ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/dissertation.bib
(Generate patch)

Comparing trunk/tengDissertation/dissertation.bib (file contents):
Revision 2786 by tim, Sun Jun 4 20:18:07 2006 UTC vs.
Revision 2789 by tim, Mon Jun 5 21:00:46 2006 UTC

# Line 125 | Line 125 | Encoding: GBK
125    uri = {<Go to ISI>://A1991EU81400029},
126   }
127  
128 + @ARTICLE{Andersen1983,
129 +  author = {H. C. Andersen},
130 +  title = {Rattle - a Velocity Version of the Shake Algorithm for Molecular-Dynamics
131 +        Calculations},
132 +  journal = {Journal of Computational Physics},
133 +  year = {1983},
134 +  volume = {52},
135 +  pages = {24-34},
136 +  number = {1},
137 +  annote = {Rq238 Times Cited:559 Cited References Count:14},
138 +  issn = {0021-9991},
139 +  uri = {<Go to ISI>://A1983RQ23800002},
140 + }
141 +
142   @ARTICLE{Auerbach2005,
143    author = {A. Auerbach},
144    title = {Gating of acetylcholine receptor channels: Brownian motion across
# Line 225 | Line 239 | Encoding: GBK
239    uri = {<Go to ISI>://000221146400009},
240   }
241  
242 + @ARTICLE{Barojas1973,
243 +  author = {J. Barojas and D. Levesque},
244 +  title = {Simulation of Diatomic Homonuclear Liquids},
245 +  journal = {Phys. Rev. A},
246 +  year = {1973},
247 +  volume = {7},
248 +  pages = {1092-1105},
249 + }
250 +
251   @ARTICLE{Barth1998,
252    author = {E. Barth and T. Schlick},
253    title = {Overcoming stability limitations in biomolecular dynamics. I. Combining
# Line 399 | Line 422 | Encoding: GBK
422  
423   @ARTICLE{Berkov2005,
424    author = {D. V. Berkov and N. L. Gorn},
402  title = {Stochastic dynamic simulations of fast remagnetization processes:
403        recent advances and applications},
404  journal = {Journal of Magnetism and Magnetic Materials},
405  year = {2005},
406  volume = {290},
407  pages = {442-448},
408  month = {Apr},
409  abstract = {Numerical simulations of fast remagnetization processes using stochastic
410        dynamics are widely used to study various magnetic systems. In this
411        paper, we first address several crucial methodological problems
412        of such simulations: (i) the influence of finite-element discretization
413        on simulated dynamics, (ii) choice between Ito and Stratonovich
414        stochastic calculi by the solution of micromagnetic stochastic equations
415        of motion and (iii) non-trivial correlation properties of the random
416        (thermal) field. Next, we discuss several examples to demonstrate
417        the great potential of the Langevin dynamics for studying fast remagnetization
418        processes in technically relevant applications: we present numerical
419        analysis of equilibrium magnon spectra in patterned structures,
420        study thermal noise effects on the magnetization dynamics of nanoelements
421        in pulsed fields and show some results for a remagnetization dynamics
422        induced by a spin-polarized current. (c) 2004 Elsevier B.V. All
423        rights reserved.},
424  annote = {Part 1 Sp. Iss. SI 922KU Times Cited:2 Cited References Count:25},
425  issn = {0304-8853},
426  uri = {<Go to ISI>://000228837600109},
427 }
428
429 @ARTICLE{Berkov2005a,
430  author = {D. V. Berkov and N. L. Gorn},
425    title = {Magnetization precession due to a spin-polarized current in a thin
426          nanoelement: Numerical simulation study},
427    journal = {Physical Review B},
# Line 458 | Line 452 | Encoding: GBK
452    uri = {<Go to ISI>://000232228500058},
453   }
454  
455 + @ARTICLE{Berkov2005a,
456 +  author = {D. V. Berkov and N. L. Gorn},
457 +  title = {Stochastic dynamic simulations of fast remagnetization processes:
458 +        recent advances and applications},
459 +  journal = {Journal of Magnetism and Magnetic Materials},
460 +  year = {2005},
461 +  volume = {290},
462 +  pages = {442-448},
463 +  month = {Apr},
464 +  abstract = {Numerical simulations of fast remagnetization processes using stochastic
465 +        dynamics are widely used to study various magnetic systems. In this
466 +        paper, we first address several crucial methodological problems
467 +        of such simulations: (i) the influence of finite-element discretization
468 +        on simulated dynamics, (ii) choice between Ito and Stratonovich
469 +        stochastic calculi by the solution of micromagnetic stochastic equations
470 +        of motion and (iii) non-trivial correlation properties of the random
471 +        (thermal) field. Next, we discuss several examples to demonstrate
472 +        the great potential of the Langevin dynamics for studying fast remagnetization
473 +        processes in technically relevant applications: we present numerical
474 +        analysis of equilibrium magnon spectra in patterned structures,
475 +        study thermal noise effects on the magnetization dynamics of nanoelements
476 +        in pulsed fields and show some results for a remagnetization dynamics
477 +        induced by a spin-polarized current. (c) 2004 Elsevier B.V. All
478 +        rights reserved.},
479 +  annote = {Part 1 Sp. Iss. SI 922KU Times Cited:2 Cited References Count:25},
480 +  issn = {0304-8853},
481 +  uri = {<Go to ISI>://000228837600109},
482 + }
483 +
484   @ARTICLE{Berkov2002,
485    author = {D. V. Berkov and N. L. Gorn and P. Gornert},
486    title = {Magnetization dynamics in nanoparticle systems: Numerical simulation
# Line 509 | Line 532 | Encoding: GBK
532    annote = {Sm173 Times Cited:143 Cited References Count:22},
533    issn = {0009-2614},
534    uri = {<Go to ISI>://A1984SM17300007},
535 + }
536 +
537 + @ARTICLE{Budd1999,
538 +  author = {C. J. Budd and G. J. Collins and W. Z. Huang and R. D. Russell},
539 +  title = {Self-similar numerical solutions of the porous-medium equation using
540 +        moving mesh methods},
541 +  journal = {Philosophical Transactions of the Royal Society of London Series
542 +        a-Mathematical Physical and Engineering Sciences},
543 +  year = {1999},
544 +  volume = {357},
545 +  pages = {1047-1077},
546 +  number = {1754},
547 +  month = {Apr 15},
548 +  abstract = {This paper examines a synthesis of adaptive mesh methods with the
549 +        use of symmetry to study a partial differential equation. In particular,
550 +        it considers methods which admit discrete self-similar solutions,
551 +        examining the convergence of these to the true self-similar solution
552 +        as well as their stability. Special attention is given to the nonlinear
553 +        diffusion equation describing flow in a porous medium.},
554 +  annote = {199EE Times Cited:4 Cited References Count:14},
555 +  issn = {1364-503X},
556 +  uri = {<Go to ISI>://000080466800005},
557   }
558  
559   @ARTICLE{Camp1999,
# Line 640 | Line 685 | Encoding: GBK
685    annote = {221EN Times Cited:14 Cited References Count:66},
686    issn = {0021-9606},
687    uri = {<Go to ISI>://000081711200038},
688 + }
689 +
690 + @ARTICLE{Channell1990,
691 +  author = {P. J. Channell and C. Scovel},
692 +  title = {Symplectic Integration of Hamiltonian-Systems},
693 +  journal = {Nonlinearity},
694 +  year = {1990},
695 +  volume = {3},
696 +  pages = {231-259},
697 +  number = {2},
698 +  month = {may},
699 +  annote = {Dk631 Times Cited:152 Cited References Count:34},
700 +  issn = {0951-7715},
701 +  uri = {<Go to ISI>://A1990DK63100001},
702 + }
703 +
704 + @ARTICLE{Chen2003,
705 +  author = {B. Chen and F. Solis},
706 +  title = {Explicit mixed finite order Runge-Kutta methods},
707 +  journal = {Applied Numerical Mathematics},
708 +  year = {2003},
709 +  volume = {44},
710 +  pages = {21-30},
711 +  number = {1-2},
712 +  month = {Jan},
713 +  abstract = {We investigate the asymptotic behavior of systems of nonlinear differential
714 +        equations and introduce a family of mixed methods from combinations
715 +        of explicit Runge-Kutta methods. These methods have better stability
716 +        behavior than traditional Runge-Kutta methods and generally extend
717 +        the range of validity of the calculated solutions. These methods
718 +        also give a way of determining if the numerical solutions are real
719 +        or spurious. Emphasis is put on examples coming from mathematical
720 +        models in ecology. (C) 2002 IMACS. Published by Elsevier Science
721 +        B.V. All rights reserved.},
722 +  annote = {633ZD Times Cited:0 Cited References Count:9},
723 +  issn = {0168-9274},
724 +  uri = {<Go to ISI>://000180314200002},
725   }
726  
727   @ARTICLE{Cheung2004,
# Line 1092 | Line 1174 | Encoding: GBK
1174    annote = {704QL Times Cited:48 Cited References Count:60},
1175    issn = {0022-2836},
1176    uri = {<Go to ISI>://000184351300022},
1177 + }
1178 +
1179 + @ARTICLE{Greengard1994,
1180 +  author = {L. Greengard},
1181 +  title = {Fast Algorithms for Classical Physics},
1182 +  journal = {Science},
1183 +  year = {1994},
1184 +  volume = {265},
1185 +  pages = {909-914},
1186 +  number = {5174},
1187 +  month = {Aug 12},
1188 +  abstract = {Some of the recently developed fast summation methods that have arisen
1189 +        in scientific computing are described. These methods require an
1190 +        amount of work proportional to N or N log N to evaluate all pairwise
1191 +        interactions in an ensemble of N particles. Traditional methods,
1192 +        by contrast, require an amount of work proportional to N-2. AS a
1193 +        result, large-scale simulations can be carried out using only modest
1194 +        computer resources. In combination with supercomputers, it is possible
1195 +        to address questions that were previously out of reach. Problems
1196 +        from diffusion, gravitation, and wave propagation are considered.},
1197 +  annote = {Pb499 Times Cited:99 Cited References Count:44},
1198 +  issn = {0036-8075},
1199 +  uri = {<Go to ISI>://A1994PB49900031},
1200 + }
1201 +
1202 + @ARTICLE{Greengard1987,
1203 +  author = {L. Greengard and V. Rokhlin},
1204 +  title = {A Fast Algorithm for Particle Simulations},
1205 +  journal = {Journal of Computational Physics},
1206 +  year = {1987},
1207 +  volume = {73},
1208 +  pages = {325-348},
1209 +  number = {2},
1210 +  month = {Dec},
1211 +  annote = {L0498 Times Cited:899 Cited References Count:7},
1212 +  issn = {0021-9991},
1213 +  uri = {<Go to ISI>://A1987L049800006},
1214   }
1215  
1216 + @ARTICLE{Hairer1997,
1217 +  author = {E. Hairer and C. Lubich},
1218 +  title = {The life-span of backward error analysis for numerical integrators},
1219 +  journal = {Numerische Mathematik},
1220 +  year = {1997},
1221 +  volume = {76},
1222 +  pages = {441-462},
1223 +  number = {4},
1224 +  month = {Jun},
1225 +  abstract = {Backward error analysis is a useful tool for the study of numerical
1226 +        approximations to ordinary differential equations. The numerical
1227 +        solution is formally interpreted as the exact solution of a perturbed
1228 +        differential equation, given as a formal and usually divergent series
1229 +        in powers of the step size. For a rigorous analysis, this series
1230 +        has to be truncated. In this article we study the influence of this
1231 +        truncation to the difference between the numerical solution and
1232 +        the exact solution of the perturbed differential equation. Results
1233 +        on the long-time behaviour of numerical solutions are obtained in
1234 +        this way. We present applications to the numerical phase portrait
1235 +        near hyperbolic equilibrium points, to asymptotically stable periodic
1236 +        orbits and Hopf bifurcation, and to energy conservation and approximation
1237 +        of invariant tori in Hamiltonian systems.},
1238 +  annote = {Xj488 Times Cited:50 Cited References Count:19},
1239 +  issn = {0029-599X},
1240 +  uri = {<Go to ISI>://A1997XJ48800002},
1241 + }
1242 +
1243   @ARTICLE{Hao1993,
1244    author = {M. H. Hao and M. R. Pincus and S. Rackovsky and H. A. Scheraga},
1245    title = {Unfolding and Refolding of the Native Structure of Bovine Pancreatic
# Line 1226 | Line 1372 | Encoding: GBK
1372    uri = {<Go to ISI>://A1992JU25100002},
1373   }
1374  
1375 + @BOOK{Hockney1981,
1376 +  title = {Computer Simulation Using Particles},
1377 +  publisher = {McGraw-Hill},
1378 +  year = {1981},
1379 +  author = {R.W. Hockney and J.W. Eastwood},
1380 +  address = {New York},
1381 + }
1382 +
1383   @ARTICLE{Huh2004,
1384    author = {Y. Huh and N. M. Cann},
1385    title = {Discrimination in isotropic, nematic, and smectic phases of chiral
# Line 1300 | Line 1454 | Encoding: GBK
1454    year = {2003},
1455    volume = {331},
1456    pages = {281-299},
1457 + }
1458 +
1459 + @ARTICLE{Torre1977,
1460 +  author = {Jose Garcia De La Torre, V.A. Bloomfield},
1461 +  title = {Hydrodynamic properties of macromolecular complexes. I. Translation},
1462 +  journal = {Biopolymers},
1463 +  year = {1977},
1464 +  volume = {16},
1465 +  pages = {1747-1763},
1466   }
1467  
1468 + @ARTICLE{Kane2000,
1469 +  author = {C. Kane and J. E. Marsden and M. Ortiz and M. West},
1470 +  title = {Variational integrators and the Newmark algorithm for conservative
1471 +        and dissipative mechanical systems},
1472 +  journal = {International Journal for Numerical Methods in Engineering},
1473 +  year = {2000},
1474 +  volume = {49},
1475 +  pages = {1295-1325},
1476 +  number = {10},
1477 +  month = {Dec 10},
1478 +  abstract = {The purpose of this work is twofold. First, we demonstrate analytically
1479 +        that the classical Newmark family as well as related integration
1480 +        algorithms are variational in the sense of the Veselov formulation
1481 +        of discrete mechanics. Such variational algorithms are well known
1482 +        to be symplectic and momentum preserving and to often have excellent
1483 +        global energy behaviour. This analytical result is verified through
1484 +        numerical examples and is believed to be one of the primary reasons
1485 +        that this class of algorithms performs so well. Second, we develop
1486 +        algorithms for mechanical systems with forcing, and in particular,
1487 +        for dissipative systems. In this case, we develop integrators that
1488 +        are based on a discretization of the Lagrange d'Alembert principle
1489 +        as well as on a variational formulation of dissipation. It is demonstrated
1490 +        that these types of structured integrators have good numerical behaviour
1491 +        in terms of obtaining the correct amounts by which the energy changes
1492 +        over the integration run. Copyright (C) 2000 John Wiley & Sons,
1493 +        Ltd.},
1494 +  annote = {373CJ Times Cited:30 Cited References Count:41},
1495 +  issn = {0029-5981},
1496 +  uri = {<Go to ISI>://000165270600004},
1497 + }
1498 +
1499   @ARTICLE{Klimov1997,
1500    author = {D. K. Klimov and D. Thirumalai},
1501    title = {Viscosity dependence of the folding rates of proteins},
# Line 1327 | Line 1521 | Encoding: GBK
1521    uri = {<Go to ISI>://A1997XK29300035},
1522   }
1523  
1524 + @ARTICLE{Kol1997,
1525 +  author = {A. Kol and B. B. Laird and B. J. Leimkuhler},
1526 +  title = {A symplectic method for rigid-body molecular simulation},
1527 +  journal = {Journal of Chemical Physics},
1528 +  year = {1997},
1529 +  volume = {107},
1530 +  pages = {2580-2588},
1531 +  number = {7},
1532 +  month = {Aug 15},
1533 +  abstract = {Rigid-body molecular dynamics simulations typically are performed
1534 +        in a quaternion representation. The nonseparable form of the Hamiltonian
1535 +        in quaternions prevents the use of a standard leapfrog (Verlet)
1536 +        integrator, so nonsymplectic Runge-Kutta, multistep, or extrapolation
1537 +        methods are generally used, This is unfortunate since symplectic
1538 +        methods like Verlet exhibit superior energy conservation in long-time
1539 +        integrations. In this article, we describe an alternative method,
1540 +        which we call RSHAKE (for rotation-SHAKE), in which the entire rotation
1541 +        matrix is evolved (using the scheme of McLachlan and Scovel [J.
1542 +        Nonlin. Sci, 16 233 (1995)]) in tandem with the particle positions.
1543 +        We employ a fast approximate Newton solver to preserve the orthogonality
1544 +        of the rotation matrix. We test our method on a system of soft-sphere
1545 +        dipoles and compare with quaternion evolution using a 4th-order
1546 +        predictor-corrector integrator, Although the short-time error of
1547 +        the quaternion algorithm is smaller for fixed time step than that
1548 +        for RSHAKE, the quaternion scheme exhibits an energy drift which
1549 +        is not observed in simulations with RSHAKE, hence a fixed energy
1550 +        tolerance can be achieved by using a larger time step, The superiority
1551 +        of RSHAKE increases with system size. (C) 1997 American Institute
1552 +        of Physics.},
1553 +  annote = {Xq332 Times Cited:11 Cited References Count:18},
1554 +  issn = {0021-9606},
1555 +  uri = {<Go to ISI>://A1997XQ33200046},
1556 + }
1557 +
1558   @ARTICLE{Lansac2001,
1559    author = {Y. Lansac and M. A. Glaser and N. A. Clark},
1560    title = {Microscopic structure and dynamics of a partial bilayer smectic liquid
# Line 1401 | Line 1629 | Encoding: GBK
1629    edition = {2nd},
1630   }
1631  
1632 + @ARTICLE{Leimkuhler1999,
1633 +  author = {B. Leimkuhler},
1634 +  title = {Reversible adaptive regularization: perturbed Kepler motion and classical
1635 +        atomic trajectories},
1636 +  journal = {Philosophical Transactions of the Royal Society of London Series
1637 +        a-Mathematical Physical and Engineering Sciences},
1638 +  year = {1999},
1639 +  volume = {357},
1640 +  pages = {1101-1133},
1641 +  number = {1754},
1642 +  month = {Apr 15},
1643 +  abstract = {Reversible and adaptive integration methods based on Kustaanheimo-Stiefel
1644 +        regularization and modified Sundman transformations are applied
1645 +        to simulate general perturbed Kepler motion and to compute classical
1646 +        trajectories of atomic systems (e.g. Rydberg atoms). The new family
1647 +        of reversible adaptive regularization methods also conserves angular
1648 +        momentum and exhibits superior energy conservation and numerical
1649 +        stability in long-time integrations. The schemes are appropriate
1650 +        for scattering, for astronomical calculations of escape time and
1651 +        long-term stability, and for classical and semiclassical studies
1652 +        of atomic dynamics. The components of an algorithm for trajectory
1653 +        calculations are described. Numerical experiments illustrate the
1654 +        effectiveness of the reversible approach.},
1655 +  annote = {199EE Times Cited:11 Cited References Count:48},
1656 +  issn = {1364-503X},
1657 +  uri = {<Go to ISI>://000080466800007},
1658 + }
1659 +
1660   @BOOK{Leimkuhler2004,
1661    title = {Simulating Hamiltonian Dynamics},
1662    publisher = {Cambridge University Press},
# Line 1477 | Line 1733 | Encoding: GBK
1733    uri = {<Go to ISI>://000234826102043},
1734   }
1735  
1736 + @ARTICLE{Luty1994,
1737 +  author = {B. A. Luty and M. E. Davis and I. G. Tironi and W. F. Vangunsteren},
1738 +  title = {A Comparison of Particle-Particle, Particle-Mesh and Ewald Methods
1739 +        for Calculating Electrostatic Interactions in Periodic Molecular-Systems},
1740 +  journal = {Molecular Simulation},
1741 +  year = {1994},
1742 +  volume = {14},
1743 +  pages = {11-20},
1744 +  number = {1},
1745 +  abstract = {We compare the Particle-Particle Particle-Mesh (PPPM) and Ewald methods
1746 +        for calculating electrostatic interactions in periodic molecular
1747 +        systems. A brief comparison of the theories shows that the methods
1748 +        are very similar differing mainly in the technique which is used
1749 +        to perform the ''k-space'' or mesh calculation. Because the PPPM
1750 +        utilizes the highly efficient numerical Fast Fourier Transform (FFT)
1751 +        method it requires significantly less computational effort than
1752 +        the Ewald method and scale's almost linearly with system size.},
1753 +  annote = {Qf464 Times Cited:50 Cited References Count:20},
1754 +  issn = {0892-7022},
1755 +  uri = {<Go to ISI>://A1994QF46400002},
1756 + }
1757 +
1758   @BOOK{Marion1990,
1759    title = {Classical Dynamics of Particles and Systems},
1760    publisher = {Academic Press},
# Line 1486 | Line 1764 | Encoding: GBK
1764    edition = {2rd},
1765   }
1766  
1767 + @ARTICLE{Marsden1998,
1768 +  author = {J. E. Marsden and G. W. Patrick and S. Shkoller},
1769 +  title = {Multisymplectic geometry, variational integrators, and nonlinear
1770 +        PDEs},
1771 +  journal = {Communications in Mathematical Physics},
1772 +  year = {1998},
1773 +  volume = {199},
1774 +  pages = {351-395},
1775 +  number = {2},
1776 +  month = {Dec},
1777 +  abstract = {This paper presents a geometric-variational approach to continuous
1778 +        and discrete mechanics and field theories. Using multisymplectic
1779 +        geometry, we show that the existence of the fundamental geometric
1780 +        structures as well as their preservation along solutions can be
1781 +        obtained directly from the variational principle. In particular,
1782 +        we prove that a unique multisymplectic structure is obtained by
1783 +        taking the derivative of an action function, and use this structure
1784 +        to prove covariant generalizations of conservation of symplecticity
1785 +        and Noether's theorem. Natural discretization schemes for PDEs,
1786 +        which have these important preservation properties, then follow
1787 +        by choosing a discrete action functional. In the case of mechanics,
1788 +        we recover the variational symplectic integrators of Veselov type,
1789 +        while for PDEs we obtain covariant spacetime integrators which conserve
1790 +        the corresponding discrete multisymplectic form as well as the discrete
1791 +        momentum mappings corresponding to symmetries. We show that the
1792 +        usual notion of symplecticity along an infinite-dimensional space
1793 +        of fields can be naturally obtained by making a spacetime split.
1794 +        All of the aspects of our method are demonstrated with a nonlinear
1795 +        sine-Gordon equation, including computational results and a comparison
1796 +        with other discretization schemes.},
1797 +  annote = {154RH Times Cited:88 Cited References Count:36},
1798 +  issn = {0010-3616},
1799 +  uri = {<Go to ISI>://000077902200006},
1800 + }
1801 +
1802   @ARTICLE{McLachlan1993,
1803    author = {R.~I McLachlan},
1804    title = {Explicit Lie-Poisson integration and the Euler equations},
# Line 1495 | Line 1808 | Encoding: GBK
1808    pages = {3043-3046},
1809   }
1810  
1811 + @ARTICLE{McLachlan1998a,
1812 +  author = {R. I. McLachlan and G. R. W. Quispel},
1813 +  title = {Generating functions for dynamical systems with symmetries, integrals,
1814 +        and differential invariants},
1815 +  journal = {Physica D},
1816 +  year = {1998},
1817 +  volume = {112},
1818 +  pages = {298-309},
1819 +  number = {1-2},
1820 +  month = {Jan 15},
1821 +  abstract = {We give a survey and some new examples of generating functions for
1822 +        systems with symplectic structure, systems with a first integral,
1823 +        systems that preserve volume, and systems with symmetries and/or
1824 +        time-reversing symmetries. Both ODEs and maps are treated, and we
1825 +        discuss how generating functions may be used in the structure-preserving
1826 +        numerical integration of ODEs with the above properties.},
1827 +  annote = {Yt049 Times Cited:7 Cited References Count:26},
1828 +  issn = {0167-2789},
1829 +  uri = {<Go to ISI>://000071558900021},
1830 + }
1831 +
1832 + @ARTICLE{McLachlan1998,
1833 +  author = {R. I. McLachlan and G. R. W. Quispel and G. S. Turner},
1834 +  title = {Numerical integrators that preserve symmetries and reversing symmetries},
1835 +  journal = {Siam Journal on Numerical Analysis},
1836 +  year = {1998},
1837 +  volume = {35},
1838 +  pages = {586-599},
1839 +  number = {2},
1840 +  month = {Apr},
1841 +  abstract = {We consider properties of flows, the relationships between them, and
1842 +        whether numerical integrators can be made to preserve these properties.
1843 +        This is done in the context of automorphisms and antiautomorphisms
1844 +        of a certain group generated by maps associated to vector fields.
1845 +        This new framework unifies several known constructions. We also
1846 +        use the concept of #covariance# of a numerical method with respect
1847 +        to a group of coordinate transformations. The main application is
1848 +        to explore the relationship between spatial symmetries, reversing
1849 +        symmetries, and time symmetry of flows and numerical integrators.},
1850 +  annote = {Zc449 Times Cited:14 Cited References Count:33},
1851 +  issn = {0036-1429},
1852 +  uri = {<Go to ISI>://000072580500010},
1853 + }
1854 +
1855   @ARTICLE{McLachlan2005,
1856    author = {R. I. McLachlan and A. Zanna},
1857    title = {The discrete Moser-Veselov algorithm for the free rigid body, revisited},
# Line 1712 | Line 2069 | Encoding: GBK
2069    annote = {491UW Times Cited:48 Cited References Count:25},
2070    issn = {0021-9606},
2071    uri = {<Go to ISI>://000172129300049},
2072 + }
2073 +
2074 + @BOOK{Olver1986,
2075 +  title = {Applications of Lie groups to differential equatitons},
2076 +  publisher = {Springer},
2077 +  year = {1986},
2078 +  author = {P.J. Olver},
2079 +  address = {New York},
2080 + }
2081 +
2082 + @ARTICLE{Omelyan1998,
2083 +  author = {I. P. Omelyan},
2084 +  title = {On the numerical integration of motion for rigid polyatomics: The
2085 +        modified quaternion approach},
2086 +  journal = {Computers in Physics},
2087 +  year = {1998},
2088 +  volume = {12},
2089 +  pages = {97-103},
2090 +  number = {1},
2091 +  month = {Jan-Feb},
2092 +  abstract = {A revised version of the quaternion approach for numerical integration
2093 +        of the equations of motion for rigid polyatomic molecules is proposed.
2094 +        The modified approach is based on a formulation of the quaternion
2095 +        dynamics with constraints. This allows one to resolve the rigidity
2096 +        problem rigorously using constraint forces. It is shown that the
2097 +        procedure for preservation of molecular rigidity can be realized
2098 +        particularly simply within the Verlet algorithm in velocity form.
2099 +        We demonstrate that the method presented leads to an improved numerical
2100 +        stability with respect to the usual quaternion rescaling scheme
2101 +        and it is roughly as good as the cumbersome atomic-constraint technique.
2102 +        (C) 1998 American Institute of Physics.},
2103 +  annote = {Yx279 Times Cited:12 Cited References Count:28},
2104 +  issn = {0894-1866},
2105 +  uri = {<Go to ISI>://000072024300025},
2106   }
2107  
2108 + @ARTICLE{Omelyan1998a,
2109 +  author = {I. P. Omelyan},
2110 +  title = {Algorithm for numerical integration of the rigid-body equations of
2111 +        motion},
2112 +  journal = {Physical Review E},
2113 +  year = {1998},
2114 +  volume = {58},
2115 +  pages = {1169-1172},
2116 +  number = {1},
2117 +  month = {Jul},
2118 +  abstract = {An algorithm for numerical integration of the rigid-body equations
2119 +        of motion is proposed. The algorithm uses the leapfrog scheme and
2120 +        the quantities involved are angular velocities and orientational
2121 +        variables that can be expressed in terms of either principal axes
2122 +        or quaternions. Due to specific features of the algorithm, orthonormality
2123 +        and unit norms of the orientational variables are integrals of motion,
2124 +        despite an approximate character of the produced trajectories. It
2125 +        is shown that the method presented appears to be the most efficient
2126 +        among all such algorithms known.},
2127 +  annote = {101XL Times Cited:8 Cited References Count:22},
2128 +  issn = {1063-651X},
2129 +  uri = {<Go to ISI>://000074893400151},
2130 + }
2131 +
2132   @ARTICLE{Orlandi2006,
2133    author = {S. Orlandi and R. Berardi and J. Steltzer and C. Zannoni},
2134    title = {A Monte Carlo study of the mesophases formed by polar bent-shaped
# Line 1739 | Line 2154 | Encoding: GBK
2154    uri = {<Go to ISI>://000236464000072},
2155   }
2156  
2157 + @ARTICLE{Owren1992,
2158 +  author = {B. Owren and M. Zennaro},
2159 +  title = {Derivation of Efficient, Continuous, Explicit Runge-Kutta Methods},
2160 +  journal = {Siam Journal on Scientific and Statistical Computing},
2161 +  year = {1992},
2162 +  volume = {13},
2163 +  pages = {1488-1501},
2164 +  number = {6},
2165 +  month = {Nov},
2166 +  abstract = {Continuous, explicit Runge-Kutta methods with the minimal number of
2167 +        stages are considered. These methods are continuously differentiable
2168 +        if and only if one of the stages is the FSAL evaluation. A characterization
2169 +        of a subclass of these methods is developed for orders 3, 4, and
2170 +        5. It is shown how the free parameters of these methods can be used
2171 +        either to minimize the continuous truncation error coefficients
2172 +        or to maximize the stability region. As a representative for these
2173 +        methods the fifth-order method with minimized error coefficients
2174 +        is chosen, supplied with an error estimation method, and analysed
2175 +        by using the DETEST software. The results are compared with a similar
2176 +        implementation of the Dormand-Prince 5(4) pair with interpolant,
2177 +        showing a significant advantage in the new method for the chosen
2178 +        problems.},
2179 +  annote = {Ju936 Times Cited:25 Cited References Count:20},
2180 +  issn = {0196-5204},
2181 +  uri = {<Go to ISI>://A1992JU93600013},
2182 + }
2183 +
2184   @ARTICLE{Palacios1998,
2185    author = {J. L. Garcia-Palacios and F. J. Lazaro},
2186    title = {Langevin-dynamics study of the dynamical properties of small magnetic
# Line 1824 | Line 2266 | Encoding: GBK
2266    annote = {Akb93 Times Cited:71 Cited References Count:12},
2267    issn = {0021-9991},
2268    uri = {<Go to ISI>://A1985AKB9300008},
2269 + }
2270 +
2271 + @ARTICLE{Rotne1969,
2272 +  author = {F. Perrin},
2273 +  title = {Variational treatment of hydrodynamic interaction in polymers},
2274 +  journal = {J. Chem. Phys.},
2275 +  year = {1969},
2276 +  volume = {50},
2277 +  pages = {4831¨C4837},
2278 + }
2279 +
2280 + @ARTICLE{Perrin1936,
2281 +  author = {F. Perrin},
2282 +  title = {Mouvement brownien d'un ellipsoid(II). Rotation libre et depolarisation
2283 +        des fluorescences. Translation et diffusion de moleculese ellipsoidales},
2284 +  journal = {J. Phys. Radium},
2285 +  year = {1936},
2286 +  volume = {7},
2287 +  pages = {1-11},
2288 + }
2289 +
2290 + @ARTICLE{Perrin1934,
2291 +  author = {F. Perrin},
2292 +  title = {Mouvement brownien d'un ellipsoid(I). Dispersion dielectrique pour
2293 +        des molecules ellipsoidales},
2294 +  journal = {J. Phys. Radium},
2295 +  year = {1934},
2296 +  volume = {5},
2297 +  pages = {497-511},
2298   }
2299  
2300   @ARTICLE{Petrache1998,
# Line 1930 | Line 2401 | Encoding: GBK
2401    uri = {<Go to ISI>://000235990500001},
2402   }
2403  
2404 + @ARTICLE{Reich1999,
2405 +  author = {S. Reich},
2406 +  title = {Backward error analysis for numerical integrators},
2407 +  journal = {Siam Journal on Numerical Analysis},
2408 +  year = {1999},
2409 +  volume = {36},
2410 +  pages = {1549-1570},
2411 +  number = {5},
2412 +  month = {Sep 8},
2413 +  abstract = {Backward error analysis has become an important tool for understanding
2414 +        the long time behavior of numerical integration methods. This is
2415 +        true in particular for the integration of Hamiltonian systems where
2416 +        backward error analysis can be used to show that a symplectic method
2417 +        will conserve energy over exponentially long periods of time. Such
2418 +        results are typically based on two aspects of backward error analysis:
2419 +        (i) It can be shown that the modified vector fields have some qualitative
2420 +        properties which they share with the given problem and (ii) an estimate
2421 +        is given for the difference between the best interpolating vector
2422 +        field and the numerical method. These aspects have been investigated
2423 +        recently, for example, by Benettin and Giorgilli in [J. Statist.
2424 +        Phys., 74 (1994), pp. 1117-1143], by Hairer in [Ann. Numer. Math.,
2425 +        1 (1994), pp. 107-132], and by Hairer and Lubich in [Numer. Math.,
2426 +        76 (1997), pp. 441-462]. In this paper we aim at providing a unifying
2427 +        framework and a simplification of the existing results and corresponding
2428 +        proofs. Our approach to backward error analysis is based on a simple
2429 +        recursive definition of the modified vector fields that does not
2430 +        require explicit Taylor series expansion of the numerical method
2431 +        and the corresponding flow maps as in the above-cited works. As
2432 +        an application we discuss the long time integration of chaotic Hamiltonian
2433 +        systems and the approximation of time averages along numerically
2434 +        computed trajectories.},
2435 +  annote = {237HV Times Cited:43 Cited References Count:41},
2436 +  issn = {0036-1429},
2437 +  uri = {<Go to ISI>://000082650600010},
2438 + }
2439 +
2440   @ARTICLE{Ros2005,
2441    author = {M. B. Ros and J. L. Serrano and M. R. {de la Fuente} and C. L. Folcia},
2442    title = {Banana-shaped liquid crystals: a new field to explore},
# Line 1975 | Line 2482 | Encoding: GBK
2482    annote = {985FW Times Cited:0 Cited References Count:30},
2483    issn = {1292-8941},
2484    uri = {<Go to ISI>://000233363300002},
2485 + }
2486 +
2487 + @ARTICLE{Ryckaert1977,
2488 +  author = {J. P. Ryckaert and G. Ciccotti and H. J. C. Berendsen},
2489 +  title = {Numerical-Integration of Cartesian Equations of Motion of a System
2490 +        with Constraints - Molecular-Dynamics of N-Alkanes},
2491 +  journal = {Journal of Computational Physics},
2492 +  year = {1977},
2493 +  volume = {23},
2494 +  pages = {327-341},
2495 +  number = {3},
2496 +  annote = {Cz253 Times Cited:3680 Cited References Count:7},
2497 +  issn = {0021-9991},
2498 +  uri = {<Go to ISI>://A1977CZ25300007},
2499   }
2500  
2501 + @ARTICLE{Sagui1999,
2502 +  author = {C. Sagui and T. A. Darden},
2503 +  title = {Molecular dynamics simulations of biomolecules: Long-range electrostatic
2504 +        effects},
2505 +  journal = {Annual Review of Biophysics and Biomolecular Structure},
2506 +  year = {1999},
2507 +  volume = {28},
2508 +  pages = {155-179},
2509 +  abstract = {Current computer simulations of biomolecules typically make use of
2510 +        classical molecular dynamics methods, as a very large number (tens
2511 +        to hundreds of thousands) of atoms are involved over timescales
2512 +        of many nanoseconds. The methodology for treating short-range bonded
2513 +        and van der Waals interactions has matured. However, long-range
2514 +        electrostatic interactions still represent a bottleneck in simulations.
2515 +        In this article, we introduce the basic issues for an accurate representation
2516 +        of the relevant electrostatic interactions. In spite of the huge
2517 +        computational time demanded by most biomolecular systems, it is
2518 +        no longer necessary to resort to uncontrolled approximations such
2519 +        as the use of cutoffs. In particular, we discuss the Ewald summation
2520 +        methods, the fast particle mesh methods, and the fast multipole
2521 +        methods. We also review recent efforts to understand the role of
2522 +        boundary conditions in systems with long-range interactions, and
2523 +        conclude with a short perspective on future trends.},
2524 +  annote = {213KJ Times Cited:126 Cited References Count:73},
2525 +  issn = {1056-8700},
2526 +  uri = {<Go to ISI>://000081271400008},
2527 + }
2528 +
2529   @ARTICLE{Sandu1999,
2530    author = {A. Sandu and T. Schlick},
2531    title = {Masking resonance artifacts in force-splitting methods for biomolecular
# Line 2099 | Line 2648 | Encoding: GBK
2648    uri = {<Go to ISI>://000227296700019},
2649   }
2650  
2651 + @ARTICLE{Shimada1993,
2652 +  author = {J. Shimada and H. Kaneko and T. Takada},
2653 +  title = {Efficient Calculations of Coulombic Interactions in Biomolecular
2654 +        Simulations with Periodic Boundary-Conditions},
2655 +  journal = {Journal of Computational Chemistry},
2656 +  year = {1993},
2657 +  volume = {14},
2658 +  pages = {867-878},
2659 +  number = {7},
2660 +  month = {Jul},
2661 +  abstract = {To make improved treatments of electrostatic interactions in biomacromolecular
2662 +        simulations, two possibilities are considered. The first is the
2663 +        famous particle-particle and particle-mesh (PPPM) method developed
2664 +        by Hockney and Eastwood, and the second is a new one developed here
2665 +        in their spirit but by the use of the multipole expansion technique
2666 +        suggested by Ladd. It is then numerically found that the new PPPM
2667 +        method gives more accurate results for a two-particle system at
2668 +        small separation of particles. Preliminary numerical examination
2669 +        of the various computational methods for a single configuration
2670 +        of a model BPTI-water system containing about 24,000 particles indicates
2671 +        that both of the PPPM methods give far more accurate values with
2672 +        reasonable computational cost than do the conventional truncation
2673 +        methods. It is concluded the two PPPM methods are nearly comparable
2674 +        in overall performance for the many-particle systems, although the
2675 +        first method has the drawback that the accuracy in the total electrostatic
2676 +        energy is not high for configurations of charged particles randomly
2677 +        generated.},
2678 +  annote = {Lh164 Times Cited:27 Cited References Count:47},
2679 +  issn = {0192-8651},
2680 +  uri = {<Go to ISI>://A1993LH16400011},
2681 + }
2682 +
2683   @ARTICLE{Skeel2002,
2684    author = {R. D. Skeel and J. A. Izaguirre},
2685    title = {An impulse integrator for Langevin dynamics},
# Line 2258 | Line 2839 | Encoding: GBK
2839    uri = {<Go to ISI>://A1992JE89100044},
2840   }
2841  
2842 + @BOOK{Varadarajan1974,
2843 +  title = {Lie groups, Lie algebras, and their representations},
2844 +  publisher = {Prentice-Hall},
2845 +  year = {1974},
2846 +  author = {V.S. Varadarajan},
2847 +  address = {New York},
2848 + }
2849 +
2850   @ARTICLE{Wegener1979,
2851    author = {W.~A. Wegener, V.~J. Koester and R.~M. Dowben},
2852    title = {A general ellipsoid can not always serve as a modle for the rotational
# Line 2311 | Line 2900 | Encoding: GBK
2900    uri = {<Go to ISI>://000186273200027},
2901   }
2902  
2903 + @ARTICLE{Wolf1999,
2904 +  author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
2905 +  title = {Exact method for the simulation of Coulombic systems by spherically
2906 +        truncated, pairwise r(-1) summation},
2907 +  journal = {Journal of Chemical Physics},
2908 +  year = {1999},
2909 +  volume = {110},
2910 +  pages = {8254-8282},
2911 +  number = {17},
2912 +  month = {May 1},
2913 +  abstract = {Based on a recent result showing that the net Coulomb potential in
2914 +        condensed ionic systems is rather short ranged, an exact and physically
2915 +        transparent method permitting the evaluation of the Coulomb potential
2916 +        by direct summation over the r(-1) Coulomb pair potential is presented.
2917 +        The key observation is that the problems encountered in determining
2918 +        the Coulomb energy by pairwise, spherically truncated r(-1) summation
2919 +        are a direct consequence of the fact that the system summed over
2920 +        is practically never neutral. A simple method is developed that
2921 +        achieves charge neutralization wherever the r(-1) pair potential
2922 +        is truncated. This enables the extraction of the Coulomb energy,
2923 +        forces, and stresses from a spherically truncated, usually charged
2924 +        environment in a manner that is independent of the grouping of the
2925 +        pair terms. The close connection of our approach with the Ewald
2926 +        method is demonstrated and exploited, providing an efficient method
2927 +        for the simulation of even highly disordered ionic systems by direct,
2928 +        pairwise r(-1) summation with spherical truncation at rather short
2929 +        range, i.e., a method which fully exploits the short-ranged nature
2930 +        of the interactions in ionic systems. The method is validated by
2931 +        simulations of crystals, liquids, and interfacial systems, such
2932 +        as free surfaces and grain boundaries. (C) 1999 American Institute
2933 +        of Physics. [S0021-9606(99)51517-1].},
2934 +  annote = {189PD Times Cited:70 Cited References Count:34},
2935 +  issn = {0021-9606},
2936 +  uri = {<Go to ISI>://000079913000008},
2937 + }
2938 +
2939 + @ARTICLE{Yoshida1990,
2940 +  author = {H. Yoshida},
2941 +  title = {Construction of Higher-Order Symplectic Integrators},
2942 +  journal = {Physics Letters A},
2943 +  year = {1990},
2944 +  volume = {150},
2945 +  pages = {262-268},
2946 +  number = {5-7},
2947 +  month = {Nov 12},
2948 +  annote = {Ej798 Times Cited:492 Cited References Count:9},
2949 +  issn = {0375-9601},
2950 +  uri = {<Go to ISI>://A1990EJ79800009},
2951 + }
2952 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines