures of the isolated components,
1245 >    but they also highlight the challenges that must be met to achieve
1246 >    consistent and accurate prediction of protein-protein interactions.
1247 >    (C) 2003 Elsevier Ltd. All rights reserved.},
1248 >  annote = {704QL Times Cited:48 Cited References Count:60},
1249 >  issn = {0022-2836},
1250 >  uri = {<Go to ISI>://000184351300022},
1251   }
1252  
1253 < @Article{Shlesinger84,
1254 <  author =       {M.~F. Shlesinger and E.~W. Montroll},
1255 <  title =        {On the Williams-Watts function of dielectric relaxation},
1256 <  journal =      {Proc. Natl. Acad. Sci. USA},
1257 <  year =         1984,
1258 <  volume =       81,
1259 <  pages =        {1280-1283}
1253 > @ARTICLE{Greengard1994,
1254 >  author = {L. Greengard},
1255 >  title = {Fast Algorithms for Classical Physics},
1256 >  journal = {Science},
1257 >  year = {1994},
1258 >  volume = {265},
1259 >  pages = {909-914},
1260 >  number = {5174},
1261 >  month = {Aug 12},
1262 >  abstract = {Some of the recently developed fast summation methods that have arisen
1263 >    in scientific computing are described. These methods require an
1264 >    amount of work proportional to N or N log N to evaluate all pairwise
1265 >    interactions in an ensemble of N particles. Traditional methods,
1266 >    by contrast, require an amount of work proportional to N-2. AS a
1267 >    result, large-scale simulations can be carried out using only modest
1268 >    computer resources. In combination with supercomputers, it is possible
1269 >    to address questions that were previously out of reach. Problems
1270 >    from diffusion, gravitation, and wave propagation are considered.},
1271 >  annote = {Pb499 Times Cited:99 Cited References Count:44},
1272 >  issn = {0036-8075},
1273 >  uri = {<Go to ISI>://A1994PB49900031},
1274   }
1275  
1276 < @Article{Klafter86,
1277 <  author =       {J. Klafter and M.~F. Shlesinger},
1278 <  title =        {On the relationship among three theories of
1279 <                  relaxation in disordered systems},
1280 <  journal =      {Proc. Natl. Acad. Sci. USA},
1281 <  year =         1986,
1282 <  volume =       83,
1283 <  pages =        {848-851}
1276 > @ARTICLE{Greengard1987,
1277 >  author = {L. Greengard and V. Rokhlin},
1278 >  title = {A Fast Algorithm for Particle Simulations},
1279 >  journal = {Journal of Computational Physics},
1280 >  year = {1987},
1281 >  volume = {73},
1282 >  pages = {325-348},
1283 >  number = {2},
1284 >  month = {Dec},
1285 >  annote = {L0498 Times Cited:899 Cited References Count:7},
1286 >  issn = {0021-9991},
1287 >  uri = {<Go to ISI>://A1987L049800006},
1288   }
1289  
1290 < @Article{Li2001,
1291 <  author =   {Z. Li and M. Lieberman and W. Hill},
1292 <  title =    {{\sc xps} and {\sc sers} Study of Silicon Phthalocyanine
1293 <                  Monolayers: umbrella vs. octopus design strategies
1294 <                  for formation of oriented {\sc sam}s},
1295 <  journal =      {Langmuir},
1296 <  year =     2001,
1297 <  volume =       17,
1298 <  pages =        {4887-4894}
1290 > @ARTICLE{Hairer1997,
1291 >  author = {E. Hairer and C. Lubich},
1292 >  title = {The life-span of backward error analysis for numerical integrators},
1293 >  journal = {Numerische Mathematik},
1294 >  year = {1997},
1295 >  volume = {76},
1296 >  pages = {441-462},
1297 >  number = {4},
1298 >  month = {Jun},
1299 >  abstract = {Backward error analysis is a useful tool for the study of numerical
1300 >    approximations to ordinary differential equations. The numerical
1301 >    solution is formally interpreted as the exact solution of a perturbed
1302 >    differential equation, given as a formal and usually divergent series
1303 >    in powers of the step size. For a rigorous analysis, this series
1304 >    has to be truncated. In this article we study the influence of this
1305 >    truncation to the difference between the numerical solution and
1306 >    the exact solution of the perturbed differential equation. Results
1307 >    on the long-time behaviour of numerical solutions are obtained in
1308 >    this way. We present applications to the numerical phase portrait
1309 >    near hyperbolic equilibrium points, to asymptotically stable periodic
1310 >    orbits and Hopf bifurcation, and to energy conservation and approximation
1311 >    of invariant tori in Hamiltonian systems.},
1312 >  annote = {Xj488 Times Cited:50 Cited References Count:19},
1313 >  issn = {0029-599X},
1314 >  uri = {<Go to ISI>://A1997XJ48800002},
1315   }
1316  
1317 < @Article{Evans1993,
1318 <  author =       {J.~W. Evans},
1319 <  title =        {Random and Cooperative Sequential Adsorption},
1320 <  journal =      rmp,
1321 <  year =         1993,
1322 <  volume =       65,
1323 <  pages =        {1281-1329}
1317 > @ARTICLE{Hao1993,
1318 >  author = {M. H. Hao and M. R. Pincus and S. Rackovsky and H. A. Scheraga},
1319 >  title = {Unfolding and Refolding of the Native Structure of Bovine Pancreatic
1320 >    Trypsin-Inhibitor Studied by Computer-Simulations},
1321 >  journal = {Biochemistry},
1322 >  year = {1993},
1323 >  volume = {32},
1324 >  pages = {9614-9631},
1325 >  number = {37},
1326 >  month = {Sep 21},
1327 >  abstract = {A new procedure for studying the folding and unfolding of proteins,
1328 >    with an application to bovine pancreatic trypsin inhibitor (BPTI),
1329 >    is reported. The unfolding and refolding of the native structure
1330 >    of the protein are characterized by the dimensions of the protein,
1331 >    expressed in terms of the three principal radii of the structure
1332 >    considered as an ellipsoid. A dynamic equation, describing the variations
1333 >    of the principal radii on the unfolding path, and a numerical procedure
1334 >    to solve this equation are proposed. Expanded and distorted conformations
1335 >    are refolded to the native structure by a dimensional-constraint
1336 >    energy minimization procedure. A unique and reproducible unfolding
1337 >    pathway for an intermediate of BPTI lacking the [30,51] disulfide
1338 >    bond is obtained. The resulting unfolded conformations are extended;
1339 >    they contain near-native local structure, but their longest principal
1340 >    radii are more than 2.5 times greater than that of the native structure.
1341 >    The most interesting finding is that the majority of expanded conformations,
1342 >    generated under various conditions, can be refolded closely to the
1343 >    native structure, as measured by the correct overall chain fold,
1344 >    by the rms deviations from the native structure of only 1.9-3.1
1345 >    angstrom, and by the energy differences of about 10 kcal/mol from
1346 >    the native structure. Introduction of the [30,51] disulfide bond
1347 >    at this stage, followed by minimization, improves the closeness
1348 >    of the refolded structures to the native structure, reducing the
1349 >    rms deviations to 0.9-2.0 angstrom. The unique refolding of these
1350 >    expanded structures over such a large conformational space implies
1351 >    that the folding is strongly dictated by the interactions in the
1352 >    amino acid sequence of BPTI. The simulations indicate that, under
1353 >    conditions that favor a compact structure as mimicked by the volume
1354 >    constraints in our algorithm; the expanded conformations have a
1355 >    strong tendency to move toward the native structure; therefore,
1356 >    they probably would be favorable folding intermediates. The results
1357 >    presented here support a general model for protein folding, i.e.,
1358 >    progressive formation of partially folded structural units, followed
1359 >    by collapse to the compact native structure. The general applicability
1360 >    of the procedure is also discussed.},
1361 >  annote = {Ly294 Times Cited:27 Cited References Count:57},
1362 >  issn = {0006-2960},
1363 >  uri = {<Go to ISI>://A1993LY29400014},
1364   }
1365  
1366 <
1367 < @Article{Dwyer1977,
1368 <  author =   {D.~J. Dwyer and G.~W. Simmons and R.~P. Wei},
1369 <  title =    {},
1370 <  journal =      {Surf. Sci.},
1371 <  year =     1977,
1372 <  volume =   64,
1373 <  pages =    617
1366 > @ARTICLE{Hinsen2000,
1367 >  author = {K. Hinsen and A. J. Petrescu and S. Dellerue and M. C. Bellissent-Funel
1368 >    and G. R. Kneller},
1369 >  title = {Harmonicity in slow protein dynamics},
1370 >  journal = {Chemical Physics},
1371 >  year = {2000},
1372 >  volume = {261},
1373 >  pages = {25-37},
1374 >  number = {1-2},
1375 >  month = {Nov 1},
1376 >  abstract = {The slow dynamics of proteins around its native folded state is usually
1377 >    described by diffusion in a strongly anharmonic potential. In this
1378 >    paper, we try to understand the form and origin of the anharmonicities,
1379 >    with the principal aim of gaining a better understanding of the
1380 >    principal motion types, but also in order to develop more efficient
1381 >    numerical methods for simulating neutron scattering spectra of large
1382 >    proteins. First, we decompose a molecular dynamics (MD) trajectory
1383 >    of 1.5 ns for a C-phycocyanin dimer surrounded by a layer of water
1384 >    into three contributions that we expect to be independent: the global
1385 >    motion of the residues, the rigid-body motion of the sidechains
1386 >    relative to the backbone, and the internal deformations of the sidechains.
1387 >    We show that they are indeed almost independent by verifying the
1388 >    factorization of the incoherent intermediate scattering function.
1389 >    Then, we show that the global residue motions, which include all
1390 >    large-scale backbone motions, can be reproduced by a simple harmonic
1391 >    model which contains two contributions: a short-time vibrational
1392 >    term, described by a standard normal mode calculation in a local
1393 >    minimum, and a long-time diffusive term, described by Brownian motion
1394 >    in an effective harmonic potential. The potential and the friction
1395 >    constants were fitted to the MD data. The major anharmonic contribution
1396 >    to the incoherent intermediate scattering function comes from the
1397 >    rigid-body diffusion of the sidechains. This model can be used to
1398 >    calculate scattering functions for large proteins and for long-time
1399 >    scales very efficiently, and thus provides a useful complement to
1400 >    MD simulations, which are best suited for detailed studies on smaller
1401 >    systems or for shorter time scales. (C) 2000 Elsevier Science B.V.
1402 >    All rights reserved.},
1403 >  annote = {Sp. Iss. SI 368MT Times Cited:16 Cited References Count:31},
1404 >  issn = {0301-0104},
1405 >  uri = {<Go to ISI>://000090121700003},
1406   }
1407  
1408 < @Article{Macritche1978,
1409 <  author =   {F. MacRitche},
1410 <  title =    {},
1411 <  journal =      {Adv. Protein Chem.},
1412 <  year =     1978,
1413 <  volume =   32,
1414 <  pages =    283
1408 > @ARTICLE{Ho1992,
1409 >  author = {C. Ho and C. D. Stubbs},
1410 >  title = {Hydration at the Membrane Protein-Lipid Interface},
1411 >  journal = {Biophysical Journal},
1412 >  year = {1992},
1413 >  volume = {63},
1414 >  pages = {897-902},
1415 >  number = {4},
1416 >  month = {Oct},
1417 >  abstract = {Evidence has been found for the existence water at the protein-lipid
1418 >    hydrophobic interface ot the membrane proteins, gramicidin and apocytochrome
1419 >    C, using two related fluorescence spectroscopic approaches. The
1420 >    first approach exploited the fact that the presence of water in
1421 >    the excited state solvent cage of a fluorophore increases the rate
1422 >    of decay. For 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5-hexatrienyl)
1423 >    phenyl]ethyl]carbonyl]-3-sn-PC (DPH-PC), where the fluorophores
1424 >    are located in the hydrophobic core of the lipid bilayer, the introduction
1425 >    of gramicidin reduced the fluorescence lifetime, indicative of an
1426 >    increased presence of water in the bilayer. Since a high protein:lipid
1427 >    ratio was used, the fluorophores were forced to be adjacent to the
1428 >    protein hydrophobic surface, hence the presence of water in this
1429 >    region could be inferred. Cholesterol is known to reduce the water
1430 >    content of lipid bilayers and this effect was maintained at the
1431 >    protein-lipid interface with both gramicidin and apocytochrome C,
1432 >    again suggesting hydration in this region. The second approach was
1433 >    to use the fluorescence enhancement induced by exchanging deuterium
1434 >    oxide (D2O) for H2O. Both the fluorescence intensities of trimethylammonium-DPH,
1435 >    located in the lipid head group region, and of the gramicidin intrinsic
1436 >    tryptophans were greater in a D2O buffer compared with H2O, showing
1437 >    that the fluorophores were exposed to water in the bilayer at the
1438 >    protein-lipid interface. In the presence of cholesterol the fluorescence
1439 >    intensity ratio of D2O to H2O decreased, indicating a removal of
1440 >    water by the cholesterol, in keeping with the lifetime data. Altered
1441 >    hydration at the protein-lipid interface could affect conformation,
1442 >    thereby offering a new route by which membrane protein functioning
1443 >    may be modified.},
1444 >  annote = {Ju251 Times Cited:55 Cited References Count:44},
1445 >  issn = {0006-3495},
1446 >  uri = {<Go to ISI>://A1992JU25100002},
1447   }
1448  
1449 < @Article{Feder1980,
1450 <  author =   {J. Feder},
1451 <  title =    {},
1452 <  journal =      {J. Theor. Biol.},
1453 <  year =     1980,
1454 <  volume =   87,
1367 <  pages =    237
1449 > @BOOK{Hockney1981,
1450 >  title = {Computer Simulation Using Particles},
1451 >  publisher = {McGraw-Hill},
1452 >  year = {1981},
1453 >  author = {R.W. Hockney and J.W. Eastwood},
1454 >  address = {New York},
1455   }
1456  
1457 < @Article{Ramsden1993,
1458 <  author =   {J.~J. Ramsden},
1459 <  title =    {},
1460 <  journal =      prl,
1461 <  year =     1993,
1462 <  volume =   71,
1463 <  pages =    295
1457 > @ARTICLE{Hoover1985,
1458 >  author = {W. G. Hoover},
1459 >  title = {Canonical Dynamics - Equilibrium Phase-Space Distributions},
1460 >  journal = {Physical Review A},
1461 >  year = {1985},
1462 >  volume = {31},
1463 >  pages = {1695-1697},
1464 >  number = {3},
1465 >  annote = {Acr30 Times Cited:1809 Cited References Count:11},
1466 >  issn = {1050-2947},
1467 >  uri = {<Go to ISI>://A1985ACR3000056},
1468   }
1469  
1470 <
1471 < @Article{Egelhoff1989,
1472 <  author =   {W.~F. Egelhoff and I. Jacob},
1473 <  title =    {},
1474 <  journal =      prl,
1475 <  year =     1989,
1476 <  volume =   62,
1477 <  pages =    921
1470 > @ARTICLE{Huh2004,
1471 >  author = {Y. Huh and N. M. Cann},
1472 >  title = {Discrimination in isotropic, nematic, and smectic phases of chiral
1473 >    calamitic molecules: A computer simulation study},
1474 >  journal = {Journal of Chemical Physics},
1475 >  year = {2004},
1476 >  volume = {121},
1477 >  pages = {10299-10308},
1478 >  number = {20},
1479 >  month = {Nov 22},
1480 >  abstract = {Racemic fluids of chiral calamitic molecules are investigated with
1481 >    molecular dynamics simulations. In particular, the phase behavior
1482 >    as a function of density is examined for eight racemates. The relationship
1483 >    between chiral discrimination and orientational order in the phase
1484 >    is explored. We find that the transition from the isotropic phase
1485 >    to a liquid crystal phase is accompanied by an increase in chiral
1486 >    discrimination, as measured by differences in radial distributions.
1487 >    Among ordered phases, discrimination is largest for smectic phases
1488 >    with a significant preference for heterochiral contact within the
1489 >    layers. (C) 2004 American Institute of Physics.},
1490 >  annote = {870FJ Times Cited:0 Cited References Count:63},
1491 >  issn = {0021-9606},
1492 >  uri = {<Go to ISI>://000225042700059},
1493   }
1494  
1495 <
1496 < @Article{Viot1992a,
1497 <  author =   {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1498 <  title =    {RANDOM SEQUENTIAL ADSORPTION OF ANISOTROPIC
1499 <                  PARTICLES 1. JAMMING LIMIT AND ASYMPTOTIC-BEHAVIOR},
1500 <  journal =      jpc,
1501 <  year =     1992,
1502 <  volume =   97,
1503 <  pages =    {5212-5218}
1495 > @ARTICLE{Humphrey1996,
1496 >  author = {W. Humphrey and A. Dalke and K. Schulten},
1497 >  title = {VMD: Visual molecular dynamics},
1498 >  journal = {Journal of Molecular Graphics},
1499 >  year = {1996},
1500 >  volume = {14},
1501 >  pages = {33-\&},
1502 >  number = {1},
1503 >  month = {Feb},
1504 >  abstract = {VMD is a molecular graphics program designed for the display and analysis
1505 >    of molecular assemblies, in particular biopolymers such as proteins
1506 >    and nucleic acids. VMD can simultaneously display any number of
1507 >    structures using a wide variety of rendering styles and coloring
1508 >    methods. Molecules are displayed as one or more ''representations,''
1509 >    in which each representation embodies a particular rendering method
1510 >    and coloring scheme for a selected subset of atoms. The atoms displayed
1511 >    in each representation are chosen using an extensive atom selection
1512 >    syntax, which includes Boolean operators and regular expressions.
1513 >    VMD provides a complete graphical user interface for program control,
1514 >    as well as a text interface using the Tcl embeddable parser to allow
1515 >    for complex scripts with variable substitution, control loops, and
1516 >    function calls. Full session logging is supported, which produces
1517 >    a VMD command script for later playback. High-resolution raster
1518 >    images of displayed molecules may be produced by generating input
1519 >    scripts for use by a number of photorealistic image-rendering applications.
1520 >    VMD has also been expressly designed with the ability to animate
1521 >    molecular dynamics (MD) simulation trajectories, imported either
1522 >    from files or from a direct connection to a running MD simulation.
1523 >    VMD is the visualization component of MDScope, a set of tools for
1524 >    interactive problem solving in structural biology, which also includes
1525 >    the parallel MD program NAMD, and the MDCOMM software used to connect
1526 >    the visualization and simulation programs. VMD is written in C++,
1527 >    using an object-oriented design; the program, including source code
1528 >    and extensive documentation, is freely available via anonymous ftp
1529 >    and through the World Wide Web.},
1530 >  annote = {Uh515 Times Cited:1418 Cited References Count:19},
1531 >  issn = {0263-7855},
1532 >  uri = {<Go to ISI>://A1996UH51500005},
1533   }
1534  
1535 < @Article{Viot1992b,
1536 <  author =   {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1537 <  title =    {SATURATION COVERAGE IN RANDOM SEQUENTIAL ADSORPTION
1538 <                  OF VERY ELONGATED PARTICLES},
1539 <  journal =      {Physica A},
1540 <  year =     1992,
1541 <  volume =   191,
1542 <  pages =    {248-252}
1535 > @ARTICLE{Izaguirre2001,
1536 >  author = {J. A. Izaguirre and D. P. Catarello and J. M. Wozniak and R. D. Skeel},
1537 >  title = {Langevin stabilization of molecular dynamics},
1538 >  journal = {Journal of Chemical Physics},
1539 >  year = {2001},
1540 >  volume = {114},
1541 >  pages = {2090-2098},
1542 >  number = {5},
1543 >  month = {Feb 1},
1544 >  abstract = {In this paper we show the possibility of using very mild stochastic
1545 >    damping to stabilize long time step integrators for Newtonian molecular
1546 >    dynamics. More specifically, stable and accurate integrations are
1547 >    obtained for damping coefficients that are only a few percent of
1548 >    the natural decay rate of processes of interest, such as the velocity
1549 >    autocorrelation function. Two new multiple time stepping integrators,
1550 >    Langevin Molly (LM) and Brunger-Brooks-Karplus-Molly (BBK-M), are
1551 >    introduced in this paper. Both use the mollified impulse method
1552 >    for the Newtonian term. LM uses a discretization of the Langevin
1553 >    equation that is exact for the constant force, and BBK-M uses the
1554 >    popular Brunger-Brooks-Karplus integrator (BBK). These integrators,
1555 >    along with an extrapolative method called LN, are evaluated across
1556 >    a wide range of damping coefficient values. When large damping coefficients
1557 >    are used, as one would for the implicit modeling of solvent molecules,
1558 >    the method LN is superior, with LM closely following. However, with
1559 >    mild damping of 0.2 ps(-1), LM produces the best results, allowing
1560 >    long time steps of 14 fs in simulations containing explicitly modeled
1561 >    flexible water. With BBK-M and the same damping coefficient, time
1562 >    steps of 12 fs are possible for the same system. Similar results
1563 >    are obtained for a solvated protein-DNA simulation of estrogen receptor
1564 >    ER with estrogen response element ERE. A parallel version of BBK-M
1565 >    runs nearly three times faster than the Verlet-I/r-RESPA (reversible
1566 >    reference system propagator algorithm) when using the largest stable
1567 >    time step on each one, and it also parallelizes well. The computation
1568 >    of diffusion coefficients for flexible water and ER/ERE shows that
1569 >    when mild damping of up to 0.2 ps-1 is used the dynamics are not
1570 >    significantly distorted. (C) 2001 American Institute of Physics.},
1571 >  annote = {397CQ Times Cited:14 Cited References Count:36},
1572 >  issn = {0021-9606},
1573 >  uri = {<Go to ISI>://000166676100020},
1574   }
1575  
1576 < @Article{Dobson1987,
1577 <  author =       {B.~W. Dobson},
1578 <  title =        {},
1579 <  journal =      prb,
1580 <  year =         1987,
1581 <  volume =       36,
1582 <  pages =        1068
1576 > @ARTICLE{Torre1977,
1577 >  author = {Jose Garcia De La Torre, V.A. Bloomfield},
1578 >  title = {Hydrodynamic properties of macromolecular complexes. I. Translation},
1579 >  journal = {Biopolymers},
1580 >  year = {1977},
1581 >  volume = {16},
1582 >  pages = {1747-1763},
1583   }
1584  
1585 < @Article{Boyer1995,
1586 <  author =       {D. Boyer and P. Viot and G. Tarjus and J. Talbot},
1587 <  title =        {PERCUS-$\mbox{Y}$EVICK-LIKE INTERGRAL EQUATION FOR RANDOM SEQUENTIAL
1588 <                  ADSORPTION},
1589 <  journal =      jcp,
1590 <  year =         1995,
1591 <  volume =       103,
1592 <  pages =        1607
1585 > @ARTICLE{Kale1999,
1586 >  author = {L. Kale and R. Skeel and M. Bhandarkar and R. Brunner and A. Gursoy
1587 >    and N. Krawetz and J. Phillips and A. Shinozaki and K. Varadarajan
1588 >    and K. Schulten},
1589 >  title = {NAMD2: Greater scalability for parallel molecular dynamics},
1590 >  journal = {Journal of Computational Physics},
1591 >  year = {1999},
1592 >  volume = {151},
1593 >  pages = {283-312},
1594 >  number = {1},
1595 >  month = {May 1},
1596 >  abstract = {Molecular dynamics programs simulate the behavior of biomolecular
1597 >    systems, leading to understanding of their functions. However, the
1598 >    computational complexity of such simulations is enormous. Parallel
1599 >    machines provide the potential to meet this computational challenge.
1600 >    To harness this potential, it is necessary to develop a scalable
1601 >    program. It is also necessary that the program be easily modified
1602 >    by application-domain programmers. The NAMD2 program presented in
1603 >    this paper seeks to provide these desirable features. It uses spatial
1604 >    decomposition combined with force decomposition to enhance scalability.
1605 >    It uses intelligent periodic load balancing, so as to maximally
1606 >    utilize the available compute power. It is modularly organized,
1607 >    and implemented using Charm++, a parallel C++ dialect, so as to
1608 >    enhance its modifiability. It uses a combination of numerical techniques
1609 >    and algorithms to ensure that energy drifts are minimized, ensuring
1610 >    accuracy in long running calculations. NAMD2 uses a portable run-time
1611 >    framework called Converse that also supports interoperability among
1612 >    multiple parallel paradigms. As a result, different components of
1613 >    applications can be written in the most appropriate parallel paradigms.
1614 >    NAMD2 runs on most parallel machines including workstation clusters
1615 >    and has yielded speedups in excess of 180 on 220 processors. This
1616 >    paper also describes the performance obtained on some benchmark
1617 >    applications. (C) 1999 Academic Press.},
1618 >  annote = {194FM Times Cited:373 Cited References Count:51},
1619 >  issn = {0021-9991},
1620 >  uri = {<Go to ISI>://000080181500013},
1621   }
1622  
1623 < @Article{Viot1992c,
1624 <  author =       {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1625 <  title =        {SATURATION COVERAGE OF HIGHLY ELONGATED ANISOTROPIC
1626 <                  PARTICLES},
1627 <  journal =      {Physica A},
1628 <  year =         1992,
1629 <  volume =       191,
1630 <  pages =        {248-252}
1623 > @ARTICLE{Kane2000,
1624 >  author = {C. Kane and J. E. Marsden and M. Ortiz and M. West},
1625 >  title = {Variational integrators and the Newmark algorithm for conservative
1626 >    and dissipative mechanical systems},
1627 >  journal = {International Journal for Numerical Methods in Engineering},
1628 >  year = {2000},
1629 >  volume = {49},
1630 >  pages = {1295-1325},
1631 >  number = {10},
1632 >  month = {Dec 10},
1633 >  abstract = {The purpose of this work is twofold. First, we demonstrate analytically
1634 >    that the classical Newmark family as well as related integration
1635 >    algorithms are variational in the sense of the Veselov formulation
1636 >    of discrete mechanics. Such variational algorithms are well known
1637 >    to be symplectic and momentum preserving and to often have excellent
1638 >    global energy behaviour. This analytical result is verified through
1639 >    numerical examples and is believed to be one of the primary reasons
1640 >    that this class of algorithms performs so well. Second, we develop
1641 >    algorithms for mechanical systems with forcing, and in particular,
1642 >    for dissipative systems. In this case, we develop integrators that
1643 >    are based on a discretization of the Lagrange d'Alembert principle
1644 >    as well as on a variational formulation of dissipation. It is demonstrated
1645 >    that these types of structured integrators have good numerical behaviour
1646 >    in terms of obtaining the correct amounts by which the energy changes
1647 >    over the integration run. Copyright (C) 2000 John Wiley & Sons,
1648 >    Ltd.},
1649 >  annote = {373CJ Times Cited:30 Cited References Count:41},
1650 >  issn = {0029-5981},
1651 >  uri = {<Go to ISI>://000165270600004},
1652   }
1653  
1654 < @Article{Ricci1994,
1655 <  author =       {S.~M. Ricci and J. Talbot and G. Tarjus and P. Viot},
1656 <  title =        {A STRUCTURAL COMPARISON OF RANDOM SEQUENTIAL ADSORPTION AND
1657 <                  EQUILIBRIUM CONFIGURATIONS OF SPHEROCYLINDERS},
1658 <  journal =      jcp,
1659 <  year =         1994,
1660 <  volume =       101,
1661 <  pages =        9164
1654 > @ARTICLE{Klimov1997,
1655 >  author = {D. K. Klimov and D. Thirumalai},
1656 >  title = {Viscosity dependence of the folding rates of proteins},
1657 >  journal = {Physical Review Letters},
1658 >  year = {1997},
1659 >  volume = {79},
1660 >  pages = {317-320},
1661 >  number = {2},
1662 >  month = {Jul 14},
1663 >  abstract = {The viscosity (eta) dependence of the folding rates for four sequences
1664 >    (the native state of three sequences is a beta sheet, while the
1665 >    fourth forms an alpha helix) is calculated for off-lattice models
1666 >    of proteins. Assuming that the dynamics is given by the Langevin
1667 >    equation, we show that the folding rates increase linearly at low
1668 >    viscosities eta, decrease as 1/eta at large eta, and have a maximum
1669 >    at intermediate values. The Kramers' theory of barrier crossing
1670 >    provides a quantitative fit of the numerical results. By mapping
1671 >    the simulation results to real proteins we estimate that for optimized
1672 >    sequences the time scale for forming a four turn alpha-helix topology
1673 >    is about 500 ns, whereas for beta sheet it is about 10 mu s.},
1674 >  annote = {Xk293 Times Cited:77 Cited References Count:17},
1675 >  issn = {0031-9007},
1676 >  uri = {<Go to ISI>://A1997XK29300035},
1677   }
1678  
1679 < @Article{Semmler1998,
1680 <  author =   {M. Semmler and E.~K. Mann and J. Ricka and M. Borkovec},
1681 <  title =    {Diffusional Deposition of Charged Latex Particles on
1682 <                  Water-Solid Interfaces at Low Ionic Strength},
1683 <  journal =      {Langmuir},
1684 <  year =     1998,
1685 <  volume =   14,
1686 <  pages =    {5127-5132}
1679 > @ARTICLE{Kol1997,
1680 >  author = {A. Kol and B. B. Laird and B. J. Leimkuhler},
1681 >  title = {A symplectic method for rigid-body molecular simulation},
1682 >  journal = {Journal of Chemical Physics},
1683 >  year = {1997},
1684 >  volume = {107},
1685 >  pages = {2580-2588},
1686 >  number = {7},
1687 >  month = {Aug 15},
1688 >  abstract = {Rigid-body molecular dynamics simulations typically are performed
1689 >    in a quaternion representation. The nonseparable form of the Hamiltonian
1690 >    in quaternions prevents the use of a standard leapfrog (Verlet)
1691 >    integrator, so nonsymplectic Runge-Kutta, multistep, or extrapolation
1692 >    methods are generally used, This is unfortunate since symplectic
1693 >    methods like Verlet exhibit superior energy conservation in long-time
1694 >    integrations. In this article, we describe an alternative method,
1695 >    which we call RSHAKE (for rotation-SHAKE), in which the entire rotation
1696 >    matrix is evolved (using the scheme of McLachlan and Scovel [J.
1697 >    Nonlin. Sci, 16 233 (1995)]) in tandem with the particle positions.
1698 >    We employ a fast approximate Newton solver to preserve the orthogonality
1699 >    of the rotation matrix. We test our method on a system of soft-sphere
1700 >    dipoles and compare with quaternion evolution using a 4th-order
1701 >    predictor-corrector integrator, Although the short-time error of
1702 >    the quaternion algorithm is smaller for fixed time step than that
1703 >    for RSHAKE, the quaternion scheme exhibits an energy drift which
1704 >    is not observed in simulations with RSHAKE, hence a fixed energy
1705 >    tolerance can be achieved by using a larger time step, The superiority
1706 >    of RSHAKE increases with system size. (C) 1997 American Institute
1707 >    of Physics.},
1708 >  annote = {Xq332 Times Cited:11 Cited References Count:18},
1709 >  issn = {0021-9606},
1710 >  uri = {<Go to ISI>://A1997XQ33200046},
1711   }
1712  
1713 < @Article{Solomon1986,
1714 <  author =   {H. Solomon and H. Weiner},
1715 <  title =    {A REVIEW OF THE PACKING PROBLEM},
1716 <  journal =      {Comm. Statistics A},
1717 <  year =     1986,
1718 <  volume =   15,
1719 <  pages =    {2571-2607}
1713 > @ARTICLE{Lansac2001,
1714 >  author = {Y. Lansac and M. A. Glaser and N. A. Clark},
1715 >  title = {Microscopic structure and dynamics of a partial bilayer smectic liquid
1716 >    crystal},
1717 >  journal = {Physical Review E},
1718 >  year = {2001},
1719 >  volume = {6405},
1720 >  pages = {-},
1721 >  number = {5},
1722 >  month = {Nov},
1723 >  abstract = {Cyanobiphenyls (nCB's) represent a useful and intensively studied
1724 >    class of mesogens. Many of the peculiar properties of nCB's (e.g.,
1725 >    the occurence of the partial bilayer smectic-A(d) phase) are thought
1726 >    to be a manifestation of short-range antiparallel association of
1727 >    neighboring molecules, resulting from strong dipole-dipole interactions
1728 >    between cyano groups. To test and extend existing models of microscopic
1729 >    ordering in nCB's, we carry out large-scale atomistic simulation
1730 >    studies of the microscopic structure and dynamics of the Sm-A(d)
1731 >    phase of 4-octyl-4'-cyanobiphenyl (8CB). We compute a variety of
1732 >    thermodynamic, structural, and dynamical properties for this material,
1733 >    and make a detailed comparison of our results with experimental
1734 >    measurements in order to validate our molecular model. Semiquantitative
1735 >    agreement with experiment is found: the smectic layer spacing and
1736 >    mass density are well reproduced, translational diffusion constants
1737 >    are similar to experiment, but the orientational ordering of alkyl
1738 >    chains is overestimated. This simulation provides a detailed picture
1739 >    of molecular conformation, smectic layer structure, and intermolecular
1740 >    correlations in Sm-A(d) 8CB, and demonstrates that pronounced short-range
1741 >    antiparallel association of molecules arising from dipole-dipole
1742 >    interactions plays a dominant role in determining the molecular-scale
1743 >    structure of 8CB.},
1744 >  annote = {Part 1 496QF Times Cited:10 Cited References Count:60},
1745 >  issn = {1063-651X},
1746 >  uri = {<Go to ISI>://000172406900063},
1747   }
1748  
1749 < @Article{Bonnier1993,
1750 <  author =   {B. Bonnier and M. Hontebeyrie and C. Meyers},
1751 <  title =    {ON THE RANDOM FILLING OF R(D) BY NONOVERLAPPING
1752 <                  D-DIMENSIONAL CUBES},
1753 <  journal =      {Physica A},
1754 <  year =     1993,
1755 <  volume =   198,
1756 <  pages =    {1-10}
1749 > @ARTICLE{Lansac2003,
1750 >  author = {Y. Lansac and P. K. Maiti and N. A. Clark and M. A. Glaser},
1751 >  title = {Phase behavior of bent-core molecules},
1752 >  journal = {Physical Review E},
1753 >  year = {2003},
1754 >  volume = {67},
1755 >  pages = {-},
1756 >  number = {1},
1757 >  month = {Jan},
1758 >  abstract = {Recently, a new class of smectic liquid crystal phases characterized
1759 >    by the spontaneous formation of macroscopic chiral domains from
1760 >    achiral bent-core molecules has been discovered. We have carried
1761 >    out Monte Carlo simulations of a minimal hard spherocylinder dimer
1762 >    model to investigate the role of excluded volume interactions in
1763 >    determining the phase behavior of bent-core materials and to probe
1764 >    the molecular origins of polar and chiral symmetry breaking. We
1765 >    present the phase diagram of hard spherocylinder dimers of length-diameter
1766 >    ratio of 5 as a function of pressure or density and dimer opening
1767 >    angle psi. With decreasing psi, a transition from a nonpolar to
1768 >    a polar smectic A phase is observed near psi=167degrees, and the
1769 >    nematic phase becomes thermodynamically unstable for psi<135degrees.
1770 >    Free energy calculations indicate that the antipolar smectic A (SmAP(A))
1771 >    phase is more stable than the polar smectic A phase (SmAP(F)). No
1772 >    chiral smectic or biaxial nematic phases were found.},
1773 >  annote = {Part 1 646CM Times Cited:15 Cited References Count:38},
1774 >  issn = {1063-651X},
1775 >  uri = {<Go to ISI>://000181017300042},
1776   }
1777  
1778 < @Book{Frenkel1996,
1779 <  author =   {D. Frenkel and B. Smit},
1780 <  title =    {Understanding Molecular Simulation : From Algorithms
1781 <                  to Applications},
1782 <  publisher =    {Academic Press},
1783 <  year =     1996,
1784 <  address =  {New York}
1778 > @BOOK{Leach2001,
1779 >  title = {Molecular Modeling: Principles and Applications},
1780 >  publisher = {Pearson Educated Limited},
1781 >  year = {2001},
1782 >  author = {A. Leach},
1783 >  address = {Harlow, England},
1784 >  edition = {2nd},
1785 > }
1786  
1787 <
1787 > @ARTICLE{Leimkuhler1999,
1788 >  author = {B. Leimkuhler},
1789 >  title = {Reversible adaptive regularization: perturbed Kepler motion and classical
1790 >    atomic trajectories},
1791 >  journal = {Philosophical Transactions of the Royal Society of London Series
1792 >    a-Mathematical Physical and Engineering Sciences},
1793 >  year = {1999},
1794 >  volume = {357},
1795 >  pages = {1101-1133},
1796 >  number = {1754},
1797 >  month = {Apr 15},
1798 >  abstract = {Reversible and adaptive integration methods based on Kustaanheimo-Stiefel
1799 >    regularization and modified Sundman transformations are applied
1800 >    to simulate general perturbed Kepler motion and to compute classical
1801 >    trajectories of atomic systems (e.g. Rydberg atoms). The new family
1802 >    of reversible adaptive regularization methods also conserves angular
1803 >    momentum and exhibits superior energy conservation and numerical
1804 >    stability in long-time integrations. The schemes are appropriate
1805 >    for scattering, for astronomical calculations of escape time and
1806 >    long-term stability, and for classical and semiclassical studies
1807 >    of atomic dynamics. The components of an algorithm for trajectory
1808 >    calculations are described. Numerical experiments illustrate the
1809 >    effectiveness of the reversible approach.},
1810 >  annote = {199EE Times Cited:11 Cited References Count:48},
1811 >  issn = {1364-503X},
1812 >  uri = {<Go to ISI>://000080466800007},
1813   }
1814  
1815 < @Article{Dullweber1997,
1816 <  author =   {A. Dullweber and B. Leimkuhler and R. McLachlan},
1817 <  title =    {Symplectic splitting methods for rigid body molecular
1818 <                  dynamics},
1819 <  journal =      jcp,
1820 <  year =     1997,
1495 <  volume =   107,
1496 <  number =   15,
1497 <  pages =    {5840-5851}
1815 > @BOOK{Leimkuhler2004,
1816 >  title = {Simulating Hamiltonian Dynamics},
1817 >  publisher = {Cambridge University Press},
1818 >  year = {2004},
1819 >  author = {B. Leimkuhler and S. Reich},
1820 >  address = {Cambridge},
1821   }
1822  
1823 < @Article{Siepmann1998,
1824 <  author =   {M. Martin and J.~I. Siepmann},
1825 <  title =    {Transferable Potentials for Phase Equilibria. 1. United-Atom
1826 <                  Description of n-Alkanes},
1827 <  journal =      jpcB,
1828 <  year =     1998,
1829 <  volume =   102,
1830 <  pages =    {2569-2577}
1823 > @ARTICLE{Levelut1981,
1824 >  author = {A. M. Levelut and R. J. Tarento and F. Hardouin and M. F. Achard
1825 >    and G. Sigaud},
1826 >  title = {Number of Sa Phases},
1827 >  journal = {Physical Review A},
1828 >  year = {1981},
1829 >  volume = {24},
1830 >  pages = {2180-2186},
1831 >  number = {4},
1832 >  annote = {Ml751 Times Cited:96 Cited References Count:16},
1833 >  issn = {1050-2947},
1834 >  uri = {<Go to ISI>://A1981ML75100057},
1835   }
1836  
1837 < @Article{Marrink01,
1838 <  author =   {S.~J. Marrink and E. Lindahl and O. Edholm and A.~E. Mark},
1839 <  title =    {Simulations of the Spontaneous Aggregation of Phospholipids
1840 <                  into Bilayers},
1841 <  journal =      jacs,
1842 <  year =     2001,
1843 <  volume =   123,
1844 <  pages =    {8638-8639}
1837 > @ARTICLE{Lieb1982,
1838 >  author = {W. R. Lieb and M. Kovalycsik and R. Mendelsohn},
1839 >  title = {Do Clinical-Levels of General-Anesthetics Affect Lipid Bilayers -
1840 >    Evidence from Raman-Scattering},
1841 >  journal = {Biochimica Et Biophysica Acta},
1842 >  year = {1982},
1843 >  volume = {688},
1844 >  pages = {388-398},
1845 >  number = {2},
1846 >  annote = {Nu461 Times Cited:40 Cited References Count:28},
1847 >  issn = {0006-3002},
1848 >  uri = {<Go to ISI>://A1982NU46100012},
1849   }
1850  
1851 < @Article{liu96:new_model,
1852 <  author =   {Y. Liu and T. Ichiye},
1853 <  title =    {Soft sticky dipole potential for liquid water: a new model},
1854 <  journal =      jpc,
1855 <  year =     1996,
1856 <  volume =   100,
1857 <  pages =    {2723-2730}
1851 > @ARTICLE{Link1997,
1852 >  author = {D. R. Link and G. Natale and R. Shao and J. E. Maclennan and N. A.
1853 >    Clark and E. Korblova and D. M. Walba},
1854 >  title = {Spontaneous formation of macroscopic chiral domains in a fluid smectic
1855 >    phase of achiral molecules},
1856 >  journal = {Science},
1857 >  year = {1997},
1858 >  volume = {278},
1859 >  pages = {1924-1927},
1860 >  number = {5345},
1861 >  month = {Dec 12},
1862 >  abstract = {A smectic liquid-crystal phase made from achiral molecules with bent
1863 >    cores was found to have fluid layers that exhibit two spontaneous
1864 >    symmetry-breaking instabilities: polar molecular orientational ordering
1865 >    about the layer normal and molecular tilt. These instabilities combine
1866 >    to form a chiral layer structure with a handedness that depends
1867 >    on the sign of the tilt. The bulk states are either antiferroelectric-racemic,
1868 >    with the layer polar direction and handedness alternating in sign
1869 >    from layer to layer, or antiferroelectric-chiral, which is of uniform
1870 >    layer handedness. Both states exhibit an electric field-induced
1871 >    transition from antiferroelectric to ferroelectric.},
1872 >  annote = {Yl002 Times Cited:407 Cited References Count:25},
1873 >  issn = {0036-8075},
1874 >  uri = {<Go to ISI>://A1997YL00200028},
1875   }
1876  
1877 < @Article{liu96:monte_carlo,
1878 <  author =   {Y. Liu and T. Ichiye},
1879 <  title =    {The static dielectric constant of the soft sticky dipole model of liquid water: $\mbox{Monte Carlo}$ simulation},
1880 <  journal =      {Chemical Physics Letters},
1881 <  year =     1996,
1882 <  volume =   256,
1883 <  pages =    {334-340}
1877 > @ARTICLE{Liwo2005,
1878 >  author = {A. Liwo and M. Khalili and H. A. Scheraga},
1879 >  title = {Ab initio simulations of protein folding pathways by molecular dynamics
1880 >    with the united-residue (UNRES) model of polypeptide chains},
1881 >  journal = {Febs Journal},
1882 >  year = {2005},
1883 >  volume = {272},
1884 >  pages = {359-360},
1885 >  month = {Jul},
1886 >  annote = {Suppl. 1 005MG Times Cited:0 Cited References Count:0},
1887 >  issn = {1742-464X},
1888 >  uri = {<Go to ISI>://000234826102043},
1889   }
1890  
1891 < @Article{chandra99:ssd_md,
1892 <  author =   {A. Chandra and T. Ichiye},
1893 <  title =    {Dynamical properties of the soft sticky dipole model of water: Molecular dynamics simulation},
1894 <  journal =      {Journal of Chemical Physics},
1895 <  year =     1999,
1896 <  volume =   111,
1897 <  number =   6,
1898 <  pages =    {2701-2709}
1891 > @ARTICLE{Luty1994,
1892 >  author = {B. A. Luty and M. E. Davis and I. G. Tironi and W. F. Vangunsteren},
1893 >  title = {A Comparison of Particle-Particle, Particle-Mesh and Ewald Methods
1894 >    for Calculating Electrostatic Interactions in Periodic Molecular-Systems},
1895 >  journal = {Molecular Simulation},
1896 >  year = {1994},
1897 >  volume = {14},
1898 >  pages = {11-20},
1899 >  number = {1},
1900 >  abstract = {We compare the Particle-Particle Particle-Mesh (PPPM) and Ewald methods
1901 >    for calculating electrostatic interactions in periodic molecular
1902 >    systems. A brief comparison of the theories shows that the methods
1903 >    are very similar differing mainly in the technique which is used
1904 >    to perform the ''k-space'' or mesh calculation. Because the PPPM
1905 >    utilizes the highly efficient numerical Fast Fourier Transform (FFT)
1906 >    method it requires significantly less computational effort than
1907 >    the Ewald method and scale's almost linearly with system size.},
1908 >  annote = {Qf464 Times Cited:50 Cited References Count:20},
1909 >  issn = {0892-7022},
1910 >  uri = {<Go to ISI>://A1994QF46400002},
1911   }
1912  
1913 < @Book{allen87:csl,
1914 <  author =   {M.~P. Allen and D.~J. Tildesley},
1915 <  title =    {Computer Simulations of Liquids},
1916 <  publisher =    {Oxford University Press},
1917 <  year =     1987,
1918 <  address =  {New York}
1913 > @BOOK{Marion1990,
1914 >  title = {Classical Dynamics of Particles and Systems},
1915 >  publisher = {Academic Press},
1916 >  year = {1990},
1917 >  author = {J.~B. Marion},
1918 >  address = {New York},
1919 >  edition = {2rd},
1920   }
1921  
1922 < @Book{leach01:mm,
1923 <  author =   {A. Leach},
1924 <  title =    {Molecular Modeling: Principles and Applications},
1925 <  publisher =    {Pearson Educated Limited},
1926 <  year =     2001,
1927 <  address =  {Harlow, England},
1928 <  edition =  {2nd}
1922 > @ARTICLE{Marrink1994,
1923 >  author = {S. J. Marrink and H. J. C. Berendsen},
1924 >  title = {Simulation of Water Transport through a Lipid-Membrane},
1925 >  journal = {Journal of Physical Chemistry},
1926 >  year = {1994},
1927 >  volume = {98},
1928 >  pages = {4155-4168},
1929 >  number = {15},
1930 >  month = {Apr 14},
1931 >  abstract = {To obtain insight in the process of water permeation through a lipid
1932 >    membrane, we performed molecular dynamics simulations on a phospholipid
1933 >    (DPPC)/water system with atomic detail. Since the actual process
1934 >    of permeation is too slow to be studied directly, we deduced the
1935 >    permeation rate indirectly via computation of the free energy and
1936 >    diffusion rate profiles of a water molecule across the bilayer.
1937 >    We conclude that the permeation of water through a lipid membrane
1938 >    cannot be described adequately by a simple homogeneous solubility-diffusion
1939 >    model. Both the excess free energy and the diffusion rate strongly
1940 >    depend on the position in the membrane, as a result from the inhomogeneous
1941 >    nature of the membrane. The calculated excess free energy profile
1942 >    has a shallow slope and a maximum height of 26 kJ/mol. The diffusion
1943 >    rate is highest in the middle of the membrane where the lipid density
1944 >    is low. In the interfacial region almost all water molecules are
1945 >    bound by the lipid headgroups, and the diffusion turns out to be
1946 >    1 order of magnitude smaller. The total transport process is essentially
1947 >    determined by the free energy barrier. The rate-limiting step is
1948 >    the permeation through the dense part of the lipid tails, where
1949 >    the resistance is highest. We found a permeation rate of 7(+/-3)
1950 >    x 10(-2) cm/s at 350 K, comparable to experimental values for DPPC
1951 >    membranes, if corrected for the temperature of the simulation. Taking
1952 >    the inhomogeneity of the membrane into account, we define a new
1953 >    ''four-region'' model which seems to be more realistic than the
1954 >    ''two-phase'' solubility-diffusion model.},
1955 >  annote = {Ng219 Times Cited:187 Cited References Count:25},
1956 >  issn = {0022-3654},
1957 >  uri = {<Go to ISI>://A1994NG21900040},
1958   }
1959  
1960 <
1961 < @Article{katsaras00,
1962 <  author =   {J. Katsaras and S. Tristram-Nagle and Y. Liu and R.~L. Headrick and E. Fontes and P.~C. Mason and J.~F. Nagle},
1963 <  title =    {Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples},
1964 <  journal =      {Physical Review E},
1965 <  year =     2000,
1966 <  volume =   61,
1572 <  number =   5,
1573 <  pages =    {5668-5677}
1960 > @ARTICLE{Marrink2004,
1961 >  author = {S.~J. Marrink and A.~H. de~Vries and A.~E. Mark},
1962 >  title = {Coarse Grained Model for Semiquantitative Lipid Simulations},
1963 >  journal = {J. Phys. Chem. B},
1964 >  year = {2004},
1965 >  volume = {108},
1966 >  pages = {750-760},
1967   }
1968  
1969 < @Article{sengupta00,
1970 <  author =   {K. Sengupta and V.~A. Raghunathan and J. Katsaras},
1971 <  title =    {Novel structural Features of the ripple phase of phospholipids},
1972 <  journal =      {Europhysics Letters},
1973 <  year =     2000,
1974 <  volume =   49,
1975 <  number =   6,
1976 <  pages =    {722-728}
1969 > @ARTICLE{Marsden1998,
1970 >  author = {J. E. Marsden and G. W. Patrick and S. Shkoller},
1971 >  title = {Multisymplectic geometry, variational integrators, and nonlinear
1972 >    PDEs},
1973 >  journal = {Communications in Mathematical Physics},
1974 >  year = {1998},
1975 >  volume = {199},
1976 >  pages = {351-395},
1977 >  number = {2},
1978 >  month = {Dec},
1979 >  abstract = {This paper presents a geometric-variational approach to continuous
1980 >    and discrete mechanics and field theories. Using multisymplectic
1981 >    geometry, we show that the existence of the fundamental geometric
1982 >    structures as well as their preservation along solutions can be
1983 >    obtained directly from the variational principle. In particular,
1984 >    we prove that a unique multisymplectic structure is obtained by
1985 >    taking the derivative of an action function, and use this structure
1986 >    to prove covariant generalizations of conservation of symplecticity
1987 >    and Noether's theorem. Natural discretization schemes for PDEs,
1988 >    which have these important preservation properties, then follow
1989 >    by choosing a discrete action functional. In the case of mechanics,
1990 >    we recover the variational symplectic integrators of Veselov type,
1991 >    while for PDEs we obtain covariant spacetime integrators which conserve
1992 >    the corresponding discrete multisymplectic form as well as the discrete
1993 >    momentum mappings corresponding to symmetries. We show that the
1994 >    usual notion of symplecticity along an infinite-dimensional space
1995 >    of fields can be naturally obtained by making a spacetime split.
1996 >    All of the aspects of our method are demonstrated with a nonlinear
1997 >    sine-Gordon equation, including computational results and a comparison
1998 >    with other discretization schemes.},
1999 >  annote = {154RH Times Cited:88 Cited References Count:36},
2000 >  issn = {0010-3616},
2001 >  uri = {<Go to ISI>://000077902200006},
2002   }
2003  
2004 < @Article{venable00,
2005 <  author =   {R.~M. Venable and B.~R. Brooks and R.~W. Pastor},
2006 <  title =    {Molecular dynamics simulations of gel ($L_{\beta I}$) phase lipid bilayers in constant pressure and constant surface area ensembles},
2007 <  journal =      jcp,
2008 <  year =     2000,
2009 <  volume =   112,
2010 <  number =   10,
2011 <  pages =    {4822-4832}
2004 > @ARTICLE{Matthey2004,
2005 >  author = {T. Matthey and T. Cickovski and S. Hampton and A. Ko and Q. Ma and
2006 >    M. Nyerges and T. Raeder and T. Slabach and J. A. Izaguirre},
2007 >  title = {ProtoMol, an object-oriented framework for prototyping novel algorithms
2008 >    for molecular dynamics},
2009 >  journal = {Acm Transactions on Mathematical Software},
2010 >  year = {2004},
2011 >  volume = {30},
2012 >  pages = {237-265},
2013 >  number = {3},
2014 >  month = {Sep},
2015 >  abstract = {PROTOMOL is a high-performance framework in C++ for rapid prototyping
2016 >    of novel algorithms for molecular dynamics and related applications.
2017 >    Its flexibility is achieved primarily through the use of inheritance
2018 >    and design patterns (object-oriented programming): Performance is
2019 >    obtained by using templates that enable generation of efficient
2020 >    code for sections critical to performance (generic programming).
2021 >    The framework encapsulates important optimizations that can be used
2022 >    by developers, such as parallelism in the force computation. Its
2023 >    design is based on domain analysis of numerical integrators for
2024 >    molecular dynamics (MD) and of fast solvers for the force computation,
2025 >    particularly due to electrostatic interactions. Several new and
2026 >    efficient algorithms are implemented in PROTOMOL. Finally, it is
2027 >    shown that PROTOMOL'S sequential performance is excellent when compared
2028 >    to a leading MD program, and that it scales well for moderate number
2029 >    of processors. Binaries and source codes for Windows, Linux, Solaris,
2030 >    IRIX, HP-UX, and AIX platforms are available under open source license
2031 >    at http://protomol.sourceforge.net.},
2032 >  annote = {860EP Times Cited:2 Cited References Count:52},
2033 >  issn = {0098-3500},
2034 >  uri = {<Go to ISI>://000224325600001},
2035   }
2036  
2037 < @Article{lindahl00,
2038 <  author =   {E. Lindahl and O. Edholm},
2039 <  title =    {Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations},
2040 <  journal =      {Biophysical Journal},
2041 <  year =     2000,
2042 <  volume =   79,
2043 <  pages =    {426-433},
1603 <  month =    {July}
2037 > @ARTICLE{McLachlan1993,
2038 >  author = {R.~I McLachlan},
2039 >  title = {Explicit Lie-Poisson integration and the Euler equations},
2040 >  journal = {prl},
2041 >  year = {1993},
2042 >  volume = {71},
2043 >  pages = {3043-3046},
2044   }
2045  
2046 <
2047 < @Article{saiz02,
2048 <  author =   {L. Saiz and M. Klein},
2049 <  title =    {Electrostatic interactions in a neutral model phospholipid bilayer by molecular dynamics simulations},
2050 <  journal =      jcp,
2051 <  year =     2002,
2052 <  volume =   116,
2053 <  number =   7,
2054 <  pages =    {3052-3057}
2046 > @ARTICLE{McLachlan1998,
2047 >  author = {R. I. McLachlan and G. R. W. Quispel},
2048 >  title = {Generating functions for dynamical systems with symmetries, integrals,
2049 >    and differential invariants},
2050 >  journal = {Physica D},
2051 >  year = {1998},
2052 >  volume = {112},
2053 >  pages = {298-309},
2054 >  number = {1-2},
2055 >  month = {Jan 15},
2056 >  abstract = {We give a survey and some new examples of generating functions for
2057 >    systems with symplectic structure, systems with a first integral,
2058 >    systems that preserve volume, and systems with symmetries and/or
2059 >    time-reversing symmetries. Both ODEs and maps are treated, and we
2060 >    discuss how generating functions may be used in the structure-preserving
2061 >    numerical integration of ODEs with the above properties.},
2062 >  annote = {Yt049 Times Cited:7 Cited References Count:26},
2063 >  issn = {0167-2789},
2064 >  uri = {<Go to ISI>://000071558900021},
2065   }
2066  
2067 < @Article{stevens95,
2068 <  author =   {M.~J. Stevens and G.~S. Grest},
2069 <  title =    {Phase coexistence of a Stockmayer fluid in an aplied field},
2070 <  journal =      {Physical Review E},
2071 <  year =     1995,
2072 <  volume =   51,
2073 <  number =   6,
2074 <  pages =    {5976-5983}
2067 > @ARTICLE{McLachlan1998a,
2068 >  author = {R. I. McLachlan and G. R. W. Quispel and G. S. Turner},
2069 >  title = {Numerical integrators that preserve symmetries and reversing symmetries},
2070 >  journal = {Siam Journal on Numerical Analysis},
2071 >  year = {1998},
2072 >  volume = {35},
2073 >  pages = {586-599},
2074 >  number = {2},
2075 >  month = {Apr},
2076 >  abstract = {We consider properties of flows, the relationships between them, and
2077 >    whether numerical integrators can be made to preserve these properties.
2078 >    This is done in the context of automorphisms and antiautomorphisms
2079 >    of a certain group generated by maps associated to vector fields.
2080 >    This new framework unifies several known constructions. We also
2081 >    use the concept of #covariance# of a numerical method with respect
2082 >    to a group of coordinate transformations. The main application is
2083 >    to explore the relationship between spatial symmetries, reversing
2084 >    symmetries, and time symmetry of flows and numerical integrators.},
2085 >  annote = {Zc449 Times Cited:14 Cited References Count:33},
2086 >  issn = {0036-1429},
2087 >  uri = {<Go to ISI>://000072580500010},
2088   }
2089  
2090 < @Article{darden93:pme,
2091 <  author =   {T. Darden and D. York and L. Pedersen},
2092 <  title =    {Particle mesh Ewald: An $N \log N$ method for Ewald sums in large systems},
2093 <  journal =      {Journal of Chemical Physics},
2094 <  year =     1993,
2095 <  volume =   98,
2096 <  number =   12,
2097 <  pages =    {10089-10092}
2090 > @ARTICLE{McLachlan2005,
2091 >  author = {R. I. McLachlan and A. Zanna},
2092 >  title = {The discrete Moser-Veselov algorithm for the free rigid body, revisited},
2093 >  journal = {Foundations of Computational Mathematics},
2094 >  year = {2005},
2095 >  volume = {5},
2096 >  pages = {87-123},
2097 >  number = {1},
2098 >  month = {Feb},
2099 >  abstract = {In this paper we revisit the Moser-Veselov description of the free
2100 >    rigid body in body coordinates, which, in the 3 x 3 case, can be
2101 >    implemented as an explicit, second-order, integrable approximation
2102 >    of the continuous solution. By backward error analysis, we study
2103 >    the modified vector field which is integrated exactly by the discrete
2104 >    algorithm. We deduce that the discrete Moser-Veselov (DMV) is well
2105 >    approximated to higher order by time reparametrizations of the continuous
2106 >    equations (modified vector field). We use the modified vector field
2107 >    to scale the initial data of the DMV to improve the order of the
2108 >    approximation and show the equivalence of the DMV and the RATTLE
2109 >    algorithm. Numerical integration with these preprocessed initial
2110 >    data is several orders of magnitude more accurate than the original
2111 >    DMV and RATTLE approach.},
2112 >  annote = {911NS Times Cited:0 Cited References Count:14},
2113 >  issn = {1615-3375},
2114 >  uri = {<Go to ISI>://000228011900003},
2115   }
2116  
2117 <
2118 <
2119 < @Article{goetz98,
2120 <  author =   {R. Goetz and R. Lipowsky},
2121 <  title =    {Computer simulations of bilayer membranes: Self-assembly and interfacial tension},
2122 <  journal =      {Journal of Chemical Physics},
2123 <  year =     1998,
2124 <  volume =   108,
2125 <  number =   17,
2126 <  pages =    7397
2117 > @ARTICLE{Meineke2005,
2118 >  author = {M. A. Meineke and C. F. Vardeman and T. Lin and C. J. Fennell and
2119 >    J. D. Gezelter},
2120 >  title = {OOPSE: An object-oriented parallel simulation engine for molecular
2121 >    dynamics},
2122 >  journal = {Journal of Computational Chemistry},
2123 >  year = {2005},
2124 >  volume = {26},
2125 >  pages = {252-271},
2126 >  number = {3},
2127 >  month = {Feb},
2128 >  abstract = {OOPSE is a new molecular dynamics simulation program that is capable
2129 >    of efficiently integrating equations of motion for atom types with
2130 >    orientational degrees of freedom (e.g. #sticky# atoms and point
2131 >    dipoles). Transition metals can also be simulated using the embedded
2132 >    atom method (EAM) potential included in the code. Parallel simulations
2133 >    are carried out using the force-based decomposition method. Simulations
2134 >    are specified using a very simple C-based meta-data language. A
2135 >    number of advanced integrators are included, and the basic integrator
2136 >    for orientational dynamics provides substantial improvements over
2137 >    older quaternion-based schemes. (C) 2004 Wiley Periodicals, Inc.},
2138 >  annote = {891CF Times Cited:1 Cited References Count:56},
2139 >  issn = {0192-8651},
2140 >  uri = {<Go to ISI>://000226558200006},
2141   }
2142  
2143 < @Article{marrink01:undulation,
2144 <  author =   {S.~J. Marrink and A.~E. Mark},
2145 <  title =    {Effect of undulations on surface tension in simulated bilayers},
2146 <  journal =      {Journal of Physical Chemistry B},
2147 <  year =     2001,
2148 <  volume =   105,
2149 <  pages =    {6122-6127}
2143 > @ARTICLE{Melchionna1993,
2144 >  author = {S. Melchionna and G. Ciccotti and B. L. Holian},
2145 >  title = {Hoover Npt Dynamics for Systems Varying in Shape and Size},
2146 >  journal = {Molecular Physics},
2147 >  year = {1993},
2148 >  volume = {78},
2149 >  pages = {533-544},
2150 >  number = {3},
2151 >  month = {Feb 20},
2152 >  abstract = {In this paper we write down equations of motion (following the approach
2153 >    pioneered by Hoover) for an exact isothermal-isobaric molecular
2154 >    dynamics simulation, and we extend them to multiple thermostating
2155 >    rates, to a shape-varying cell and to molecular systems, coherently
2156 >    with the previous 'extended system method'. An integration scheme
2157 >    is proposed together with a numerical illustration of the method.},
2158 >  annote = {Kq355 Times Cited:172 Cited References Count:17},
2159 >  issn = {0026-8976},
2160 >  uri = {<Go to ISI>://A1993KQ35500002},
2161   }
2162  
2163 < @Article{lindahl00:undulation,
2164 <  author =   {E. Lindahl and O. Edholm},
2165 <  title =    {Mesoscopic undulation and thickness fluctuations in lipid bilayers from molecular dynamics simulation},
2166 <  journal =      {Biophysical Journal},
2167 <  year =     2000,
2168 <  volume =   79,
2169 <  pages =    {426-433}
2163 > @ARTICLE{Memmer2002,
2164 >  author = {R. Memmer},
2165 >  title = {Liquid crystal phases of achiral banana-shaped molecules: a computer
2166 >    simulation study},
2167 >  journal = {Liquid Crystals},
2168 >  year = {2002},
2169 >  volume = {29},
2170 >  pages = {483-496},
2171 >  number = {4},
2172 >  month = {Apr},
2173 >  abstract = {The phase behaviour of achiral banana-shaped molecules was studied
2174 >    by computer simulation. The banana-shaped molecules were described
2175 >    by model intermolecular interactions based on the Gay-Berne potential.
2176 >    The characteristic molecular structure was considered by joining
2177 >    two calamitic Gay-Berne particles through a bond to form a biaxial
2178 >    molecule of point symmetry group C-2v with a suitable bending angle.
2179 >    The dependence on temperature of systems of N=1024 rigid banana-shaped
2180 >    molecules with bending angle phi=140degrees has been studied by
2181 >    means of Monte Carlo simulations in the isobaric-isothermal ensemble
2182 >    (NpT). On cooling an isotropic system, two phase transitions characterized
2183 >    by phase transition enthalpy, entropy and relative volume change
2184 >    have been observed. For the first time by computer simulation of
2185 >    a many-particle system of banana-shaped molecules, at low temperature
2186 >    an untilted smectic phase showing a global phase biaxiality and
2187 >    a spontaneous local polarization in the layers, i.e. a local polar
2188 >    arrangement of the steric dipoles, with an antiferroelectric-like
2189 >    superstructure could be proven, a phase structure which recently
2190 >    has been discovered experimentally. Additionally, at intermediate
2191 >    temperature a nematic-like phase has been proved, whereas close
2192 >    to the transition to the smectic phase hints of a spontaneous achiral
2193 >    symmetry breaking have been determined. Here, in the absence of
2194 >    a layered structure a helical superstructure has been formed. All
2195 >    phases have been characterized by visual representations of selected
2196 >    configurations, scalar and pseudoscalar correlation functions, and
2197 >    order parameters.},
2198 >  annote = {531HT Times Cited:12 Cited References Count:37},
2199 >  issn = {0267-8292},
2200 >  uri = {<Go to ISI>://000174410500001},
2201   }
2202  
2203 < @Article{metropolis:1949,
2204 <  author =   {N. Metropolis and S. Ulam},
2205 <  title =    {The $\mbox{Monte Carlo}$ Method},
2206 <  journal =      {J. Am. Stat. Ass.},
2207 <  year =     1949,
2208 <  volume =   44,
2209 <  pages =    {335-341}
2203 > @ARTICLE{Metropolis1949,
2204 >  author = {N. Metropolis and S. Ulam},
2205 >  title = {The $\mbox{Monte Carlo}$ Method},
2206 >  journal = {J. Am. Stat. Ass.},
2207 >  year = {1949},
2208 >  volume = {44},
2209 >  pages = {335-341},
2210   }
2211  
2212 < @Article{metropolis:1953,
2213 <  author =   {N. Metropolis and A.~W. Rosenbluth and M.~N. Rosenbluth and A.~H. Teller and E. Teller},
2214 <  title =    {Equation of State Calculations by Fast Computing Machines},
2215 <  journal =      {J. Chem. Phys.},
2216 <  year =     1953,
2217 <  volume =   21,
2218 <  pages =    {1087-1092}
2212 > @ARTICLE{Mielke2004,
2213 >  author = {S. P. Mielke and W. H. Fink and V. V. Krishnan and N. Gronbech-Jensen
2214 >    and C. J. Benham},
2215 >  title = {Transcription-driven twin supercoiling of a DNA loop: A Brownian
2216 >    dynamics study},
2217 >  journal = {Journal of Chemical Physics},
2218 >  year = {2004},
2219 >  volume = {121},
2220 >  pages = {8104-8112},
2221 >  number = {16},
2222 >  month = {Oct 22},
2223 >  abstract = {The torque generated by RNA polymerase as it tracks along double-stranded
2224 >    DNA can potentially induce long-range structural deformations integral
2225 >    to mechanisms of biological significance in both prokaryotes and
2226 >    eukaryotes. In this paper, we introduce a dynamic computer model
2227 >    for investigating this phenomenon. Duplex DNA is represented as
2228 >    a chain of hydrodynamic beads interacting through potentials of
2229 >    linearly elastic stretching, bending, and twisting, as well as excluded
2230 >    volume. The chain, linear when relaxed, is looped to form two open
2231 >    but topologically constrained subdomains. This permits the dynamic
2232 >    introduction of torsional stress via a centrally applied torque.
2233 >    We simulate by Brownian dynamics the 100 mus response of a 477-base
2234 >    pair B-DNA template to the localized torque generated by the prokaryotic
2235 >    transcription ensemble. Following a sharp rise at early times, the
2236 >    distributed twist assumes a nearly constant value in both subdomains,
2237 >    and a succession of supercoiling deformations occurs as superhelical
2238 >    stress is increasingly partitioned to writhe. The magnitude of writhe
2239 >    surpasses that of twist before also leveling off when the structure
2240 >    reaches mechanical equilibrium with the torsional load. Superhelicity
2241 >    is simultaneously right handed in one subdomain and left handed
2242 >    in the other, as predicted by the #transcription-induced##twin-supercoiled-domain#
2243 >    model [L. F. Liu and J. C. Wang, Proc. Natl. Acad. Sci. U.S.A. 84,
2244 >    7024 (1987)]. The properties of the chain at the onset of writhing
2245 >    agree well with predictions from theory, and the generated stress
2246 >    is ample for driving secondary structural transitions in physiological
2247 >    DNA. (C) 2004 American Institute of Physics.},
2248 >  annote = {861ZF Times Cited:3 Cited References Count:34},
2249 >  issn = {0021-9606},
2250 >  uri = {<Go to ISI>://000224456500064},
2251   }
2252  
2253 < @Article{born:1912,
2254 <  author =   {M. Born and Th. Von~Karman},
2255 <  title =    {Uber Schwingungen in Raumgittern},
2256 <  journal =      {Physik Z.},
2257 <  year =     1912,
2258 <  volume =   13,
2259 <  number =   {297-309}
2253 > @ARTICLE{Naess2001,
2254 >  author = {S. N. Naess and H. M. Adland and A. Mikkelsen and A. Elgsaeter},
2255 >  title = {Brownian dynamics simulation of rigid bodies and segmented polymer
2256 >    chains. Use of Cartesian rotation vectors as the generalized coordinates
2257 >    describing angular orientations},
2258 >  journal = {Physica A},
2259 >  year = {2001},
2260 >  volume = {294},
2261 >  pages = {323-339},
2262 >  number = {3-4},
2263 >  month = {May 15},
2264 >  abstract = {The three Eulerian angles constitute the classical choice of generalized
2265 >    coordinates used to describe the three degrees of rotational freedom
2266 >    of a rigid body, but it has long been known that this choice yields
2267 >    singular equations of motion. The latter is also true when Eulerian
2268 >    angles are used in Brownian dynamics analyses of the angular orientation
2269 >    of single rigid bodies and segmented polymer chains. Starting from
2270 >    kinetic theory we here show that by instead employing the three
2271 >    components of Cartesian rotation vectors as the generalized coordinates
2272 >    describing angular orientation, no singularity appears in the configuration
2273 >    space diffusion equation and the associated Brownian dynamics algorithm.
2274 >    The suitability of Cartesian rotation vectors in Brownian dynamics
2275 >    simulations of segmented polymer chains with spring-like or ball-socket
2276 >    joints is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.},
2277 >  annote = {433TA Times Cited:7 Cited References Count:19},
2278 >  issn = {0378-4371},
2279 >  uri = {<Go to ISI>://000168774800005},
2280   }
2281  
2282 < @Book{chandler:1987,
2283 <  author =   {David Chandler},
2284 <  title =    {Introduction to Modern Statistical Mechanics},
2285 <  publisher =    {Oxford University Press},
2286 <  year =     1987
2282 > @ARTICLE{Niori1996,
2283 >  author = {T. Niori and T. Sekine and J. Watanabe and T. Furukawa and H. Takezoe},
2284 >  title = {Distinct ferroelectric smectic liquid crystals consisting of banana
2285 >    shaped achiral molecules},
2286 >  journal = {Journal of Materials Chemistry},
2287 >  year = {1996},
2288 >  volume = {6},
2289 >  pages = {1231-1233},
2290 >  number = {7},
2291 >  month = {Jul},
2292 >  abstract = {The synthesis of a banana-shaped molecule is reported and it is found
2293 >    that the smectic phase which it forms is biaxial with the molecules
2294 >    packed in the best,direction into a layer. Because of this characteristic
2295 >    packing, spontaneous polarization appears parallel to the layer
2296 >    and switches on reversal of an applied electric field. This is the
2297 >    first obvious example of ferroelectricity in an achiral smectic
2298 >    phase and is ascribed to the C-2v symmetry of the molecular packing.},
2299 >  annote = {Ux855 Times Cited:447 Cited References Count:18},
2300 >  issn = {0959-9428},
2301 >  uri = {<Go to ISI>://A1996UX85500025},
2302   }
2303  
2304 <
2305 < @Article{pearlman:1995,
2306 <  author =   {David~A. Pearlman and David~A. Case and James~W. Caldwell and Wilson~S. Ross and Thomas~E. Cheatham~III and Steve DeBolt and David Ferguson and George Seibel and Peter Kollman},
2307 <  title =    {{\sc amber}, a package of computer programs for applying molecular mechanics. normal mode analysis, molecular dynamics, and free energy calculations to simulate the structural and energetic properties of molecules},
2308 <  journal =      {Computer Physics Communications},
2309 <  year =     1995,
2310 <  volume =   91,
2311 <  pages =    {1-41}
2304 > @ARTICLE{Noguchi2002,
2305 >  author = {H. Noguchi and M. Takasu},
2306 >  title = {Structural changes of pulled vesicles: A Brownian dynamics simulation},
2307 >  journal = {Physical Review E},
2308 >  year = {2002},
2309 >  volume = {65},
2310 >  pages = {-},
2311 >  number = {5},
2312 >  month = {may},
2313 >  abstract = {We Studied the structural changes of bilayer vesicles induced by mechanical
2314 >    forces using a Brownian dynamics simulation. Two nanoparticles,
2315 >    which interact repulsively with amphiphilic molecules, are put inside
2316 >    a vesicle. The position of one nanoparticle is fixed, and the other
2317 >    is moved by a constant force as in optical-trapping experiments.
2318 >    First, the pulled vesicle stretches into a pear or tube shape. Then
2319 >    the inner monolayer in the tube-shaped region is deformed, and a
2320 >    cylindrical structure is formed between two vesicles. After stretching
2321 >    the cylindrical region, fission occurs near the moved vesicle. Soon
2322 >    after this the cylindrical region shrinks. The trapping force similar
2323 >    to 100 pN is needed to induce the formation of the cylindrical structure
2324 >    and fission.},
2325 >  annote = {Part 1 568PX Times Cited:5 Cited References Count:39},
2326 >  issn = {1063-651X},
2327 >  uri = {<Go to ISI>://000176552300084},
2328   }
2329  
2330 < @Book{Goldstein01,
2331 <  author =   {H. Goldstein and C. Poole and J. Safko},
2332 <  title =    {Classical Mechanics},
2333 <  publisher =    {Addison Wesley},
2334 <  year =     2001,
2335 <  address =  {San Francisco},
2336 <  edition =  {3rd}
2330 > @ARTICLE{Noguchi2001,
2331 >  author = {H. Noguchi and M. Takasu},
2332 >  title = {Fusion pathways of vesicles: A Brownian dynamics simulation},
2333 >  journal = {Journal of Chemical Physics},
2334 >  year = {2001},
2335 >  volume = {115},
2336 >  pages = {9547-9551},
2337 >  number = {20},
2338 >  month = {Nov 22},
2339 >  abstract = {We studied the fusion dynamics of vesicles using a Brownian dynamics
2340 >    simulation. Amphiphilic molecules spontaneously form vesicles with
2341 >    a bilayer structure. Two vesicles come into contact and form a stalk
2342 >    intermediate, in which a necklike structure only connects the outer
2343 >    monolayers, as predicted by the stalk hypothesis. We have found
2344 >    a new pathway of pore opening from stalks at high temperature: the
2345 >    elliptic stalk bends and contact between the ends of the arc-shaped
2346 >    stalk leads to pore opening. On the other hand, we have clarified
2347 >    that the pore-opening process at low temperature agrees with the
2348 >    modified stalk model: a pore is induced by contact between the inner
2349 >    monolayers inside the stalk. (C) 2001 American Institute of Physics.},
2350 >  annote = {491UW Times Cited:48 Cited References Count:25},
2351 >  issn = {0021-9606},
2352 >  uri = {<Go to ISI>://000172129300049},
2353   }
2354  
2355 < @Article{Bratko85,
2356 <  author =   {D. Bratko and L. Blum and A. Luzar},
2357 <  title =    {A simple model for the intermolecular potential of water},
2358 <  journal =      jcp,
2359 <  year =     1985,
2360 <  volume =   83,
1726 <  number =   12,
1727 <  pages =    {6367-6370}
2355 > @BOOK{Olver1986,
2356 >  title = {Applications of Lie groups to differential equatitons},
2357 >  publisher = {Springer},
2358 >  year = {1986},
2359 >  author = {P.J. Olver},
2360 >  address = {New York},
2361   }
2362  
2363 < @Article{Bratko95,
2364 <  author =   {L. Blum and F. Vericat and D. Bratko},
2365 <  title =    {Towards an analytical model of water: The octupolar model},
2366 <  journal =      jcp,
2367 <  year =     1995,
2368 <  volume =   102,
2369 <  number =   3,
2370 <  pages =    {1461-1462}
2363 > @ARTICLE{Omelyan1998,
2364 >  author = {I. P. Omelyan},
2365 >  title = {On the numerical integration of motion for rigid polyatomics: The
2366 >    modified quaternion approach},
2367 >  journal = {Computers in Physics},
2368 >  year = {1998},
2369 >  volume = {12},
2370 >  pages = {97-103},
2371 >  number = {1},
2372 >  month = {Jan-Feb},
2373 >  abstract = {A revised version of the quaternion approach for numerical integration
2374 >    of the equations of motion for rigid polyatomic molecules is proposed.
2375 >    The modified approach is based on a formulation of the quaternion
2376 >    dynamics with constraints. This allows one to resolve the rigidity
2377 >    problem rigorously using constraint forces. It is shown that the
2378 >    procedure for preservation of molecular rigidity can be realized
2379 >    particularly simply within the Verlet algorithm in velocity form.
2380 >    We demonstrate that the method presented leads to an improved numerical
2381 >    stability with respect to the usual quaternion rescaling scheme
2382 >    and it is roughly as good as the cumbersome atomic-constraint technique.
2383 >    (C) 1998 American Institute of Physics.},
2384 >  annote = {Yx279 Times Cited:12 Cited References Count:28},
2385 >  issn = {0894-1866},
2386 >  uri = {<Go to ISI>://000072024300025},
2387   }
2388  
2389 < @Article{Ichiye03,
2390 <  author =   {M.-L. Tan and J.~T. Fischer and A. Chandra and B.~R. Brooks
2391 <                  and T. Ichiye},
2392 <  title =    {A temperature of maximum density in soft sticky dipole
2393 <                  water},
2394 <  journal =      cpl,
2395 <  year =     2003,
2396 <  volume =   376,
2397 <  pages =    {646-652},
2389 > @ARTICLE{Omelyan1998a,
2390 >  author = {I. P. Omelyan},
2391 >  title = {Algorithm for numerical integration of the rigid-body equations of
2392 >    motion},
2393 >  journal = {Physical Review E},
2394 >  year = {1998},
2395 >  volume = {58},
2396 >  pages = {1169-1172},
2397 >  number = {1},
2398 >  month = {Jul},
2399 >  abstract = {An algorithm for numerical integration of the rigid-body equations
2400 >    of motion is proposed. The algorithm uses the leapfrog scheme and
2401 >    the quantities involved are angular velocities and orientational
2402 >    variables that can be expressed in terms of either principal axes
2403 >    or quaternions. Due to specific features of the algorithm, orthonormality
2404 >    and unit norms of the orientational variables are integrals of motion,
2405 >    despite an approximate character of the produced trajectories. It
2406 >    is shown that the method presented appears to be the most efficient
2407 >    among all such algorithms known.},
2408 >  annote = {101XL Times Cited:8 Cited References Count:22},
2409 >  issn = {1063-651X},
2410 >  uri = {<Go to ISI>://000074893400151},
2411   }
2412  
2413 <
2414 < @Article{Soper86,
2415 <  author =   {A.~K. Soper and M.~G. Phillips},
2416 <  title =    {A new determination of the structure of water at 298K},
2417 <  journal =      cp,
2418 <  year =     1986,
2419 <  volume =   107,
2420 <  number =   1,
2421 <  pages =    {47-60},
2413 > @ARTICLE{Orlandi2006,
2414 >  author = {S. Orlandi and R. Berardi and J. Steltzer and C. Zannoni},
2415 >  title = {A Monte Carlo study of the mesophases formed by polar bent-shaped
2416 >    molecules},
2417 >  journal = {Journal of Chemical Physics},
2418 >  year = {2006},
2419 >  volume = {124},
2420 >  pages = {-},
2421 >  number = {12},
2422 >  month = {Mar 28},
2423 >  abstract = {Liquid crystal phases formed by bent-shaped (or #banana#) molecules
2424 >    are currently of great interest. Here we investigate by Monte Carlo
2425 >    computer simulations the phases formed by rigid banana molecules
2426 >    modeled combining three Gay-Berne sites and containing either one
2427 >    central or two lateral and transversal dipoles. We show that changing
2428 >    the dipole position and orientation has a profound effect on the
2429 >    mesophase stability and molecular organization. In particular, we
2430 >    find a uniaxial nematic phase only for off-center dipolar models
2431 >    and tilted phases only for the one with terminal dipoles. (c) 2006
2432 >    American Institute of Physics.},
2433 >  annote = {028CP Times Cited:0 Cited References Count:42},
2434 >  issn = {0021-9606},
2435 >  uri = {<Go to ISI>://000236464000072},
2436   }
2437  
2438 < @Article{plimpton95,
2439 <  author =   {S. Plimpton},
2440 <  title =    {Fast Parallel Algorithms for Short-Range Molecular Dymanics},
2441 <  journal =      {J. Comp. Phys.},
2442 <  year =     1995,
2443 <  volume =   117,
2444 <  pages =    {1-19},
2438 > @ARTICLE{Owren1992,
2439 >  author = {B. Owren and M. Zennaro},
2440 >  title = {Derivation of Efficient, Continuous, Explicit Runge-Kutta Methods},
2441 >  journal = {Siam Journal on Scientific and Statistical Computing},
2442 >  year = {1992},
2443 >  volume = {13},
2444 >  pages = {1488-1501},
2445 >  number = {6},
2446 >  month = {Nov},
2447 >  abstract = {Continuous, explicit Runge-Kutta methods with the minimal number of
2448 >    stages are considered. These methods are continuously differentiable
2449 >    if and only if one of the stages is the FSAL evaluation. A characterization
2450 >    of a subclass of these methods is developed for orders 3, 4, and
2451 >    5. It is shown how the free parameters of these methods can be used
2452 >    either to minimize the continuous truncation error coefficients
2453 >    or to maximize the stability region. As a representative for these
2454 >    methods the fifth-order method with minimized error coefficients
2455 >    is chosen, supplied with an error estimation method, and analysed
2456 >    by using the DETEST software. The results are compared with a similar
2457 >    implementation of the Dormand-Prince 5(4) pair with interpolant,
2458 >    showing a significant advantage in the new method for the chosen
2459 >    problems.},
2460 >  annote = {Ju936 Times Cited:25 Cited References Count:20},
2461 >  issn = {0196-5204},
2462 >  uri = {<Go to ISI>://A1992JU93600013},
2463   }
2464  
2465 < @Article{plimpton93,
2466 <  author =   {S.~J. Plimpton and B.~A. Hendrickson},
2467 <  title =    {Parallel Molecular Dynamics with the Embedded Atom Method},
2468 <  journal =      {MRS Proceedings},
2469 <  year =     1993,
2470 <  volume =   291,
2471 <  pages =    37
2465 > @ARTICLE{Palacios1998,
2466 >  author = {J. L. Garcia-Palacios and F. J. Lazaro},
2467 >  title = {Langevin-dynamics study of the dynamical properties of small magnetic
2468 >    particles},
2469 >  journal = {Physical Review B},
2470 >  year = {1998},
2471 >  volume = {58},
2472 >  pages = {14937-14958},
2473 >  number = {22},
2474 >  month = {Dec 1},
2475 >  abstract = {The stochastic Landau-Lifshitz-Gilbert equation of motion for a classical
2476 >    magnetic moment is numerically solved (properly observing the customary
2477 >    interpretation of it as a Stratonovich stochastic differential equation),
2478 >    in order to study the dynamics of magnetic nanoparticles. The corresponding
2479 >    Langevin-dynamics approach allows for the study of the fluctuating
2480 >    trajectories of individual magnetic moments, where we have encountered
2481 >    remarkable phenomena in the overbarrier rotation process, such as
2482 >    crossing-back or multiple crossing of the potential barrier, rooted
2483 >    in the gyromagnetic nature of the system. Concerning averaged quantities,
2484 >    we study the linear dynamic response of the archetypal ensemble
2485 >    of noninteracting classical magnetic moments with axially symmetric
2486 >    magnetic anisotropy. The results are compared with different analytical
2487 >    expressions used to model the relaxation of nanoparticle ensembles,
2488 >    assessing their accuracy. It has been found that, among a number
2489 >    of heuristic expressions for the linear dynamic susceptibility,
2490 >    only the simple formula proposed by Shliomis and Stepanov matches
2491 >    the coarse features of the susceptibility reasonably. By comparing
2492 >    the numerical results with the asymptotic formula of Storonkin {Sov.
2493 >    Phys. Crystallogr. 30, 489 (1985) [Kristallografiya 30, 841 (1985)]},
2494 >    the effects of the intra-potential-well relaxation modes on the
2495 >    low-temperature longitudinal dynamic response have been assessed,
2496 >    showing their relatively small reflection in the susceptibility
2497 >    curves but their dramatic influence on the phase shifts. Comparison
2498 >    of the numerical results with the exact zero-damping expression
2499 >    for the transverse susceptibility by Garanin, Ishchenko, and Panina
2500 >    {Theor. Math. Phys. (USSR) 82, 169 (1990) [Teor. Mat. Fit. 82, 242
2501 >    (1990)]}, reveals a sizable contribution of the spread of the precession
2502 >    frequencies of the magnetic moment in the anisotropy field to the
2503 >    dynamic response at intermediate-to-high temperatures. [S0163-1829
2504 >    (98)00446-9].},
2505 >  annote = {146XW Times Cited:66 Cited References Count:45},
2506 >  issn = {0163-1829},
2507 >  uri = {<Go to ISI>://000077460000052},
2508   }
2509  
2510 <
2511 < @Article{Ercolessi02,
2512 <  author =   {U. Tartaglino and E. Tosatti and D. Passerone and F. Ercolessi},
2513 <  title =    {Bending strain-driven modification of surface resconstructions: Au(111)},
2514 <  journal =      prb,
2515 <  year =     2002,
2516 <  volume =   65,
2517 <  pages =    241406
2510 > @ARTICLE{Parr1995,
2511 >  author = {T. J. Parr and R. W. Quong},
2512 >  title = {Antlr - a Predicated-Ll(K) Parser Generator},
2513 >  journal = {Software-Practice \& Experience},
2514 >  year = {1995},
2515 >  volume = {25},
2516 >  pages = {789-810},
2517 >  number = {7},
2518 >  month = {Jul},
2519 >  abstract = {Despite the parsing power of LR/LALR algorithms, e.g. YACC, programmers
2520 >    often choose to write recursive-descent parsers by hand to obtain
2521 >    increased flexibility, better error handling, and ease of debugging.
2522 >    We introduce ANTLR, a public-domain parser generator that combines
2523 >    the flexibility of hand-coded parsing with the convenience of a
2524 >    parser generator, which is a component of PCCTS. ANTLR has many
2525 >    features that make it easier to use than other language tools. Most
2526 >    important, ANTLR provides predicates which let the programmer systematically
2527 >    direct the parse via arbitrary expressions using semantic and syntactic
2528 >    context; in practice, the use of predicates eliminates the need
2529 >    to hand-tweak the ANTLR output, even for difficult parsing problems.
2530 >    ANTLR also integrates the description of lexical and syntactic analysis,
2531 >    accepts LL(k) grammars for k > 1 with extended BNF notation, and
2532 >    can automatically generate abstract syntax trees. ANTLR is widely
2533 >    used, with over 1000 registered industrial and academic users in
2534 >    37 countries. It has been ported to many popular systems such as
2535 >    the PC, Macintosh, and a variety of UNIX platforms; a commercial
2536 >    C++ front-end has been developed as a result of one of our industrial
2537 >    collaborations.},
2538 >  annote = {Rk104 Times Cited:19 Cited References Count:10},
2539 >  issn = {0038-0644},
2540 >  uri = {<Go to ISI>://A1995RK10400004},
2541   }
2542  
2543 < @Article{Ercolessi88,
2544 <  author =   {F. Ercolessi  and M. Parrinello  and E. Tosatti},
2545 <  title =    {Simulation of Gold in the Glue Model.},
2546 <  journal =      {Philosophical Magazine A},
2547 <  year =     1988,
2548 <  volume =   58,
2549 <  pages =    {213-226}
2543 > @ARTICLE{Pastor1988,
2544 >  author = {R. W. Pastor and B. R. Brooks and A. Szabo},
2545 >  title = {An Analysis of the Accuracy of Langevin and Molecular-Dynamics Algorithms},
2546 >  journal = {Molecular Physics},
2547 >  year = {1988},
2548 >  volume = {65},
2549 >  pages = {1409-1419},
2550 >  number = {6},
2551 >  month = {Dec 20},
2552 >  annote = {T1302 Times Cited:61 Cited References Count:26},
2553 >  issn = {0026-8976},
2554 >  uri = {<Go to ISI>://A1988T130200011},
2555   }
2556  
2557 < @Article{Finnis84,
2558 <  author =   {M.~W Finnis and J.~E. Sinclair },
2559 <  title =    {A Simple Empirical N-Body Potential for Transition-Metals},
2560 <  journal =      {Phil. Mag. A},
2561 <  year =     1984,
2562 <  volume =   50,
2563 <  pages =    {45-55}
2557 > @ARTICLE{Pelzl1999,
2558 >  author = {G. Pelzl and S. Diele and W. Weissflog},
2559 >  title = {Banana-shaped compounds - A new field of liquid crystals},
2560 >  journal = {Advanced Materials},
2561 >  year = {1999},
2562 >  volume = {11},
2563 >  pages = {707-724},
2564 >  number = {9},
2565 >  month = {Jul 5},
2566 >  annote = {220RC Times Cited:313 Cited References Count:49},
2567 >  issn = {0935-9648},
2568 >  uri = {<Go to ISI>://000081680400007},
2569   }
2570  
2571 < @Article{FBD86,
2572 <  author =       {S.~M. Foiles and M.~I. Baskes and M.~S. Daw},
2573 <  title =        {Embedded-atom-method functions for the fcc metals
2574 < $\mbox{Cu, Ag, Au, Ni, Pd, Pt}$, and their alloys},
2575 <  journal =      prb,
2576 <  year =         1986,
2577 <  volume =       33,
2578 <  number =       12,
2579 <  pages =        7983
2571 > @ARTICLE{Perram1985,
2572 >  author = {J. W. Perram and M. S. Wertheim},
2573 >  title = {Statistical-Mechanics of Hard Ellipsoids .1. Overlap Algorithm and
2574 >    the Contact Function},
2575 >  journal = {Journal of Computational Physics},
2576 >  year = {1985},
2577 >  volume = {58},
2578 >  pages = {409-416},
2579 >  number = {3},
2580 >  annote = {Akb93 Times Cited:71 Cited References Count:12},
2581 >  issn = {0021-9991},
2582 >  uri = {<Go to ISI>://A1985AKB9300008},
2583   }
2584  
2585 < @Article{johnson89,
2586 <  author =   {R.~A. Johnson},
2587 <  title =    {Alloy models with the embedded-atom method},
2588 <  journal =      prb,
2589 <  year =     1989,
2590 <  volume =   39,
2591 <  number =   17,
1826 <  pages =    12554
2585 > @ARTICLE{Rotne1969,
2586 >  author = {F. Perrin},
2587 >  title = {Variational treatment of hydrodynamic interaction in polymers},
2588 >  journal = {J. Chem. Phys.},
2589 >  year = {1969},
2590 >  volume = {50},
2591 >  pages = {4831¨C4837},
2592   }
2593  
2594 < @Article{Laird97,
2595 <  author =   {A. Kol and B.~B. Laird and B.~J. Leimkuhler},
2596 <  title =    {A symplectic method for rigid-body molecular simulation},
2597 <  journal =      jcp,
2598 <  year =     1997,
2599 <  volume =   107,
2600 <  number =   7,
2601 <  pages =    {2580-2588}
2594 > @ARTICLE{Perrin1936,
2595 >  author = {F. Perrin},
2596 >  title = {Mouvement brownien d'un ellipsoid(II). Rotation libre et depolarisation
2597 >    des fluorescences. Translation et diffusion de moleculese ellipsoidales},
2598 >  journal = {J. Phys. Radium},
2599 >  year = {1936},
2600 >  volume = {7},
2601 >  pages = {1-11},
2602   }
2603  
2604 <
2605 < @Article{hoover85,
2606 <  author =   {W.~G. Hoover},
2607 <  title =    {Canonical dynamics: Equilibrium phase-space distributions},
2608 <  journal =      pra,
2609 <  year =     1985,
2610 <  volume =   31,
2611 <  pages =    1695
2604 > @ARTICLE{Perrin1934,
2605 >  author = {F. Perrin},
2606 >  title = {Mouvement brownien d'un ellipsoid(I). Dispersion dielectrique pour
2607 >    des molecules ellipsoidales},
2608 >  journal = {J. Phys. Radium},
2609 >  year = {1934},
2610 >  volume = {5},
2611 >  pages = {497-511},
2612   }
2613  
2614 < @Article{Roux91,
2615 <  author =   {B. Roux and M. Karplus},
2616 <  title =    {Ion transport in a Gramicidin-like channel: dynamics and mobility},
2617 <  journal =      jpc,
2618 <  year =     1991,
2619 <  volume =   95,
2620 <  number =   15,
2621 <  pages =    {4856-4868}
2614 > @ARTICLE{Petrache2000,
2615 >  author = {H.~I. Petrache and S.~W. Dodd and M.~F. Brown},
2616 >  title = {Area per Lipid and Acyl Length Distributions in Fluid Phosphatidylcholines
2617 >    Determined by $^2\text{H}$ {\sc nmr} Spectroscopy},
2618 >  journal = {Biophysical Journal},
2619 >  year = {2000},
2620 >  volume = {79},
2621 >  pages = {3172-3192},
2622   }
2623  
2624 <
2625 < @Article{Marrink94,
2626 <  author =   {S.~J Marrink and H.~J.~C. Berendsen},
2627 <  title =    {Simulation of water transport through a lipid membrane},
2628 <  journal =      jpc,
2629 <  year =     1994,
2630 <  volume =   98,
2631 <  number =   15,
2632 <  pages =    {4155-4168}
2624 > @ARTICLE{Petrache1998,
2625 >  author = {H. I. Petrache and S. Tristram-Nagle and J. F. Nagle},
2626 >  title = {Fluid phase structure of EPC and DMPC bilayers},
2627 >  journal = {Chemistry and Physics of Lipids},
2628 >  year = {1998},
2629 >  volume = {95},
2630 >  pages = {83-94},
2631 >  number = {1},
2632 >  month = {Sep},
2633 >  abstract = {X-ray diffraction data taken at high instrumental resolution were
2634 >    obtained for EPC and DMPC under various osmotic pressures, primarily
2635 >    at T = 30 degrees C. The headgroup thickness D-HH was obtained from
2636 >    relative electron density profiles. By using volumetric results
2637 >    and by comparing to gel phase DPPC we obtain areas A(EPC)(F) = 69.4
2638 >    +/- 1.1 Angstrom(2) and A(DMPC)(F) = 59.7 +/- 0.2 Angstrom(2). The
2639 >    analysis also gives estimates for the areal compressibility K-A.
2640 >    The A(F) results lead to other structural results regarding membrane
2641 >    thickness and associated waters. Using the recently determined absolute
2642 >    electrons density profile of DPPC, the AF results also lead to absolute
2643 >    electron density profiles and absolute continuous transforms \F(q)\
2644 >    for EPC and DMPC, Limited measurements of temperature dependence
2645 >    show directly that fluctuations increase with increasing temperature
2646 >    and that a small decrease in bending modulus K-c accounts for the
2647 >    increased water spacing reported by Simon et al. (1995) Biophys.
2648 >    J. 69, 1473-1483. (C) 1998 Elsevier Science Ireland Ltd. All rights
2649 >    reserved.},
2650 >  annote = {130AT Times Cited:98 Cited References Count:39},
2651 >  issn = {0009-3084},
2652 >  uri = {<Go to ISI>://000076497600007},
2653   }
2654  
2655 <
2656 < @Article{Daw89,
2657 <  author =   {Murray~S. Daw},
2658 <  title =    {Model of metallic cohesion: The embedded-atom method},
2659 <  journal =      {Physical Review B},
2660 <  year =     1989,
2661 <  volume =   39,
2662 <  pages =    {7441-7452}
2655 > @ARTICLE{Powles1973,
2656 >  author = {J.~G. Powles},
2657 >  title = {A general ellipsoid can not always serve as a modle for the rotational
2658 >    diffusion properties of arbitrary shaped rigid molecules},
2659 >  journal = {Advan. Phys.},
2660 >  year = {1973},
2661 >  volume = {22},
2662 >  pages = {1-56},
2663   }
2664  
2665 < @InBook{voter,
2666 <  author =   {A.~F. Voter},
2667 <  editor =   {J.~H. Westbrook and R.~L. Fleischer},
2668 <  title =    {Intermetallic Compounds: Principles and Practice},
2669 <  chapter =      4,
2670 <  publisher =    {John Wiley and Sons Ltd},
2671 <  year =     1995,
2672 <  volume =   1,
2673 <  pages =    77
2665 > @ARTICLE{Recio2004,
2666 >  author = {J. Fernandez-Recio and M. Totrov and R. Abagyan},
2667 >  title = {Identification of protein-protein interaction sites from docking
2668 >    energy landscapes},
2669 >  journal = {Journal of Molecular Biology},
2670 >  year = {2004},
2671 >  volume = {335},
2672 >  pages = {843-865},
2673 >  number = {3},
2674 >  month = {Jan 16},
2675 >  abstract = {Protein recognition is one of the most challenging and intriguing
2676 >    problems in structural biology. Despite all the available structural,
2677 >    sequence and biophysical information about protein-protein complexes,
2678 >    the physico-chemical patterns, if any, that make a protein surface
2679 >    likely to be involved in protein-protein interactions, remain elusive.
2680 >    Here, we apply protein docking simulations and analysis of the interaction
2681 >    energy landscapes to identify protein-protein interaction sites.
2682 >    The new protocol for global docking based on multi-start global
2683 >    energy optimization of an allatom model of the ligand, with detailed
2684 >    receptor potentials and atomic solvation parameters optimized in
2685 >    a training set of 24 complexes, explores the conformational space
2686 >    around the whole receptor without restrictions. The ensembles of
2687 >    the rigid-body docking solutions generated by the simulations were
2688 >    subsequently used to project the docking energy landscapes onto
2689 >    the protein surfaces. We found that highly populated low-energy
2690 >    regions consistently corresponded to actual binding sites. The procedure
2691 >    was validated on a test set of 21 known protein-protein complexes
2692 >    not used in the training set. As much as 81% of the predicted high-propensity
2693 >    patch residues were located correctly in the native interfaces.
2694 >    This approach can guide the design of mutations on the surfaces
2695 >    of proteins, provide geometrical details of a possible interaction,
2696 >    and help to annotate protein surfaces in structural proteomics.
2697 >    (C) 2003 Elsevier Ltd. All rights reserved.},
2698 >  annote = {763GQ Times Cited:21 Cited References Count:59},
2699 >  issn = {0022-2836},
2700 >  uri = {<Go to ISI>://000188066900016},
2701   }
2702  
2703 < @Article{marrink:2002,
2704 <  author =   {S.~J. Marrink and D.~P. Teileman},
2705 <  title =    {Molecular Dynamics Simulation of Spontaneous Membrane Fusion during a Cubic-Hexagonal Phase Transition},
2706 <  journal =      {Biophysical Journal},
2707 <  year =     2002,
2708 <  volume =   83,
2709 <  pages =    {2386-2392}
2703 > @ARTICLE{Reddy2006,
2704 >  author = {R. A. Reddy and C. Tschierske},
2705 >  title = {Bent-core liquid crystals: polar order, superstructural chirality
2706 >    and spontaneous desymmetrisation in soft matter systems},
2707 >  journal = {Journal of Materials Chemistry},
2708 >  year = {2006},
2709 >  volume = {16},
2710 >  pages = {907-961},
2711 >  number = {10},
2712 >  abstract = {An overview on the recent developments in the field of liquid crystalline
2713 >    bent-core molecules (so-called banana liquid crystals) is given.
2714 >    After some basic issues, dealing with general aspects of the systematisation
2715 >    of the mesophases, development of polar order and chirality in this
2716 >    class of LC systems and explaining some general structure-property
2717 >    relationships, we focus on fascinating new developments in this
2718 >    field, such as modulated, undulated and columnar phases, so-called
2719 >    B7 phases, phase biaxiality, ferroelectric and antiferroelectric
2720 >    polar order in smectic and columnar phases, amplification and switching
2721 >    of chirality and the spontaneous formation of superstructural and
2722 >    supramolecular chirality.},
2723 >  annote = {021NS Times Cited:2 Cited References Count:316},
2724 >  issn = {0959-9428},
2725 >  uri = {<Go to ISI>://000235990500001},
2726   }
2727  
2728 < @Article{sum:2003,
2729 <  author =   {A.~K. Sum and J.~J. de~Pablo},
2730 <  title =    {Molecular Simulation Study on the influence of Dimethylsulfoxide on the structure of Phospholipid Bilayers},
2731 <  journal =      {Biophysical Journal},
2732 <  year =     2003,
2733 <  volume =   85,
2734 <  pages =    {3636-3645}
2728 > @ARTICLE{Reich1999,
2729 >  author = {S. Reich},
2730 >  title = {Backward error analysis for numerical integrators},
2731 >  journal = {Siam Journal on Numerical Analysis},
2732 >  year = {1999},
2733 >  volume = {36},
2734 >  pages = {1549-1570},
2735 >  number = {5},
2736 >  month = {Sep 8},
2737 >  abstract = {Backward error analysis has become an important tool for understanding
2738 >    the long time behavior of numerical integration methods. This is
2739 >    true in particular for the integration of Hamiltonian systems where
2740 >    backward error analysis can be used to show that a symplectic method
2741 >    will conserve energy over exponentially long periods of time. Such
2742 >    results are typically based on two aspects of backward error analysis:
2743 >    (i) It can be shown that the modified vector fields have some qualitative
2744 >    properties which they share with the given problem and (ii) an estimate
2745 >    is given for the difference between the best interpolating vector
2746 >    field and the numerical method. These aspects have been investigated
2747 >    recently, for example, by Benettin and Giorgilli in [J. Statist.
2748 >    Phys., 74 (1994), pp. 1117-1143], by Hairer in [Ann. Numer. Math.,
2749 >    1 (1994), pp. 107-132], and by Hairer and Lubich in [Numer. Math.,
2750 >    76 (1997), pp. 441-462]. In this paper we aim at providing a unifying
2751 >    framework and a simplification of the existing results and corresponding
2752 >    proofs. Our approach to backward error analysis is based on a simple
2753 >    recursive definition of the modified vector fields that does not
2754 >    require explicit Taylor series expansion of the numerical method
2755 >    and the corresponding flow maps as in the above-cited works. As
2756 >    an application we discuss the long time integration of chaotic Hamiltonian
2757 >    systems and the approximation of time averages along numerically
2758 >    computed trajectories.},
2759 >  annote = {237HV Times Cited:43 Cited References Count:41},
2760 >  issn = {0036-1429},
2761 >  uri = {<Go to ISI>://000082650600010},
2762   }
2763  
2764 < @Article{gomez:2003,
2765 <  author =   {J.~D. Faraldo-Gomez and G.~R. Smith and M.~S.P. Sansom},
2766 <  title =    {Setting up and optimization of membrane protein simulations},
2767 <  journal =      {Eur. Biophys. J.},
2768 <  year =     2002,
2769 <  volume =   31,
2770 <  pages =    {217-227}
2764 > @ARTICLE{Ros2005,
2765 >  author = {M. B. Ros and J. L. Serrano and M. R. {de la Fuente} and C. L. Folcia},
2766 >  title = {Banana-shaped liquid crystals: a new field to explore},
2767 >  journal = {Journal of Materials Chemistry},
2768 >  year = {2005},
2769 >  volume = {15},
2770 >  pages = {5093-5098},
2771 >  number = {48},
2772 >  abstract = {The recent literature in the field of liquid crystals shows that banana-shaped
2773 >    mesogenic materials represent a bewitching and stimulating field
2774 >    of research that is interesting both academically and in terms of
2775 >    applications. Numerous topics are open to investigation in this
2776 >    area because of the rich phenomenology and new possibilities that
2777 >    these materials offer. The principal concepts in this area are reviewed
2778 >    along with recent results. In addition, new directions to stimulate
2779 >    further research activities are highlighted.},
2780 >  annote = {990XA Times Cited:3 Cited References Count:72},
2781 >  issn = {0959-9428},
2782 >  uri = {<Go to ISI>://000233775500001},
2783   }
2784  
2785 <
2786 < @Article{smondyrev:1999,
2787 <  author =   {A.~M. Smondyrev and M.~L. Berkowitz},
2788 <  title =    {Molecular Dynamics Simulation of {\sc dppc} Bilayer in {\sc dmso}},
2789 <  journal =      {Biophysical Journal},
2790 <  year =     1999,
2791 <  volume =   76,
2792 <  pages =    {2472-2478}
2785 > @ARTICLE{Roux1991,
2786 >  author = {B. Roux and M. Karplus},
2787 >  title = {Ion-Transport in a Gramicidin-Like Channel - Dynamics and Mobility},
2788 >  journal = {Journal of Physical Chemistry},
2789 >  year = {1991},
2790 >  volume = {95},
2791 >  pages = {4856-4868},
2792 >  number = {12},
2793 >  month = {Jun 13},
2794 >  abstract = {The mobility of water, Na+. and K+ has been calculated inside a periodic
2795 >    poly-(L,D)-alanine beta-helix, a model for the interior of the gramicidin
2796 >    channel. Because of the different dynamical regimes for the three
2797 >    species (high barrier for Na+, low barrier for K+, almost free diffusion
2798 >    for water), different methods are used to calculate the mobilities.
2799 >    By use of activated dynamics and a potential of mean force determined
2800 >    previously (Roux, B.; Karplus, M. Biophys. J. 1991, 59, 961), the
2801 >    barrier crossing rate of Na+ ion is determined. The motion of Na+
2802 >    at the transition state is controlled by local interactions and
2803 >    collisions with the neighboring carbonyls and the two nearest water
2804 >    molecules. There are significant deviations from transition-state
2805 >    theory; the transmission coefficient is equal to 0.11. The water
2806 >    and K+ motions are found to be well described by a diffusive model;
2807 >    the motion of K+ appears to be controlled by the diffusion of water.
2808 >    The time-dependent friction functions of Na+ and K+ ions in the
2809 >    periodic beta-helix are calculated and analyzed by using a generalized
2810 >    Langevin equation approach. Both Na+ and K+ suffer many rapid collisions,
2811 >    and their dynamics is overdamped and noninertial. Thus, the selectivity
2812 >    sequence of ions in the beta-helix is not influenced strongly by
2813 >    their masses.},
2814 >  annote = {Fr756 Times Cited:97 Cited References Count:65},
2815 >  issn = {0022-3654},
2816 >  uri = {<Go to ISI>://A1991FR75600049},
2817   }
2818  
2819 < @Article{nina:2002,
2820 <  author =   {M. Nina and T. Simonson},
2821 <  title =    {Molecular Dynamics of the $\text{tRNA}^{\text{Ala}}$ Acceptor Stem: Comparison between Continuum Reaction Field and Particle-Mesh Ewald Electrostatic Treatments},
2822 <  journal =      {J. Phys. Chem. B},
2823 <  year =     2002,
2824 <  volume =   106,
2825 <  pages =    {3696-3705}
2819 > @ARTICLE{Roy2005,
2820 >  author = {A. Roy and N. V. Madhusudana},
2821 >  title = {A frustrated packing model for the B-6-B-1-SmAP(A) sequence of phases
2822 >    in banana shaped molecules},
2823 >  journal = {European Physical Journal E},
2824 >  year = {2005},
2825 >  volume = {18},
2826 >  pages = {253-258},
2827 >  number = {3},
2828 >  month = {Nov},
2829 >  abstract = {A vast majority of compounds with bent core or banana shaped molecules
2830 >    exhibit the phase sequence B-6-B-1-B-2 as the chain length is increased
2831 >    in a homologous series. The B-6 phase has an intercalated fluid
2832 >    lamellar structure with a layer spacing of half the molecular length.
2833 >    The B-1 phase has a two dimensionally periodic rectangular columnar
2834 >    structure. The B-2 phase has a monolayer fluid lamellar structure
2835 >    with molecules tilted with respect to the layer normal. Neglecting
2836 >    the tilt order of the molecules in the B-2 phase, we have developed
2837 >    a frustrated packing model to describe this phase sequence qualitatively.
2838 >    The model has some analogy with that of the frustrated smectics
2839 >    exhibited by highly polar rod like molecules.},
2840 >  annote = {985FW Times Cited:0 Cited References Count:30},
2841 >  issn = {1292-8941},
2842 >  uri = {<Go to ISI>://000233363300002},
2843   }
2844  
2845 < @Article{norberg:2000,
2846 <  author =   {J. Norberg and L. Nilsson},
2847 <  title =    {On the truncation of Long-Range Electrostatic Interactions in {\sc dna}},
2848 <  journal =      {Biophysical Journal},
2849 <  year =     2000,
2850 <  volume =   79,
2851 <  pages =    {1537-1553}
2845 > @ARTICLE{Ryckaert1977,
2846 >  author = {J. P. Ryckaert and G. Ciccotti and H. J. C. Berendsen},
2847 >  title = {Numerical-Integration of Cartesian Equations of Motion of a System
2848 >    with Constraints - Molecular-Dynamics of N-Alkanes},
2849 >  journal = {Journal of Computational Physics},
2850 >  year = {1977},
2851 >  volume = {23},
2852 >  pages = {327-341},
2853 >  number = {3},
2854 >  annote = {Cz253 Times Cited:3680 Cited References Count:7},
2855 >  issn = {0021-9991},
2856 >  uri = {<Go to ISI>://A1977CZ25300007},
2857   }
2858  
2859 < @Article{patra:2003,
2860 <  author =   {M. Patra and M. Karttunen and M.~T. Hyv\"{o}nen and E. Falk and P. Lindqvist and I. Vattulainen},
2861 <  title =    {Molecular Dynamics Simulations of Lipid Bilayers: Major Artifacts Due to Truncating Electrostatic Interactions},
2862 <  journal =      {Biophysical Journal},
2863 <  year =     2003,
2864 <  volume =   84,
2865 <  pages =    {3636-3645}
2859 > @ARTICLE{Sagui1999,
2860 >  author = {C. Sagui and T. A. Darden},
2861 >  title = {Molecular dynamics simulations of biomolecules: Long-range electrostatic
2862 >    effects},
2863 >  journal = {Annual Review of Biophysics and Biomolecular Structure},
2864 >  year = {1999},
2865 >  volume = {28},
2866 >  pages = {155-179},
2867 >  abstract = {Current computer simulations of biomolecules typically make use of
2868 >    classical molecular dynamics methods, as a very large number (tens
2869 >    to hundreds of thousands) of atoms are involved over timescales
2870 >    of many nanoseconds. The methodology for treating short-range bonded
2871 >    and van der Waals interactions has matured. However, long-range
2872 >    electrostatic interactions still represent a bottleneck in simulations.
2873 >    In this article, we introduce the basic issues for an accurate representation
2874 >    of the relevant electrostatic interactions. In spite of the huge
2875 >    computational time demanded by most biomolecular systems, it is
2876 >    no longer necessary to resort to uncontrolled approximations such
2877 >    as the use of cutoffs. In particular, we discuss the Ewald summation
2878 >    methods, the fast particle mesh methods, and the fast multipole
2879 >    methods. We also review recent efforts to understand the role of
2880 >    boundary conditions in systems with long-range interactions, and
2881 >    conclude with a short perspective on future trends.},
2882 >  annote = {213KJ Times Cited:126 Cited References Count:73},
2883 >  issn = {1056-8700},
2884 >  uri = {<Go to ISI>://000081271400008},
2885   }
2886  
2887 < @Article{marrink04,
2888 <  author =   {S.~J. Marrink and A.~H. de~Vries and A.~E. Mark},
2889 <  title =    {Coarse Grained Model for Semiquantitative Lipid Simulations},
2890 <  journal =      {J. Phys. Chem. B},
2891 <  year =     2004,
2892 <  volume =   108,
2893 <  pages =    {750-760}
2887 > @ARTICLE{Sandu1999,
2888 >  author = {A. Sandu and T. Schlick},
2889 >  title = {Masking resonance artifacts in force-splitting methods for biomolecular
2890 >    simulations by extrapolative Langevin dynamics},
2891 >  journal = {Journal of Computational Physics},
2892 >  year = {1999},
2893 >  volume = {151},
2894 >  pages = {74-113},
2895 >  number = {1},
2896 >  month = {May 1},
2897 >  abstract = {Numerical resonance artifacts have become recognized recently as a
2898 >    limiting factor to increasing the timestep in multiple-timestep
2899 >    (MTS) biomolecular dynamics simulations. At certain timesteps correlated
2900 >    to internal motions (e.g., 5 fs, around half the period of the fastest
2901 >    bond stretch, T-min), visible inaccuracies or instabilities can
2902 >    occur. Impulse-MTS schemes are vulnerable to these resonance errors
2903 >    since large energy pulses are introduced to the governing dynamics
2904 >    equations when the slow forces are evaluated. We recently showed
2905 >    that such resonance artifacts can be masked significantly by applying
2906 >    extrapolative splitting to stochastic dynamics. Theoretical and
2907 >    numerical analyses of force-splitting integrators based on the Verlet
2908 >    discretization are reported here for linear models to explain these
2909 >    observations and to suggest how to construct effective integrators
2910 >    for biomolecular dynamics that balance stability with accuracy.
2911 >    Analyses for Newtonian dynamics demonstrate the severe resonance
2912 >    patterns of the Impulse splitting, with this severity worsening
2913 >    with the outer timestep. Delta t: Constant Extrapolation is generally
2914 >    unstable, but the disturbances do not grow with Delta t. Thus. the
2915 >    stochastic extrapolative combination can counteract generic instabilities
2916 >    and largely alleviate resonances with a sufficiently strong Langevin
2917 >    heat-bath coupling (gamma), estimates for which are derived here
2918 >    based on the fastest and slowest motion periods. These resonance
2919 >    results generally hold for nonlinear test systems: a water tetramer
2920 >    and solvated protein. Proposed related approaches such as Extrapolation/Correction
2921 >    and Midpoint Extrapolation work better than Constant Extrapolation
2922 >    only for timesteps less than T-min/2. An effective extrapolative
2923 >    stochastic approach for biomolecules that balances long-timestep
2924 >    stability with good accuracy for the fast subsystem is then applied
2925 >    to a biomolecule using a three-class partitioning: the medium forces
2926 >    are treated by Midpoint Extrapolation via position Verlet, and the
2927 >    slow forces are incorporated by Constant Extrapolation. The resulting
2928 >    algorithm (LN) performs well on a solvated protein system in terms
2929 >    of thermodynamic properties and yields an order of magnitude speedup
2930 >    with respect to single-timestep Langevin trajectories. Computed
2931 >    spectral density functions also show how the Newtonian modes can
2932 >    be approximated by using a small gamma in the range Of 5-20 ps(-1).
2933 >    (C) 1999 Academic Press.},
2934 >  annote = {194FM Times Cited:14 Cited References Count:32},
2935 >  issn = {0021-9991},
2936 >  uri = {<Go to ISI>://000080181500004},
2937   }
2938  
2939 < @Article{andersen83,
2940 <  author =   {H.~C. Andersen},
2941 <  title =    {{\sc rattle}: A Velocity Version of the Shake Algorithm for Molecular Dynamics Calculations},
2942 <  journal =      {Journal of Computational Physics},
2943 <  year =     1983,
2944 <  volume =   52,
2945 <  pages =    {24-34}
2939 > @ARTICLE{Sasaki2004,
2940 >  author = {Y. Sasaki and R. Shukla and B. D. Smith},
2941 >  title = {Facilitated phosphatidylserine flip-flop across vesicle and cell
2942 >    membranes using urea-derived synthetic translocases},
2943 >  journal = {Organic \& Biomolecular Chemistry},
2944 >  year = {2004},
2945 >  volume = {2},
2946 >  pages = {214-219},
2947 >  number = {2},
2948 >  abstract = {Tris(2-aminoethyl) amine derivatives with appended urea and sulfonamide
2949 >    groups are shown to facilitate the translocation of fluorescent
2950 >    phospholipid probes and endogenous phosphatidylserine across vesicle
2951 >    and erythrocyte cell membranes. The synthetic translocases appear
2952 >    to operate by binding to the phospholipid head groups and forming
2953 >    lipophilic supramolecular complexes which diffuse through the non-polar
2954 >    interior of the bilayer membrane.},
2955 >  annote = {760PX Times Cited:8 Cited References Count:25},
2956 >  issn = {1477-0520},
2957 >  uri = {<Go to ISI>://000187843800012},
2958   }
2959  
2960 < @Article{hura00,
2961 <  author =   {G. Hura and J.~M. Sorenson and R.~M. Glaeser and T. Head-Gordon},
2962 <  title =    {A high-quality x-ray scattering experiment on liquid water at ambient conditions},
2963 <  journal =      {J. Chem. Phys.},
2964 <  year =     2000,
2965 <  volume =   113,
2966 <  pages =    {9140-9148}
2960 > @ARTICLE{Satoh1996,
2961 >  author = {K. Satoh and S. Mita and S. Kondo},
2962 >  title = {Monte Carlo simulations using the dipolar Gay-Berne model: Effect
2963 >    of terminal dipole moment on mesophase formation},
2964 >  journal = {Chemical Physics Letters},
2965 >  year = {1996},
2966 >  volume = {255},
2967 >  pages = {99-104},
2968 >  number = {1-3},
2969 >  month = {Jun 7},
2970 >  abstract = {The effects of dipole-dipole interaction on mesophase formation are
2971 >    investigated with a Monte Carlo simulation using the dipolar Gay-Berne
2972 >    potential. It is shown that the dipole moment at the end of a molecule
2973 >    causes a shift in the nematic-isotropic transition toward higher
2974 >    temperature and a spread of the temperature range of the nematic
2975 >    phase and that layer structures with various interdigitations are
2976 >    formed in the smectic phase.},
2977 >  annote = {Uq975 Times Cited:32 Cited References Count:33},
2978 >  issn = {0009-2614},
2979 >  uri = {<Go to ISI>://A1996UQ97500017},
2980   }
2981  
2982 <
2983 < @Article{ryckaert77,
2984 <  author =   {J.~P. Ryckaert and G. Ciccotti and H.~J.~C. Berendsen},
2985 <  title =    {Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes},
2986 <  journal =      {Journal of Computational Physics},
2987 <  year =     1977,
2988 <  volume =   23,
2989 <  pages =    {327-341}
2982 > @ARTICLE{Schaps1999,
2983 >  author = {G. L. Schaps},
2984 >  title = {Compiler construction with ANTLR and Java - Tools for building tools},
2985 >  journal = {Dr Dobbs Journal},
2986 >  year = {1999},
2987 >  volume = {24},
2988 >  pages = {84-+},
2989 >  number = {3},
2990 >  month = {Mar},
2991 >  annote = {163EC Times Cited:0 Cited References Count:0},
2992 >  issn = {1044-789X},
2993 >  uri = {<Go to ISI>://000078389200023},
2994   }
2995  
2996 <
2997 < @InBook{fowles99:lagrange,
2998 <  author =   {G.~R. Fowles and G.~L. Cassiday},
2999 <  title =    {Analytical Mechanics},
3000 <  chapter =      10,
3001 <  publisher =    {Saunders College Publishing},
3002 <  year =     1999,
3003 <  edition =  {6th}
2996 > @ARTICLE{Shen2002,
2997 >  author = {M. Y. Shen and K. F. Freed},
2998 >  title = {Long time dynamics of met-enkephalin: Comparison of explicit and
2999 >    implicit solvent models},
3000 >  journal = {Biophysical Journal},
3001 >  year = {2002},
3002 >  volume = {82},
3003 >  pages = {1791-1808},
3004 >  number = {4},
3005 >  month = {Apr},
3006 >  abstract = {Met-enkephalin is one of the smallest opiate peptides. Yet, its dynamical
3007 >    structure and receptor docking mechanism are still not well understood.
3008 >    The conformational dynamics of this neuron peptide in liquid water
3009 >    are studied here by using all-atom molecular dynamics (MID) and
3010 >    implicit water Langevin dynamics (LD) simulations with AMBER potential
3011 >    functions and the three-site transferable intermolecular potential
3012 >    (TIP3P) model for water. To achieve the same simulation length in
3013 >    physical time, the full MID simulations require 200 times as much
3014 >    CPU time as the implicit water LID simulations. The solvent hydrophobicity
3015 >    and dielectric behavior are treated in the implicit solvent LD simulations
3016 >    by using a macroscopic solvation potential, a single dielectric
3017 >    constant, and atomic friction coefficients computed using the accessible
3018 >    surface area method with the TIP3P model water viscosity as determined
3019 >    here from MID simulations for pure TIP3P water. Both the local and
3020 >    the global dynamics obtained from the implicit solvent LD simulations
3021 >    agree very well with those from the explicit solvent MD simulations.
3022 >    The simulations provide insights into the conformational restrictions
3023 >    that are associated with the bioactivity of the opiate peptide dermorphin
3024 >    for the delta-receptor.},
3025 >  annote = {540MH Times Cited:36 Cited References Count:45},
3026 >  issn = {0006-3495},
3027 >  uri = {<Go to ISI>://000174932400010},
3028   }
3029  
3030 < @Article{petrache00,
3031 <  author =   {H.~I. Petrache and S.~W. Dodd and M.~F. Brown},
3032 <  title =    {Area per Lipid and Acyl Length Distributions in Fluid Phosphatidylcholines Determined by $^2\text{H}$ {\sc nmr} Spectroscopy},
3033 <  journal =      {Biophysical Journal},
3034 <  year =     2000,
3035 <  volume =   79,
3036 <  pages =    {3172-3192}
3030 > @ARTICLE{Shillcock2005,
3031 >  author = {J. C. Shillcock and R. Lipowsky},
3032 >  title = {Tension-induced fusion of bilayer membranes and vesicles},
3033 >  journal = {Nature Materials},
3034 >  year = {2005},
3035 >  volume = {4},
3036 >  pages = {225-228},
3037 >  number = {3},
3038 >  month = {Mar},
3039 >  annote = {901QJ Times Cited:9 Cited References Count:23},
3040 >  issn = {1476-1122},
3041 >  uri = {<Go to ISI>://000227296700019},
3042   }
3043  
3044 < @Article{egberts88,
3045 <  author =   {E. Egberts and H.~J.~C. Berendsen},
3046 <  title =    {Molecular Dynamics Simulation of a smectic liquid crystal with atomic detail},
3047 <  journal =      {J. Chem. Phys.},
3048 <  year =     1988,
3049 <  volume =   89,
3050 <  pages =    {3718-3732}
3044 > @ARTICLE{Shimada1993,
3045 >  author = {J. Shimada and H. Kaneko and T. Takada},
3046 >  title = {Efficient Calculations of Coulombic Interactions in Biomolecular
3047 >    Simulations with Periodic Boundary-Conditions},
3048 >  journal = {Journal of Computational Chemistry},
3049 >  year = {1993},
3050 >  volume = {14},
3051 >  pages = {867-878},
3052 >  number = {7},
3053 >  month = {Jul},
3054 >  abstract = {To make improved treatments of electrostatic interactions in biomacromolecular
3055 >    simulations, two possibilities are considered. The first is the
3056 >    famous particle-particle and particle-mesh (PPPM) method developed
3057 >    by Hockney and Eastwood, and the second is a new one developed here
3058 >    in their spirit but by the use of the multipole expansion technique
3059 >    suggested by Ladd. It is then numerically found that the new PPPM
3060 >    method gives more accurate results for a two-particle system at
3061 >    small separation of particles. Preliminary numerical examination
3062 >    of the various computational methods for a single configuration
3063 >    of a model BPTI-water system containing about 24,000 particles indicates
3064 >    that both of the PPPM methods give far more accurate values with
3065 >    reasonable computational cost than do the conventional truncation
3066 >    methods. It is concluded the two PPPM methods are nearly comparable
3067 >    in overall performance for the many-particle systems, although the
3068 >    first method has the drawback that the accuracy in the total electrostatic
3069 >    energy is not high for configurations of charged particles randomly
3070 >    generated.},
3071 >  annote = {Lh164 Times Cited:27 Cited References Count:47},
3072 >  issn = {0192-8651},
3073 >  uri = {<Go to ISI>://A1993LH16400011},
3074   }
3075  
3076 < @Article{Holz00,
3077 <  author =       {M. Holz and S.~R. Heil and A. Sacco},
3078 <  title =        {Temperature-dependent self-diffusion coefficients of
3079 <                  water and six selected molecular liquids for calibration
3080 <                  in accurate $^1${\sc h} {\sc nmr pfg} measurements},
3081 <  journal =      {Phys. Chem. Chem. Phys.},
3082 <  year =         2000,
3083 <  volume =       2,
3084 <  pages =        {4740-4742},
3076 > @ARTICLE{Skeel2002,
3077 >  author = {R. D. Skeel and J. A. Izaguirre},
3078 >  title = {An impulse integrator for Langevin dynamics},
3079 >  journal = {Molecular Physics},
3080 >  year = {2002},
3081 >  volume = {100},
3082 >  pages = {3885-3891},
3083 >  number = {24},
3084 >  month = {Dec 20},
3085 >  abstract = {The best simple method for Newtonian molecular dynamics is indisputably
3086 >    the leapfrog Stormer-Verlet method. The appropriate generalization
3087 >    to simple Langevin dynamics is unclear. An analysis is presented
3088 >    comparing an 'impulse method' (kick; fluctuate; kick), the 1982
3089 >    method of van Gunsteren and Berendsen, and the Brunger-Brooks-Karplus
3090 >    (BBK) method. It is shown how the impulse method and the van Gunsteren-Berendsen
3091 >    methods can be implemented as efficiently as the BBK method. Other
3092 >    considerations suggest that the impulse method is the best basic
3093 >    method for simple Langevin dynamics, with the van Gunsteren-Berendsen
3094 >    method a close contender.},
3095 >  annote = {633RX Times Cited:8 Cited References Count:22},
3096 >  issn = {0026-8976},
3097 >  uri = {<Go to ISI>://000180297200014},
3098   }
3099  
3100 < @InCollection{zannoni94,
3101 <  author =   {C. Zannoni},
3102 <  title =    {An introduction to the molecular dynamics method and to orientational dynamics in liquid crystals},
3103 <  booktitle =    {The Molecular Dynamics of Liquid Crstals},
3104 <  pages =    {139-169},
3105 <  publisher =    {Kluwer Academic Publishers},
3106 <  year =     1994,
3107 <  editor =   {G.~R. Luckhurst and C.~A. Veracini},
3108 <  chapter =  6
3100 > @ARTICLE{Skeel1997,
3101 >  author = {R. D. Skeel and G. H. Zhang and T. Schlick},
3102 >  title = {A family of symplectic integrators: Stability, accuracy, and molecular
3103 >    dynamics applications},
3104 >  journal = {Siam Journal on Scientific Computing},
3105 >  year = {1997},
3106 >  volume = {18},
3107 >  pages = {203-222},
3108 >  number = {1},
3109 >  month = {Jan},
3110 >  abstract = {The following integration methods for special second-order ordinary
3111 >    differential equations are studied: leapfrog, implicit midpoint,
3112 >    trapezoid, Stormer-Verlet, and Cowell-Numerov. We show that all
3113 >    are members, or equivalent to members, of a one-parameter family
3114 >    of schemes. Some methods have more than one common form, and we
3115 >    discuss a systematic enumeration of these forms. We also present
3116 >    a stability and accuracy analysis based on the idea of ''modified
3117 >    equations'' and a proof of symplecticness. It follows that Cowell-Numerov
3118 >    and ''LIM2'' (a method proposed by Zhang and Schlick) are symplectic.
3119 >    A different interpretation of the values used by these integrators
3120 >    leads to higher accuracy and better energy conservation. Hence,
3121 >    we suggest that the straightforward analysis of energy conservation
3122 >    is misleading.},
3123 >  annote = {We981 Times Cited:30 Cited References Count:35},
3124 >  issn = {1064-8275},
3125 >  uri = {<Go to ISI>://A1997WE98100012},
3126   }
3127  
3128 <
3129 < @Article{melchionna93,
3130 <  author =   {S. Melchionna and G. Ciccotti and B.~L. Holian},
3131 <  title =    {Hoover {\sc npt} dynamics for systems varying in shape and size},
3132 <  journal =      {Molecular Physics},
3133 <  year =     1993,
3134 <  volume =   78,
3135 <  pages =    {533-544}
3128 > @ARTICLE{Tao2005,
3129 >  author = {Y. G. Tao and W. K. {den Otter} and J. T. Padding and J. K. G. Dhont
3130 >    and W. J. Briels},
3131 >  title = {Brownian dynamics simulations of the self- and collective rotational
3132 >    diffusion coefficients of rigid long thin rods},
3133 >  journal = {Journal of Chemical Physics},
3134 >  year = {2005},
3135 >  volume = {122},
3136 >  pages = {-},
3137 >  number = {24},
3138 >  month = {Jun 22},
3139 >  abstract = {Recently a microscopic theory for the dynamics of suspensions of long
3140 >    thin rigid rods was presented, confirming and expanding the well-known
3141 >    theory by Doi and Edwards [The Theory of Polymer Dynamics (Clarendon,
3142 >    Oxford, 1986)] and Kuzuu [J. Phys. Soc. Jpn. 52, 3486 (1983)]. Here
3143 >    this theory is put to the test by comparing it against computer
3144 >    simulations. A Brownian dynamics simulation program was developed
3145 >    to follow the dynamics of the rods, with a length over a diameter
3146 >    ratio of 60, on the Smoluchowski time scale. The model accounts
3147 >    for excluded volume interactions between rods, but neglects hydrodynamic
3148 >    interactions. The self-rotational diffusion coefficients D-r(phi)
3149 >    of the rods were calculated by standard methods and by a new, more
3150 >    efficient method based on calculating average restoring torques.
3151 >    Collective decay of orientational order was calculated by means
3152 >    of equilibrium and nonequilibrium simulations. Our results show
3153 >    that, for the currently accessible volume fractions, the decay times
3154 >    in both cases are virtually identical. Moreover, the observed decay
3155 >    of diffusion coefficients with volume fraction is much quicker than
3156 >    predicted by the theory, which is attributed to an oversimplification
3157 >    of dynamic correlations in the theory. (c) 2005 American Institute
3158 >    of Physics.},
3159 >  annote = {943DN Times Cited:3 Cited References Count:26},
3160 >  issn = {0021-9606},
3161 >  uri = {<Go to ISI>://000230332400077},
3162   }
3163  
3164 < @Article{fennell04,
3165 <  author =   {C.~J. Fennell and J.~D. Gezelter},
3166 <  title =    {On the structural and transport properties of the soft sticky dipole(SSD) and related single point water models},
3167 <  journal =      {J. Chem. Phys},
3168 <  year =     {in press 2004}
3164 > @BOOK{Tolman1979,
3165 >  title = {The Principles of Statistical Mechanics},
3166 >  publisher = {Dover Publications, Inc.},
3167 >  year = {1979},
3168 >  author = {R.~C. Tolman},
3169 >  address = {New York},
3170 >  chapter = {2},
3171 >  pages = {19-22},
3172   }
3173  
3174 < @Article{klein01,
3175 <  author =   {J.~C. Shelley andf M.~Y. Shelley and R.~C. Reeder and S. Bandyopadhyay and M.~L. Klein},
3176 <  title =    {A coarse Grain Model for Phospholipid Simulations},
3177 <  journal =      {J. Phys. Chem. B},
3178 <  year =     2001,
3179 <  volume =   105,
3180 <  pages =    {4464-4470}
3174 > @ARTICLE{Tu1995,
3175 >  author = {K. Tu and D. J. Tobias and M. L. Klein},
3176 >  title = {Constant pressure and temperature molecular dynamics simulation of
3177 >    a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine
3178 >    bilayer},
3179 >  journal = {Biophysical Journal},
3180 >  year = {1995},
3181 >  volume = {69},
3182 >  pages = {2558-2562},
3183 >  number = {6},
3184 >  month = {Dec},
3185 >  abstract = {We report a constant pressure and temperature molecular dynamics simulation
3186 >    of a fully hydrated liquid crystal (L(alpha) phase bilayer of dipalmitoylphosphatidylcholine
3187 >    at 50 degrees C and 28 water molecules/lipid. We have shown that
3188 >    the bilayer is stable throughout the 1550-ps simulation and have
3189 >    demonstrated convergence of the system dimensions. Several important
3190 >    aspects of the bilayer structure have been investigated and compared
3191 >    favorably with experimental results. For example, the average positions
3192 >    of specific carbon atoms along the bilayer normal agree well with
3193 >    neutron diffraction data, and the electron density profile is in
3194 >    accord with x-ray diffraction results. The hydrocarbon chain deuterium
3195 >    order parameters agree reasonably well with NMR results for the
3196 >    middles of the chains, but the simulation predicts too much order
3197 >    at the chain ends. In spite of the deviations in the order parameters,
3198 >    the hydrocarbon chain packing density appears to be essentially
3199 >    correct, inasmuch as the area/lipid and bilayer thickness are in
3200 >    agreement with the most refined experimental estimates. The deuterium
3201 >    order parameters for the glycerol and choline groups, as well as
3202 >    the phosphorus chemical shift anisotropy, are in qualitative agreement
3203 >    with those extracted from NMR measurements.},
3204 >  annote = {Tv018 Times Cited:108 Cited References Count:34},
3205 >  issn = {0006-3495},
3206 >  uri = {<Go to ISI>://A1995TV01800037},
3207   }
3208  
3209 <
3210 < @Article{marrink03:vesicles,
3211 <  author =   {S.~J. Marrink and A.~E. Mark},
3212 <  title =    {Molecular Dynaimcs Simulation of the Formation, Structure, and Dynamics of Small Phospholipid Vesicles},
3213 <  journal =      {J. Am. Chem. Soc.},
3214 <  year =     2003,
3215 <  volume =   125,
3216 <  pages =    {15233-15242}
3209 > @ARTICLE{Tuckerman1992,
3210 >  author = {M. Tuckerman and B. J. Berne and G. J. Martyna},
3211 >  title = {Reversible Multiple Time Scale Molecular-Dynamics},
3212 >  journal = {Journal of Chemical Physics},
3213 >  year = {1992},
3214 >  volume = {97},
3215 >  pages = {1990-2001},
3216 >  number = {3},
3217 >  month = {Aug 1},
3218 >  abstract = {The Trotter factorization of the Liouville propagator is used to generate
3219 >    new reversible molecular dynamics integrators. This strategy is
3220 >    applied to derive reversible reference system propagator algorithms
3221 >    (RESPA) that greatly accelerate simulations of systems with a separation
3222 >    of time scales or with long range forces. The new algorithms have
3223 >    all of the advantages of previous RESPA integrators but are reversible,
3224 >    and more stable than those methods. These methods are applied to
3225 >    a set of paradigmatic systems and are shown to be superior to earlier
3226 >    methods. It is shown how the new RESPA methods are related to predictor-corrector
3227 >    integrators. Finally, we show how these methods can be used to accelerate
3228 >    the integration of the equations of motion of systems with Nose
3229 >    thermostats.},
3230 >  annote = {Je891 Times Cited:680 Cited References Count:19},
3231 >  issn = {0021-9606},
3232 >  uri = {<Go to ISI>://A1992JE89100044},
3233   }
3234  
3235 < @Book{gamma94,
3236 <  author =       {E. Gamma, R. Helm, R. Johnson and J. Vlissides},
3237 <  title =        {Design Patterns: Elements of Reusable Object-Oriented Software},
3238 <  chapter =      7,
3239 <  publisher =    {Perason Education},
3240 <  year =         1994,
2084 <  address =      {London},
3235 > @BOOK{Varadarajan1974,
3236 >  title = {Lie groups, Lie algebras, and their representations},
3237 >  publisher = {Prentice-Hall},
3238 >  year = {1974},
3239 >  author = {V.S. Varadarajan},
3240 >  address = {New York},
3241   }
3242  
3243 < @Book{alexander,
3244 <  author =       {C. Alexander},
3245 <  title =        {A Pattern Language: Towns, Buildings, Construction},
3246 <  publisher =    {Oxford University Press},
3247 <  year =         1987,
3248 <  address =      {New York}
3243 > @ARTICLE{Vincent1995,
3244 >  author = {J. J. Vincent and K. M. Merz},
3245 >  title = {A Highly Portable Parallel Implementation of Amber4 Using the Message-Passing
3246 >    Interface Standard},
3247 >  journal = {Journal of Computational Chemistry},
3248 >  year = {1995},
3249 >  volume = {16},
3250 >  pages = {1420-1427},
3251 >  number = {11},
3252 >  month = {Nov},
3253 >  abstract = {We have implemented a portable parallel version of the macromolecular
3254 >    modeling package AMBER4. The message passing paradigm was used.
3255 >    All message passing constructs are compliant with the Message Passing
3256 >    Interface (MPI) standard. The molecular dynamics/minimization module
3257 >    MINMD and the free-energy perturbation module Gibbs have been implemented
3258 >    in parallel on a number of machines, including a Gray T3D, an IBM
3259 >    SP1/SP2, and a collection of networked workstations. In addition,
3260 >    the code has been tested with an MPI implementation from Argonne
3261 >    National Laboratories/Mississippi State University which runs on
3262 >    many parallel machines. The goal of this work is to decrease the
3263 >    amount of time required to perform molecular dynamics simulations.
3264 >    Performance results for a Lipid bilayer molecular dynamics simulation
3265 >    on a Gray T3D, an IBM SP1/SPZ and a Gray C90 are compared. (C) 1995
3266 >    by John Wiley & Sons, Inc.},
3267 >  annote = {Ta403 Times Cited:16 Cited References Count:23},
3268 >  issn = {0192-8651},
3269 >  uri = {<Go to ISI>://A1995TA40300009},
3270   }
3271  
3272 < @Article{wilson,
3273 <  author =   {G.~V. Wilson },
3274 <  title =    {Where's the Real Bottleneck in Scientific Computing?},
3275 <  journal =      {American Scientist},
3276 <  year =     2006,
3277 <  volume =   94
3272 > @ARTICLE{Wegener1979,
3273 >  author = {W.~A. Wegener, V.~J. Koester and R.~M. Dowben},
3274 >  title = {A general ellipsoid can not always serve as a modle for the rotational
3275 >    diffusion properties of arbitrary shaped rigid molecules},
3276 >  journal = {Proc. Natl. Acad. Sci.},
3277 >  year = {1979},
3278 >  volume = {76},
3279 >  pages = {6356-6360},
3280 >  number = {12},
3281   }
3282  
3283 < @article{Meineke05,
3284 <        Author = {M.~A. Meineke and C.~F. {Vardeman II} and T. Lin and C.~J. Fennell and J.~D. Gezelter},
3285 <        Date-Modified = {2006-03-05 12:37:31 -0500},
3286 <        Journal = {J. Comp. Chem.},
3287 <        Pages = {252-271},
3288 <        Title = {OOPSE: An Open Source Object-Oriented Parallel Simulation Engine for Molecular Dynamics},
2109 <        Volume = 26,
2110 <        Year = 2005
3283 > @ARTICLE{Wilson2006,
3284 >  author = {G.~V. Wilson },
3285 >  title = {Where's the Real Bottleneck in Scientific Computing?},
3286 >  journal = {American Scientist},
3287 >  year = {2006},
3288 >  volume = {94},
3289   }
3290  
3291 < @article{Matthey05,
3292 <        Author = {T. Matthey, T. Cickovski and \textit{et al}},
3293 <        Date-Modified = {2006-03-05 12:37:31 -0500},
3294 <        Journal = {ACM Transactions on Mathematical Software},
3295 <        Pages = {237-265},
3296 <        Title = {ProtoMol, an Object-Oriented Framework for Prototyping Novel Algorithms for Molecular Dynamics},
3297 <        Volume = 20,
3298 <        Year = 2004
3291 > @ARTICLE{Withers2003,
3292 >  author = {I. M. Withers},
3293 >  title = {Effects of longitudinal quadrupoles on the phase behavior of a Gay-Berne
3294 >    fluid},
3295 >  journal = {Journal of Chemical Physics},
3296 >  year = {2003},
3297 >  volume = {119},
3298 >  pages = {10209-10223},
3299 >  number = {19},
3300 >  month = {Nov 15},
3301 >  abstract = {The effects of longitudinal quadrupole moments on the formation of
3302 >    liquid crystalline phases are studied by means of constant NPT Monte
3303 >    Carlo simulation methods. The popular Gay-Berne model mesogen is
3304 >    used as the reference fluid, which displays the phase sequences
3305 >    isotropic-smectic A-smectic B and isotropic-smectic B at high (T*=2.0)
3306 >    and low (T*=1.5) temperatures, respectively. With increasing quadrupole
3307 >    magnitude the smectic phases are observed to be stabilized with
3308 >    respect to the isotropic liquid, while the smectic B is destabilized
3309 >    with respect to the smectic A. At the lower temperature, a sufficiently
3310 >    large quadrupole magnitude results in the injection of the smectic
3311 >    A phase into the phase sequence and the replacement of the smectic
3312 >    B phase by the tilted smectic J phase. The nematic phase is also
3313 >    injected into the phase sequence at both temperatures considered,
3314 >    and ultimately for sufficiently large quadrupole magnitudes no coherent
3315 >    layered structures were observed. The stabilization of the smectic
3316 >    A phase supports the commonly held belief that, while the inclusion
3317 >    of polar groups is not a prerequisite for the formation of the smectic
3318 >    A phase, quadrupolar interactions help to increase the temperature
3319 >    and pressure range for which the smectic A phase is observed. The
3320 >    quality of the layered structure is worsened with increasing quadrupole
3321 >    magnitude. This behavior, along with the injection of the nematic
3322 >    phase into the phase sequence, indicate that the general tendency
3323 >    of the quadrupolar interactions is to destabilize the layered structure.
3324 >    A pressure dependence upon the smectic layer spacing is observed.
3325 >    This behavior is in much closer agreement with experimental findings
3326 >    than has been observed previously for nonpolar Gay-Berne and hard
3327 >    spherocylinder models. (C) 2003 American Institute of Physics.},
3328 >  annote = {738EF Times Cited:3 Cited References Count:43},
3329 >  issn = {0021-9606},
3330 >  uri = {<Go to ISI>://000186273200027},
3331   }
3332  
3333 < @Book{tolman79,
3334 <  author =       {R.~C. Tolman},
3335 <  title =        {The Principles of Statistical Mechanics},
3336 <  chapter =      2,
3337 <  publisher =    {Dover Publications, Inc.},
3338 <  year =         1979,
3339 <  address =      {New York},
3340 <  pages =        {19-22}
3333 > @ARTICLE{Wolf1999,
3334 >  author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
3335 >  title = {Exact method for the simulation of Coulombic systems by spherically
3336 >    truncated, pairwise r(-1) summation},
3337 >  journal = {Journal of Chemical Physics},
3338 >  year = {1999},
3339 >  volume = {110},
3340 >  pages = {8254-8282},
3341 >  number = {17},
3342 >  month = {May 1},
3343 >  abstract = {Based on a recent result showing that the net Coulomb potential in
3344 >    condensed ionic systems is rather short ranged, an exact and physically
3345 >    transparent method permitting the evaluation of the Coulomb potential
3346 >    by direct summation over the r(-1) Coulomb pair potential is presented.
3347 >    The key observation is that the problems encountered in determining
3348 >    the Coulomb energy by pairwise, spherically truncated r(-1) summation
3349 >    are a direct consequence of the fact that the system summed over
3350 >    is practically never neutral. A simple method is developed that
3351 >    achieves charge neutralization wherever the r(-1) pair potential
3352 >    is truncated. This enables the extraction of the Coulomb energy,
3353 >    forces, and stresses from a spherically truncated, usually charged
3354 >    environment in a manner that is independent of the grouping of the
3355 >    pair terms. The close connection of our approach with the Ewald
3356 >    method is demonstrated and exploited, providing an efficient method
3357 >    for the simulation of even highly disordered ionic systems by direct,
3358 >    pairwise r(-1) summation with spherical truncation at rather short
3359 >    range, i.e., a method which fully exploits the short-ranged nature
3360 >    of the interactions in ionic systems. The method is validated by
3361 >    simulations of crystals, liquids, and interfacial systems, such
3362 >    as free surfaces and grain boundaries. (C) 1999 American Institute
3363 >    of Physics. [S0021-9606(99)51517-1].},
3364 >  annote = {189PD Times Cited:70 Cited References Count:34},
3365 >  issn = {0021-9606},
3366 >  uri = {<Go to ISI>://000079913000008},
3367   }
3368  
3369 < @Book{Marion90,
3370 <  author =   {J.~B. Marion},
3371 <  title =    {Classical Dynamics of Particles and Systems},
3372 <  publisher =    {Academic Press},
3373 <  year =     1990,
3374 <  address =  {New York},
3375 <  edition =  {2rd}
3369 > @ARTICLE{Yoshida1990,
3370 >  author = {H. Yoshida},
3371 >  title = {Construction of Higher-Order Symplectic Integrators},
3372 >  journal = {Physics Letters A},
3373 >  year = {1990},
3374 >  volume = {150},
3375 >  pages = {262-268},
3376 >  number = {5-7},
3377 >  month = {Nov 12},
3378 >  annote = {Ej798 Times Cited:492 Cited References Count:9},
3379 >  issn = {0375-9601},
3380 >  uri = {<Go to ISI>://A1990EJ79800009},
3381   }
3382  
3383 < @Book{Leimkuhler04,
3384 <  author =   {B. Leimkuhler and S. Reich},
3385 <  title =    {Simulating Hamiltonian Dynamics},
3386 <  publisher =    {Cambridge University Press},
3387 <  year =     2004,
3388 <  address =  {Cambridge}
3383 > @Article{Blum1972,
3384 >  author =   {L. Blum and A.~J. Torruella},
3385 >  title =    {Computer simulations of bilayer membranes: Self-assembly and interfacial tension},
3386 >  journal =  {Journal of Chemical Physics},
3387 >  year =     1972,
3388 >  volume =   56,
3389 >  number =   1,
3390 >  pages =    {303-309}
3391   }
3392  
3393 < @Article{Gray03,
3394 <  author =       {J.~J Gray,S. Moughon, C. Wang },
3395 <  title =        {Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations},
3396 <  journal =      {jmb},
3397 <  year =         2003,
3398 <  volume =       331,
3399 <  pages =        {281-299}
3393 > @Article{Stone1978,
3394 >  author =   {A.~J. Stone},
3395 >  title =    {The description of bimolecular potentials, forces and torques: the S and V function expansions},
3396 >  journal =  {Molecular Physics},
3397 >  year =     1978,
3398 >  volume =   36,
3399 >  number =   1,
3400 >  pages =    {241-256}
3401   }
3402  
3403 < @Article{McLachlan93,
3404 <  author =       {R.~I McLachlan},
3405 <  title =        {Explicit Lie-Poisson integration and the Euler equations},
3406 <  journal =      {prl},
3407 <  year =         1993,
3408 <  volume =       71,
3409 <  pages =        {3043-3046}
3403 > @Article{Berardi2003,
3404 >  author =   {R. Berardi, M. Cecchini and C. Zannoni},
3405 >  title =    {A Monte Carlo study of the chiral columnar organizations of dissymmetric discotic mesogens},
3406 >  journal =  {Journal of Chemical Physics},
3407 >  year =     2003,
3408 >  volume =   119,
3409 >  number =   18,
3410 >  pages =    {9933-9946}
3411   }
2167 @ARTICLE{Wegener79,
2168  AUTHOR =       {W.~A. Wegener, V.~J. Koester and R.~M. Dowben},
2169  TITLE =        {A general ellipsoid can not always serve as a modle for the rotational diffusion properties of arbitrary shaped rigid molecules},
2170  JOURNAL =      {Proc. Natl. Acad. Sci.},
2171  YEAR =         {1979},
2172  volume =       {76},
2173  number =       {12},
2174  pages =        {6356-6360}
2175 }
3412  
3413 < @ARTICLE{Powles73,
3414 <  AUTHOR =       {J.~G. Powles},
3415 <  TITLE =        {A general ellipsoid can not always serve as a modle for the rotational diffusion properties of arbitrary shaped rigid molecules},
3416 <  JOURNAL =      {Advan. Phys.},
3417 <  YEAR =         {1973},
3418 <  volume =       {22},
3419 <  pages =        {1-56}
3413 > @Article{Beard2000,
3414 >  author =   {D. A. Beard and T. Schlick},
3415 >  title =    {Inertial Stochastic Dynamics. I. Long-time-step Methods for Langevin Dynamics},
3416 >  journal =  {Journal of Chemical Physics},
3417 >  year =     2000,
3418 >  volume =   112,
3419 >  number =   17,
3420 >  pages =    {7313-7322}
3421   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines