ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/dissertation.bib
(Generate patch)

Comparing trunk/tengDissertation/dissertation.bib (file contents):
Revision 2691 by tim, Tue Apr 4 04:33:23 2006 UTC vs.
Revision 2807 by tim, Wed Jun 7 01:49:15 2006 UTC

# Line 1 | Line 1
1 < @string{jcp = "J. Chem. Phys."}
2 < @string{cpl = "Chem. Phys. Lett."}
3 < @string{jpc = "J. Phys. Chem."}
4 < @string{jpcA = "J. Phys. Chem. A"}
5 < @string{jpcB = "J. Phys. Chem. B"}
6 < @string{cp  = "Chem. Phys."}
7 < @string{acp = "Adv. Chem. Phys."}
8 < @string{pra = "Phys. Rev. A"}
9 < @string{prb = "Phys. Rev. B"}
10 < @string{pre = "Phys. Rev. E"}
11 < @string{prl = "Phys. Rev. Lett."}
12 < @string{rmp = "Rev. Mod. Phys."}
13 < @string{jml = "J. Mol. Liq."}
14 < @string{mp = "Mol. Phys."}
15 < @string{pnas = "Proc. Natl. Acad. Sci. USA"}
16 < @string{jacs = "J. Am. Chem. Soc."}
17 <
18 < @Book{Berne90,
19 <  author =       {B.~J. Berne and R. Pecora},
20 <  title =        {Dynamic Light Scattering},
21 <  publisher =    {Robert E. Krieger Publishing Company, Inc.},
22 <  year =         1990,
23 <  address =      {Malabar, Florida}
24 < }
25 <
26 < @Article{Evans77,
27 <  author =       {D.~J. Evans},
28 <  title =        {On the representation of orientation space},
29 <  journal =      {Mol. Phys.},
30 <  year =         1977,
31 <  volume =       34,
32 <  pages =        {317-325}
33 < }
34 <
35 < @Article{Tuckerman92,
36 <  author =       {M. Tuckerman and B.~J. Berne and G.~J. Martyna},
37 <  title =        {Reversible multiple time scale molecular dynamics},
38 <  journal =      jcp,
39 <  year =         1992,
40 <  volume =       97,
41 <  pages =        {1990-2001}
42 < }
43 <
44 < @Book{Hansen86,
45 <  author =       {J.~P. Hansen and I.~R. McDonald},
46 <  title =        {Theory of Simple Liquids},
47 <  chapter =      7,
48 <  publisher =    {Academic Press},
49 <  year =         1986,
50 <  address =      {London},
51 <  pages =        {199-206}
52 < }
53 <
54 < @Article{Angelani98,
55 <  author =       {L. Angelani and G. Parisi and G. Ruocco and G. Viliani},
56 <  title =        {Connected Network of Minima as a Model Glass: Long
57 <                  Time Dynamics},
58 <  journal =      prl,
59 <  year =         1998,
60 <  volume =       81,
61 <  number =       21,
62 <  pages =        {4648-4651}
63 < }
64 <
65 < @Article{Stillinger82,
66 <  author =       {F.~H. Stillinger and T.~A. Weber},
67 <  title =        {Hidden structure in liquids},
68 <  journal =      pra,
69 <  year =         1982,
70 <  volume =       25,
71 <  number =       2,
72 <  pages =        {978-989}
73 < }
74 <
75 < @Article{Stillinger83,
76 <  author =       {F.~H. Stillinger and T.~A. Weber},
77 <  title =        {Dynamics of structural transitions in liquids},
78 <  journal =      pra,
79 <  year =         1983,
80 <  volume =       28,
81 <  number =       4,
82 <  pages =        {2408-2416}
83 < }
84 <
85 < @Article{Weber84,
86 <  author =       {T.~A. Weber and F.~H. Stillinger},
87 <  title =        {The effect of density on the inherent structure in
88 <                  liquids},
89 <  journal =      jcp,
90 <  year =         1984,
91 <  volume =       80,
92 <  number =       6,
93 <  pages =        {2742-2746}
94 < }
95 <
96 < @Article{Stillinger85,
97 <  author =       {F.~H. Stillinger and T.~A. Weber},
98 <  title =        {Inherent structure theory of liquids in the
99 <                  hard-sphere limit},
100 <  journal =      jcp,
101 <  year =         1985,
102 <  volume =       83,
103 <  number =       9,
104 <  pages =        {4767-4775}
105 < }
106 <
107 < @Article{Stillinger98,
108 <  author =       {S. Sastry and P.~G. Debenedetti and F.~H. Stillinger},
109 <  title =        {Signatures of distinct dynamical regimes in the
110 <                  energy landscape of a glass-forming liquid},
111 <  journal =      {Nature},
112 <  year =         1998,
113 <  volume =       393,
114 <  pages =        {554-557}
115 < }
116 <
117 <
118 < @Article{Parkhurst75a,
119 <  author =       {H.~J. {Parkhurst, Jr.} and J. Jonas},
120 <  title =        {Dense liquids. I. The effect of density and
121 <                  temperature on viscosity of tetramethylsilane and
122 <                  benzene-$\mbox{D}_6$},
123 <  journal =      jcp,
124 <  year =         1975,
125 <  volume =       63,
126 <  number =       6,
127 <  pages =        {2698-2704}
128 < }
129 <
130 < @Article{Parkhurst75b,
131 <  author =       {H.~J. {Parkhurst, Jr.} and J. Jonas},
132 <  title =        {Dense liquids. II. The effect of density and
133 <                  temperature on viscosity of tetramethylsilane and
134 <                  benzene },
135 <  journal =      jcp,
136 <  year =         1975,
137 <  volume =       63,
138 <  number =       6,
139 <  pages =        {2705-2709}
140 < }
141 <
142 < @Article{Forester97,
143 <  author =       {T.~R. Forester and W. Smith and J.~H.~R. Clarke},
144 <  title =        {Antibiotic activity of valinomycin - Molecular
145 <                  dynamics simulations involving the water/membrane
146 <                  interface},
147 <  journal =      {J. Chem. Soc. - Faraday Transactions},
148 <  year =         1997,
149 <  volume =       93,
150 <  pages =        {613-619}
151 < }
152 <
153 < @Article{Tieleman98,
154 <  author =       {D.~P. Tieleman and H.~J.~C. Berendsen},
155 <  title =        {A molecular dynamics study of the pores formed by
156 <                  Escherichia coli OmpF porin in a fully hydrated
157 <                  palmitoyloleoylphosphatidylcholine bilayer},
158 <  journal =      {Biophys. J.},
159 <  year =         1998,
160 <  volume =       74,
161 <  pages =        {2786-2801}
162 < }
163 <
164 < @Article{Cascales98,
165 <  author =       {J.~J.~L. Cascales and J.~G.~H. Cifre and J.~G. de~la~Torre},
166 <  title =        {Anaesthetic mechanism on a model biological
167 <                  membrane: A molecular dynamics simulation study},
168 <  journal =      {J. Phys. Chem. B},
169 <  year =         1998,
170 <  volume =       102,
171 <  pages =        {625-631}
172 < }
173 <
174 < @Article{Bassolino95,
175 <  author =       {D. Bassolino and H.~E. Alper and T.~R. Stouch},
176 <  title =        {MECHANISM OF SOLUTE DIFFUSION THROUGH LIPID
177 <                  BILAYER-MEMBRANES BY MOLECULAR-DYNAMICS SIMULATION},
178 <  journal =      {J. Am. Chem. Soc.},
179 <  year =         1995,
180 <  volume =       117,
181 <  pages =        {4118-4129}
182 < }
183 <
184 < @Article{Alper95,
185 <  author =       {H.~E. Alper and T.~R. Stouch},
186 <  title =        {ORIENTATION AND DIFFUSION OF A DRUG ANALOG IN
187 <                  BIOMEMBRANES - MOLECULAR-DYNAMICS SIMULATIONS},
188 <  journal =      {J. Phys. Chem.},
189 <  year =         1995,
190 <  volume =       99,
191 <  pages =        {5724-5731}
192 < }
193 <
194 < @Article{Sok92,
195 <  author =       {R.~M. Sok and H.~J.~C. Berendsen and W.~F. van~Gunsteren},
196 <  title =        {MOLECULAR-DYNAMICS SIMULATION OF THE TRANSPORT OF
197 <                  SMALL MOLECULES ACROSS A POLYMER MEMBRANE},
198 <  journal =      {J. Chem. Phys.},
199 <  year =         1992,
200 <  volume =       96,
201 <  pages =        {4699-4704}
202 < }
203 <
204 < @Article{Rabani99,
205 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
206 <  title =        {Direct Observation of Stretched-Exponential
207 <                  Relaxation in Low-Temperature Lennard-Jones Systems
208 <                  Using the Cage Correlation Function},
209 <  journal =      prl,
210 <  year =         {1999},
211 <  volume =       82,
212 <  pages =        {3649}
213 < }
214 <
215 < @Article{Rabani97,
216 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
217 <  title =        {Calculating the hopping rate for self-diffusion on
218 <                  rough potential energy surfaces: Cage correlations},
219 <  journal =      {J. Chem. Phys.},
220 <  year =         1997,
221 <  volume =       107,
222 <  pages =        {6867-6876}
223 < }
224 <
225 < @Article{Gezelter99,
226 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
227 <  title =        {Methods for calculating the hopping rate for
228 <                  orientational and spatial diffusion in a molecular
229 <                  liquid: $\mbox{CS}_{2}$},
230 <  journal =      jcp,
231 <  year =         1999,
232 <  volume =       110,
233 <  pages =        3444
234 < }
235 <
236 < @Article{Gezelter98a,
237 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
238 <  title =        {Response to 'Comment on a Critique of the
239 <                  Instantaneous Normal Mode (INM) Approach to
240 <                  Diffusion'},
241 <  journal =      jcp,
242 <  year =         1998,
243 <  volume =       109,
244 <  pages =        4695
245 < }
246 <
247 < @Article{Gezelter97,
248 <  author =       {J.~D. Gezelter and E. Rabani and B.~J. Berne},
249 <  title =        {Can imaginary instantaneous normal mode frequencies
250 <                  predict barriers to self-diffusion?},
251 <  journal =      jcp,
252 <  year =         1997,
253 <  volume =       107,
254 <  pages =        4618
255 < }
256 <
257 < @Article{Zwanzig83,
258 <  author =       {R. Zwanzig},
259 <  title =        {On the relation between self-diffusion and viscosity
260 <                  of liquids},
261 <  journal =      jcp,
262 <  year =         1983,
263 <  volume =       79,
264 <  pages =        {4507-4508}
265 < }
266 <
267 < @Article{Zwanzig88,
268 <  author =       {R. Zwanzig},
269 <  title =        {Diffusion in rough potential},
270 <  journal =      {Proc. Natl. Acad. Sci. USA},
271 <  year =         1988,
272 <  volume =       85,
273 <  pages =        2029
274 < }
275 <
276 < @Article{Stillinger95,
277 <  author =       {F.~H. Stillinger},
278 <  title =        {A Topographic View of Supercooled Liquids and Glass
279 <                  Formation},
280 <  journal =      {Science},
281 <  year =         1995,
282 <  volume =       267,
283 <  pages =        {1935-1939}
284 < }
285 <
286 < @InCollection{Angell85,
287 <  author =       {C.~A. Angell},
288 <  title =        {unknown},
289 <  booktitle =    {Relaxations in Complex Systems},
290 <  publisher =    {National Technical Information Service,
291 <                  U.S. Department of Commerce},
292 <  year =         1985,
293 <  editor =       {K.~Ngai and G.~B. Wright},
294 <  address =      {Springfield, VA},
295 <  pages =        1
296 < }
297 <
298 < @Article{Bembenek96,
299 <  author =       {S.~D. Bembenek and B.~B. Laird},
300 <  title =        {The role of localization in glasses and supercooled liquids},
301 <  journal =      jcp,
302 <  year =         1996,
303 <  volume =       104,
304 <  pages =        5199
305 < }
306 <
307 < @Article{Sun97,
308 <  author =       {X. Sun and W.~H. Miller},
309 <  title =        {Semiclassical initial value representation for
310 <                  electronically nonadiabatic molecular dynamics},
311 <  journal =      jcp,
312 <  year =         1997,
313 <  volume =       106,
314 <  pages =        6346
315 < }
316 <
317 < @Article{Spath96,
318 <  author =       {B.~W. Spath and W.~H. Miller},
319 <  title =        {SEMICLASSICAL CALCULATION OF CUMULATIVE REACTION
320 <                  PROBABILITIES},
321 <  journal =      jcp,
322 <  year =         1996,
323 <  volume =       104,
324 <  pages =        95
325 < }
326 <
327 < @Book{Warshel91,
328 <  author =       {Arieh Warshel},
329 <  title =        {Computer modeling of chemical reactions in enzymes
330 <                  and solutions},
331 <  publisher =    {Wiley},
332 <  year =         1991,
333 <  address =      {New York}
334 < }
335 <
336 < @Article{Vuilleumier97,
337 <  author =       {Rodolphe Vuilleumier and Daniel Borgis},
338 <  title =        {Molecular Dynamics of an excess proton in water
339 <                  using a non-additive valence bond force field},
340 <  journal =      jpc,
341 <  year =         1997,
342 <  volume =       {in press}
343 < }
344 <
345 < @Article{Kob95a,
346 <  author =       {W. Kob and H.~C. Andersen},
347 <  title =        {Testing mode-coupling theory for a supercooled
348 <                  binary Lennard-Jones mixtures: The van Hove
349 <                  corraltion function},
350 <  journal =      pre,
351 <  year =         1995,
352 <  volume =       51,
353 <  pages =        {4626-4641}
354 < }
355 <
356 < @Article{Kob95b,
357 <  author =       {W. Kob and H.~C. Andersen},
358 <  title =        {Testing mode-coupling theory for a supercooled
359 <                  binary Lennard-Jones mixtures. II. Intermediate
360 <                  scattering function and dynamic susceptibility},
361 <  journal =      pre,
362 <  year =         1995,
363 <  volume =       52,
364 <  pages =        {4134-4153}
365 < }
366 <
367 < @InProceedings{Gotze89,
368 <  author =       "W. G{\"{o}}tze",
369 <  title =        "Aspects of Structural Glass Transitions",
370 <  editor =       "J.~P. Hansen and D. Levesque and J. Zinn-Justin",
371 <  volume =       "I",
372 <  pages =        "287-503",
373 <  booktitle =    "Liquids, Freezing and Glass Transitions",
374 <  year =         1989,
375 <  publisher =    "North-Holland",
376 <  address =      "Amsterdam"
377 < }
378 <
379 < @Article{Sun97a,
380 <  author =       "X. Sun and W.~H. Miller",
381 <  title =        {Mixed semiclassical-classical approaches to the
382 <                  dynamics of complex molecular systems},
383 <  journal =      jcp,
384 <  year =         1997,
385 <  pages =        916
386 < }
387 <
388 < @Article{Keshavamurthy94,
389 <  author =       "S. Keshavamurthy and W.~H. Miller",
390 <  title =        "ivr",
391 <  journal =      cpl,
392 <  year =         1994,
393 <  volume =       218,
394 <  pages =        189
395 < }
396 <
397 < @Article{Billing75,
398 <  author =       "G.~D. Billing",
399 <  title =        "ehrenfest",
400 <  journal =      cpl,
401 <  year =         1975,
402 <  volume =       30,
403 <  pages =        391
404 < }
405 <
406 < @Article{Chang90,
407 <  author =       {Y.-T. Chang and W.~H. Miller},
408 <  title =        {An Empirical Valence Bond Model for Constructing
409 <                  Global Potential Energy Surfaces for Chemical
410 <                  Reactions of Polyatomic Molecular Systems},
411 <  journal =      jpc,
412 <  year =         1990,
413 <  volume =       94,
414 <  pages =        {5884-5888}
415 < }
1 > This file was created with JabRef 2.0.1.
2 > Encoding: GBK
3  
4 < @Article{Shor94,
5 <  author =       {P.W. Shor},
6 <  title =        {Algorithms for quantum computation: discrete
7 <                  logarithms and factoring},
8 <  journal =      {Proceedings of the 35th Annual Symposium
9 < on Foundations of Computer Science},
10 <  year =         1994,
11 <  pages =        {124-134}
12 < }
13 <
14 < @Article{Feynman82,
15 <  author =       {R.~P. Feynman},
16 <  title =        {Simulating physics with computers},
17 <  journal =      {Int. J. Theor. Phys.},
18 <  year =         1982,
19 <  volume =       21,
20 <  pages =        {467-488}
21 < }
22 <
23 < @Article{Grover97,
24 <  author =       {L.~K. Grover},
25 <  title =        {Quantum computers can search arbitrarily large
26 <                  databases by a single query},
27 <  journal =      prl,
28 <  year =         1997,
29 <  volume =       79,
30 <  pages =        {4709-4712}
31 < }
32 <
33 < @Article{Chuang98,
34 <  author =       {I. Chuang and N. Gershenfeld and M. Kubinec},
35 <  title =        {Experimental Implementation of Fast Quantum Searching},
36 <  journal =      prl,
37 <  year =         1998,
38 <  volume =       80,
39 <  pages =        {3408-3411}
453 < }
454 <
455 < @Article{Monroe95,
456 <  author =       "C. Monroe and D.~M. Meekhof and B.~E. King and
457 <                  W.~M. Itano and D.~J. Wineland",
458 <  title =        {Demonstration of a fundamental quantum logic gate},
459 <  journal =      prl,
460 <  year =         1995,
461 <  volume =       75,
462 <  pages =        4714
463 < }
464 <
465 < @Article{Lent93,
466 <  author =       "C.~S. Lent and P.~D. Tougaw and W.~Porod and
467 <                  G.~H. Bernstein",
468 <  title =        {Quantum Cellular Automata},
469 <  journal =      {Nanotechnology},
470 <  year =         1993,
471 <  volume =       4,
472 <  pages =        {49-57}
473 < }
474 <
475 < @Article{Barenco95,
476 <  author =       "A. Barenco and C.~H. Bennett and R. Cleve and
477 <                  D.~P. DiVincenzo and N. Margolus and P. Shor and
478 <                  T. Sleator and J.~A. Smolin and H. Weinfurter",
479 <  title =        {elementary gates for quantum computation},
480 <  journal =      {Phys. Rev. A},
481 <  year =         1995,
482 <  volume =       52,
483 <  pages =        {3457-3467}
484 < }
485 <
486 < @Article{Small97,
487 <  author =       {T. Reinot and J.~M. Hayes and G.~J. Small},
488 <  title =        {Electronic dephasing and electron-phonon coupling of
489 <                  aluminum phthalocyanine tetrasulphonate in
490 <                  hyperquenched and annealed glassy films of ethanol
491 <                  and methanol over a broad temperature range},
492 <  journal =      jcp,
493 <  year =         1997,
494 <  volume =       106,
495 <  pages =        {457-466}
496 < }
497 <
498 < @Article{Laflamme96,
499 <  author =       {R. Laflamme and C. Miquel and J.~P. Paz and W.~H. Zurek},
500 <  title =        {A perfect quantum error correcting code: 5 bit code
501 <                  correcting a general 1 qubit error to encode 1 qubit
502 <                  of information},
503 <  journal =      prl,
504 <  year =         1996,
505 <  volume =       98,
506 <  pages =        77
507 < }
508 <
509 < @Article{Shor95,
510 <  author =       {P.~W. Shor},
511 <  title =        {SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY},
512 <  journal =      {Phys. Rev. A},
513 <  year =         1995,
514 <  volume =       52,
515 <  pages =        {2493-2496}
516 < }
517 <
518 < @Article{Calderbank96,
519 <  author =       {A.~R. Calderbank and P.~W. Shor},
520 <  title =        {Good quantum error-correcting codes exist},
521 <  journal =      {Phys. Rev. A},
522 <  year =         1996,
523 <  volume =       54,
524 <  pages =        {1098-1105}
525 < }
526 <
527 < @Article{Steane96,
528 <  author =       {A.~M. Steane},
529 <  title =        {Error correcting codes in quantum theory},
530 <  journal =      prl,
531 <  year =         1996,
532 <  volume =       77,
533 <  pages =        {793-797}
534 < }
535 <
536 < @Article{Gezelter95,
537 <  author =       {J.~D. Gezelter and W.~H. Miller},
538 <  title =        {RESONANT FEATURES IN THE ENERGY-DEPENDENCE OF THE
539 <                  RATE OF KETENE ISOMERIZATION},
540 <  journal =      jcp,
541 <  year =         1995,
542 <  volume =       103,
543 <  pages =        {7868-7876}
544 < }
545 <
546 < @Article{Chakrabarti92,
547 <  author =       {A.~C. Chakrabarti and D.~W. Deamer},
548 <  title =        {PERMEABILITY OF LIPID BILAYERS TO AMINO-ACIDS AND PHOSPHATE},
549 <  journal =      {Biochimica et Biophysica Acta},
550 <  year =         1992,
551 <  volume =       1111,
552 <  pages =        {171-177}
553 < }
554 <
555 < @Article{Paula96,
556 <  author =       {S. Paula and A.~G. Volkov and A.~N. VanHoek and
557 <                  T.~H. Haines and D.~W. Deamer},
558 <  title =        {Permeation of protons, potassium ions, and small
559 <                  polar molecules through phospholipid bilayers as a
560 <                  function of membrane thickness},
561 <  journal =      {Biophys. J.},
562 <  year =         1996,
563 <  volume =       70,
564 <  pages =        {339-348}
565 < }
566 <
567 < @Article{Little96,
568 <  author =       {H.~J. Little},
569 <  title =        {How has molecular pharmacology contributed to our
570 <                  understanding of the mechanism(s) of general
571 <                  anesthesia?},
572 <  journal =      {Pharmacology \& Therapeutics},
573 <  year =         1996,
574 <  volume =       69,
575 <  pages =        {37-58}
576 < }
577 <
578 < @Article{McKinnon92,
579 <  author =       {S.~J. McKinnon and S.~L. Whittenburg and B. Brooks},
580 <  title =        {Nonequilibrium Molecular Dynamics Simulation of
581 <                  Oxygen Diffusion through Hexadecane Monolayers with
582 <                  Varying Concentrations of Cholesterol},
583 <  journal =      jpc,
584 <  year =         1992,
585 <  volume =       96,
586 <  pages =        {10497-10506}
587 < }
588 <
589 < @Article{Venable93,
590 <  author =       {R.~M. Venable and Y. Zhang and B.~J. Hardy and
591 <                  R.~W. Pastor},
592 <  title =        {Molecular Dynamics Simulations of a Lipid Bilayer
593 <                  and of Hexadecane: An Investigation of Membrane Fluidity},
594 <  journal =      {Science},
595 <  year =         1993,
596 <  volume =       262,
597 <  pages =        {223-226}
598 < }
599 <
600 < @Article{Essmann99,
601 <  author =       {U. Essmann and M.~L. Berkowitz},
602 <  title =        {Dynamical properties of phospholipid bilayers from
603 <                  computer simulation},
604 <  journal =      {Biophys. J.},
605 <  year =         1999,
606 <  volume =       76,
607 <  pages =        {2081-2089}
608 < }
609 <
610 < @Article{Tu98,
611 <  author =       {K.~C. Tu and M. Tarek and M.~L. Klein and D. Scharf},
612 <  title =        {Effects of anesthetics on the structure of a
613 <                  phospholipid bilayer: Molecular dynamics
614 <                  investigation of halothane in the hydrated liquid
615 <                  crystal phase of dipalmitoylphosphatidylcholine},
616 <  journal =      {Biophys. J.},
617 <  year =         1998,
618 <  volume =       75,
619 <  pages =        {2123-2134}
620 < }
621 <
622 < @Article{Pomes96,
623 <  author =       {R. Pomes and B. Roux},
624 <  title =        {Structure and dynamics of a proton wire: A
625 <                  theoretical study of H+ translocation along the
626 <                  single-file water chain in the gramicidin a channel},
627 <  journal =      {Biophys. J.},
628 <  year =         1996,
629 <  volume =       71,
630 <  pages =        {19-39}
631 < }
632 <
633 < @Article{Duwez60,
634 <  author =       {P. Duwez and R.~H. Willens and W. {Klement~Jr.}},
635 <  title =        {Continuous Series of Metastable Solid Solutions in
636 <                  Silver-Copper Alloys},
637 <  journal =      {J. Appl. Phys.},
638 <  year =         1960,
639 <  volume =       31,
640 <  pages =        {1136-1137}
641 < }
642 <
643 < @Article{Peker93,
644 <  author =       {A. Peker and W.~L. Johnson},
645 <  title =        {A highly processable metallic-glass -
646 <                  $\mbox{Zr}_{41.2}\mbox{Ti}_{13.8}\mbox{Cu}_{12.5}\mbox{Ni}_{10.0}\mbox{Be}_{22.5}$},
647 <  journal =      {Appl. Phys. Lett.},
648 <  year =         1993,
649 <  volume =       63,
650 <  pages =        {2342-2344}
651 < }
652 <
653 < @Article{ChoiYim97,
654 <  author =       {H. Choi-Yim and W.~L. Johnson},
655 <  title =        {Bulk metallic glass matrix composites},
656 <  journal =      {Appl. Phys. Lett.},
657 <  year =         1997,
658 <  volume =       71,
659 <  pages =        {3808-3810}
660 < }
661 <
662 < @Article{Sun96,
663 <  author =       {X. Sun and S. Schneider and U. Geyer and
664 <                  W.~L. Johnson and M.~A. Nicolet},
665 <  title =        {Oxidation and crystallization of an amorphous
666 <                  $\mbox{Zr}_{60}\mbox{Al}_{15}\mbox{Ni}_{25}$ alloy},
667 <  journal =      {J. Mater. Res.},
668 <  year =         1996,
669 <  volume =       11,
670 <  pages =        {2738-2743}
671 < }
672 <
673 < @Article{Heller93,
674 <  author =       {H. Heller and M. Schaefer and K. Schulten},
675 <  title =        {MOLECULAR DYNAMICS SIMULATION OF A BILAYER OF 200
676 <                  LIPIDS IN THE GEL AND IN THE LIQUID-CRYSTAL PHASES},
677 <  journal =      jpc,
678 <  year =         1993,
679 <  volume =       97,
680 <  pages =        {8343-8360}
681 < }
682 <
683 < @Article{Kushick76,
684 <  author =       {J. Kushick and B.~J. Berne},
685 <  title =        {Computer Simulation of anisotropic molecular fluids},
686 <  journal =      jcp,
687 <  year =         1976,
688 <  volume =       64,
689 <  pages =        {1362-1367}
690 < }
691 <
692 < @Article{Berardi96,
693 <  author =       {R. Berardi and S. Orlandi and C Zannoni},
694 <  title =        {Antiphase structures in polar smectic liquid
695 <                  crystals and their molecular origin},
696 <  journal =      cpl,
697 <  year =         1996,
698 <  volume =       261,
699 <  pages =        {357-362}
700 < }
701 <
702 < @Article{Berardi99,
703 <  author =       {R. Berardi and S. Orlandi and C. Zannoni},
704 <  title =        {Monte Carlo simulations of rod-like Gay-Berne
705 <                  mesogens with transverse dipoles},
706 <  journal =      {Int. J. Mod. Phys. C},
707 <  year =         1999,
708 <  volume =       10,
709 <  pages =        {477-484}
710 < }
711 <
712 < @Article{Pasterny2000,
713 <  author =       {K. Pasterny and E. Gwozdz and A. Brodka},
714 <  title =        {Properties of a model liquid crystal: Polar
715 <                  Gay-Berne particles},
716 <  journal =      {J. Mol. Liq.},
717 <  year =         2000,
718 <  volume =       85,
719 <  pages =        {173-184}
720 < }
721 <
722 < @Article{Jorgensen83,
723 <  author =       {W.~L. Jorgensen and J. Chandrasekhar and
724 <                  J.~D. Madura and R.~W. Impey and M.~L. Klein},
725 <  title =        {COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR
726 <                  SIMULATING LIQUID WATER},
727 <  journal =      jcp,
728 <  year =         1983,
729 <  volume =       79,
730 <  pages =        {926-935}
731 < }
732 <
733 < @Article{Berardi98,
734 <  author =       {R. Berardi and C. Fava and C. Zannoni},
735 <  title =        {A Gay-Berne potential for dissimilar biaxial particles},
736 <  journal =      cpl,
737 <  year =         1998,
738 <  volume =       297,
739 <  pages =        {8-14}
740 < }
741 <
742 < @Article{Luckhurst90,
743 <  author =       {G.~R. Luckhurst and R.~A. Stephens and R.~W. Phippen},
744 <  title =        {Computer simulation studies of anisotropic systems
745 <                  {XIX}. Mesophases formed by the Gay-Berne model mesogen},
746 <  journal =      {Liquid Crystals},
747 <  year =         1990,
748 <  volume =       8,
749 <  pages =        {451-464}
750 < }
751 <
752 < @Article{Gay81,
753 <  author =       {J.~G. Gay and B.~J. Berne},
754 <  title =        {MODIFICATION OF THE OVERLAP POTENTIAL TO MIMIC A
755 <                  LINEAR SITE-SITE POTENTIAL},
756 <  journal =      jcp,
757 <  year =         1981,
758 <  volume =       74,
759 <  pages =        {3316-3319}
760 < }
761 <
762 < @Article{Berne72,
763 <  author =       {B.~J. Berne and P. Pechukas},
764 <  title =        {Gaussian Model Potentials for Molecular Interactions},
765 <  journal =      jcp,
766 <  year =         1972,
767 <  volume =       56,
768 <  pages =        {4213-4216}
769 < }
770 <
771 < @Article{Perram96,
772 <  author =       {J.~W. Perram and J. Rasmussen and E. Praestgaard and
773 <                  J.~L. Lebowitz},
774 <  title =        {Ellipsoid contact potential: Theory and relation to
775 <                  overlap potentials},
776 <  journal =      pre,
777 <  year =         1996,
778 <  volume =       54,
779 <  pages =        {6565-6572}
780 < }
781 <
782 < @Article{Cornell95,
783 <  author =       {W.~D. Cornell and P. Cieplak and C.~I. Bayly and
784 <                  I.~R. Gould and K.~M. {Merz, Jr.} and D.~M. Ferguson
785 <                  and D.~C. Spellmeyer and T. Fox and J.~W. Caldwell
786 <                  and P.~A. Kollman},
787 <  title =        {A second generation force field for the simulation
788 <                  of proteins and nucleic acids},
789 <  journal =      jacs,
790 <  year =         1995,
791 <  volume =       117,
792 <  pages =        {5179-5197}
4 > @ARTICLE{Torre2003,
5 >  author = {J. G. {de la Torre} and H. E. Sanchez and A. Ortega and J. G. Hernandez
6 >        and M. X. Fernandes and F. G. Diaz and M. C. L. Martinez},
7 >  title = {Calculation of the solution properties of flexible macromolecules:
8 >        methods and applications},
9 >  journal = {European Biophysics Journal with Biophysics Letters},
10 >  year = {2003},
11 >  volume = {32},
12 >  pages = {477-486},
13 >  number = {5},
14 >  month = {Aug},
15 >  abstract = {While the prediction of hydrodynamic properties of rigid particles
16 >        is nowadays feasible using simple and efficient computer programs,
17 >        the calculation of such properties and, in general, the dynamic
18 >        behavior of flexible macromolecules has not reached a similar situation.
19 >        Although the theories are available, usually the computational work
20 >        is done using solutions specific for each problem. We intend to
21 >        develop computer programs that would greatly facilitate the task
22 >        of predicting solution behavior of flexible macromolecules. In this
23 >        paper, we first present an overview of the two approaches that are
24 >        most practical: the Monte Carlo rigid-body treatment, and the Brownian
25 >        dynamics simulation technique. The Monte Carlo procedure is based
26 >        on the calculation of properties for instantaneous conformations
27 >        of the macromolecule that are regarded as if they were instantaneously
28 >        rigid. We describe how a Monte Carlo program can be interfaced to
29 >        the programs in the HYDRO suite for rigid particles, and provide
30 >        an example of such calculation, for a hypothetical particle: a protein
31 >        with two domains connected by a flexible linker. We also describe
32 >        briefly the essentials of Brownian dynamics, and propose a general
33 >        mechanical model that includes several kinds of intramolecular interactions,
34 >        such as bending, internal rotation, excluded volume effects, etc.
35 >        We provide an example of the application of this methodology to
36 >        the dynamics of a semiflexible, wormlike DNA.},
37 >  annote = {724XK Times Cited:6 Cited References Count:64},
38 >  issn = {0175-7571},
39 >  uri = {<Go to ISI>://000185513400011},
40   }
41  
42 < @Article{Brooks83,
43 <  author =       {B.~R. Brooks and R.~E. Bruccoleri and B.~D. Olafson
44 <                  and D.~J. States and S. Swaminathan and M. Karplus},
45 <  title =        {{\sc charmm}: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations},
46 <  journal =      {J. Comp. Chem.},
47 <  year =         1983,
48 <  volume =       4,
49 <  pages =        {187-217}
42 > @ARTICLE{Alakent2005,
43 >  author = {B. Alakent and M. C. Camurdan and P. Doruker},
44 >  title = {Hierarchical structure of the energy landscape of proteins revisited
45 >        by time series analysis. II. Investigation of explicit solvent effects},
46 >  journal = {Journal of Chemical Physics},
47 >  year = {2005},
48 >  volume = {123},
49 >  pages = {-},
50 >  number = {14},
51 >  month = {Oct 8},
52 >  abstract = {Time series analysis tools are employed on the principal modes obtained
53 >        from the C-alpha trajectories from two independent molecular-dynamics
54 >        simulations of alpha-amylase inhibitor (tendamistat). Fluctuations
55 >        inside an energy minimum (intraminimum motions), transitions between
56 >        minima (interminimum motions), and relaxations in different hierarchical
57 >        energy levels are investigated and compared with those encountered
58 >        in vacuum by using different sampling window sizes and intervals.
59 >        The low-frequency low-indexed mode relationship, established in
60 >        vacuum, is also encountered in water, which shows the reliability
61 >        of the important dynamics information offered by principal components
62 >        analysis in water. It has been shown that examining a short data
63 >        collection period (100 ps) may result in a high population of overdamped
64 >        modes, while some of the low-frequency oscillations (< 10 cm(-1))
65 >        can be captured in water by using a longer data collection period
66 >        (1200 ps). Simultaneous analysis of short and long sampling window
67 >        sizes gives the following picture of the effect of water on protein
68 >        dynamics. Water makes the protein lose its memory: future conformations
69 >        are less dependent on previous conformations due to the lowering
70 >        of energy barriers in hierarchical levels of the energy landscape.
71 >        In short-time dynamics (< 10 ps), damping factors extracted from
72 >        time series model parameters are lowered. For tendamistat, the friction
73 >        coefficient in the Langevin equation is found to be around 40-60
74 >        cm(-1) for the low-indexed modes, compatible with literature. The
75 >        fact that water has increased the friction and that on the other
76 >        hand has lubrication effect at first sight contradicts. However,
77 >        this comes about because water enhances the transitions between
78 >        minima and forces the protein to reduce its already inherent inability
79 >        to maintain oscillations observed in vacuum. Some of the frequencies
80 >        lower than 10 cm(-1) are found to be overdamped, while those higher
81 >        than 20 cm(-1) are slightly increased. As for the long-time dynamics
82 >        in water, it is found that random-walk motion is maintained for
83 >        approximately 200 ps (about five times of that in vacuum) in the
84 >        low-indexed modes, showing the lowering of energy barriers between
85 >        the higher-level minima.},
86 >  annote = {973OH Times Cited:1 Cited References Count:33},
87 >  issn = {0021-9606},
88 >  uri = {<Go to ISI>://000232532000064},
89   }
90  
91 < @InCollection{MacKerell98,
92 <  author =       {A.~D. {MacKerell, Jr.} and B. Brooks and
93 <                  C.~L. {Brooks III} and L. Nilsson and B. Roux and
94 <                  Y. Won and and M. Karplus},
95 <  title =        {{\sc charmm}: The Energy Function and Its Parameterization
96 <                  with an Overview of the Program},
811 <  booktitle =    {The Encyclopedia of Computational Chemistry},
812 <  pages =        {271-277},
813 <  publisher =    {John Wiley \& Sons},
814 <  year =         1998,
815 <  editor =       {P.~v.~R. {Schleyer, {\it et al.}}},
816 <  volume =       1,
817 <  address =      {New York}
91 > @BOOK{Alexander1987,
92 >  title = {A Pattern Language: Towns, Buildings, Construction},
93 >  publisher = {Oxford University Press},
94 >  year = {1987},
95 >  author = {C. Alexander},
96 >  address = {New York},
97   }
98  
99 < @InCollection{Jorgensen98,
100 <  author =       {W.~L. Jorgensen},
101 <  title =        {OPLS Force Fields},
102 <  booktitle =    {The Encyclopedia of Computational Chemistry},
103 <  pages =        {1986-1989},
104 <  publisher =    {John Wiley \& Sons},
826 <  year =         1998,
827 <  editor =       {P.~v.~R. {Schleyer, {\it et al.}}},
828 <  volume =       3,
829 <  address =      {New York}
99 > @BOOK{Allen1987,
100 >  title = {Computer Simulations of Liquids},
101 >  publisher = {Oxford University Press},
102 >  year = {1987},
103 >  author = {M.~P. Allen and D.~J. Tildesley},
104 >  address = {New York},
105   }
106  
107 < @Article{Rabani2000,
108 <  author =       {E. Rabani and J.~D. Gezelter and B.~J. Berne},
109 <  title =        {Reply to `Comment on ``Direct Observation of
110 <                  Stretched-Exponential Relaxation in Low-Temperature
111 <                  Lennard-Jones Systems Using th eCage Correlation
112 <                  Function'' '},
113 <  journal =      prl,
114 <  year =         2000,
115 <  volume =       85,
116 <  pages =        467
107 > @ARTICLE{Allison1991,
108 >  author = {S. A. Allison},
109 >  title = {A Brownian Dynamics Algorithm for Arbitrary Rigid Bodies - Application
110 >        to Polarized Dynamic Light-Scattering},
111 >  journal = {Macromolecules},
112 >  year = {1991},
113 >  volume = {24},
114 >  pages = {530-536},
115 >  number = {2},
116 >  month = {Jan 21},
117 >  abstract = {A Brownian dynamics algorithm is developed to simulate dynamics experiments
118 >        of rigid macromolecules. It is applied to polarized dynamic light
119 >        scattering from rodlike sturctures and from a model of a DNA fragment
120 >        (762 base pairs). A number of rod cases are examined in which the
121 >        translational anisotropy is increased form zero to a large value.
122 >        Simulated first cumulants as well as amplitudes and lifetimes of
123 >        the dynamic form factor are compared with predictions of analytic
124 >        theories and found to be in very good agreement with them. For DNA
125 >        fragments 762 base pairs in length or longer, translational anisotropy
126 >        does not contribute significantly to dynamic light scattering. In
127 >        a comparison of rigid and flexible simulations on semistiff models
128 >        of this fragment, it is shown directly that flexing contributes
129 >        to the faster decay processes probed by light scattering and that
130 >        the flexible model studies are in good agreement with experiment.},
131 >  annote = {Eu814 Times Cited:8 Cited References Count:32},
132 >  issn = {0024-9297},
133 >  uri = {<Go to ISI>://A1991EU81400029},
134   }
135  
136 < @Book{Cevc87,
137 <  author =       {G. Cevc and D. Marsh},
138 <  title =        {Phospholipid Bilayers},
139 <  publisher =    {John Wiley \& Sons},
140 <  year =         1987,
141 <  address =      {New York}
136 > @ARTICLE{Andersen1983,
137 >  author = {H. C. Andersen},
138 >  title = {Rattle - a Velocity Version of the Shake Algorithm for Molecular-Dynamics
139 >        Calculations},
140 >  journal = {Journal of Computational Physics},
141 >  year = {1983},
142 >  volume = {52},
143 >  pages = {24-34},
144 >  number = {1},
145 >  annote = {Rq238 Times Cited:559 Cited References Count:14},
146 >  issn = {0021-9991},
147 >  uri = {<Go to ISI>://A1983RQ23800002},
148   }
149  
150 < @Article{Janiak79,
151 <  author =       {M.~J. Janiak and D.~M. Small and G.~G. Shipley},
152 <  title =        {Temperature and Compositional Dependence of the
153 <                  Structure of Hydrated Dimyristoyl Lecithin},
154 <  journal =      {J. Biol. Chem.},
155 <  year =         1979,
156 <  volume =       254,
157 <  pages =        {6068-6078}
150 > @ARTICLE{Auerbach2005,
151 >  author = {A. Auerbach},
152 >  title = {Gating of acetylcholine receptor channels: Brownian motion across
153 >        a broad transition state},
154 >  journal = {Proceedings of the National Academy of Sciences of the United States
155 >        of America},
156 >  year = {2005},
157 >  volume = {102},
158 >  pages = {1408-1412},
159 >  number = {5},
160 >  month = {Feb 1},
161 >  abstract = {Acetylcholine receptor channels (AChRs) are proteins that switch between
162 >        stable #closed# and #open# conformations. In patch clamp recordings,
163 >        diliganded AChR gating appears to be a simple, two-state reaction.
164 >        However, mutagenesis studies indicate that during gating dozens
165 >        of residues across the protein move asynchronously and are organized
166 >        into rigid body gating domains (#blocks#). Moreover, there is an
167 >        upper limit to the apparent channel opening rate constant. These
168 >        observations suggest that the gating reaction has a broad, corrugated
169 >        transition state region, with the maximum opening rate reflecting,
170 >        in part, the mean first-passage time across this ensemble. Simulations
171 >        reveal that a flat, isotropic energy profile for the transition
172 >        state can account for many of the essential features of AChR gating.
173 >        With this mechanism, concerted, local structural transitions that
174 >        occur on the broad transition state ensemble give rise to fractional
175 >        measures of reaction progress (Phi values) determined by rate-equilibrium
176 >        free energy relationship analysis. The results suggest that the
177 >        coarse-grained AChR gating conformational change propagates through
178 >        the protein with dynamics that are governed by the Brownian motion
179 >        of individual gating blocks.},
180 >  annote = {895QF Times Cited:9 Cited References Count:33},
181 >  issn = {0027-8424},
182 >  uri = {<Go to ISI>://000226877300030},
183   }
184  
185 < @Book{Tobias90,
186 <  author =       {Sheila Tobias},
187 <  title =        {They're not Dumb. They're Different: Stalking the
188 <                  Second Tier},
189 <  publisher =    {Research Corp.},
190 <  year =         1990,
191 <  address =      {Tucson}
185 > @ARTICLE{Baber1995,
186 >  author = {J. Baber and J. F. Ellena and D. S. Cafiso},
187 >  title = {Distribution of General-Anesthetics in Phospholipid-Bilayers Determined
188 >        Using H-2 Nmr and H-1-H-1 Noe Spectroscopy},
189 >  journal = {Biochemistry},
190 >  year = {1995},
191 >  volume = {34},
192 >  pages = {6533-6539},
193 >  number = {19},
194 >  month = {May 16},
195 >  abstract = {The effect of the general anesthetics halothane, enflurane, and isoflurane
196 >        on hydrocarbon chain packing in palmitoyl(d(31))oleoylphosphatidylcholine
197 >        membranes in the liquid crystalline phase was investigated using
198 >        H-2 NMR. Upon the addition of the anesthetics, the first five methylene
199 >        units near the interface generally show a very small increase in
200 >        segmental order, while segments deeper within the bilayer show a
201 >        small decrease in segmental order. From the H-2 NMR results, the
202 >        chain length for the perdeuterated palmitoyl chain in the absence
203 >        of anesthetic was found to be 12.35 Angstrom. Upon the addition
204 >        of halothane enflurane, or isoflurane, the acyl chain undergoes
205 >        slight contractions of 0.11, 0.20, or 0.16 Angstrom, respectively,
206 >        at 50 mol % anesthetic. A simple model was used to estimate the
207 >        relative amounts of anesthetic located near the interface and deeper
208 >        in the bilayer hydrocarbon region, and only a slight preference
209 >        for an interfacial location was observed. Intermolecular H-1-H-1
210 >        nuclear Overhauser effects (NOEs) were measured between phospholipid
211 >        and halothane protons. These NOEs are consistent with the intramembrane
212 >        location of the anesthetics suggested by the H-2 NMR data. In addition,
213 >        the NOE data indicate that anesthetics prefer the interfacial and
214 >        hydrocarbon regions of the membrane and are not found in high concentrations
215 >        in the phospholipid headgroup.},
216 >  annote = {Qz716 Times Cited:38 Cited References Count:37},
217 >  issn = {0006-2960},
218 >  uri = {<Go to ISI>://A1995QZ71600035},
219   }
220  
221 < @Article{Mazur92,
222 <  author =       {E. Mazur},
223 <  title =        {Qualitative vs. Quantititative Thinking: Are we
224 <                  teaching the right thing? },
225 <  journal =      {Optics and Photonics News},
226 <  year =         1992,
227 <  volume =       3,
228 <  pages =        38
221 > @ARTICLE{Banerjee2004,
222 >  author = {D. Banerjee and B. C. Bag and S. K. Banik and D. S. Ray},
223 >  title = {Solution of quantum Langevin equation: Approximations, theoretical
224 >        and numerical aspects},
225 >  journal = {Journal of Chemical Physics},
226 >  year = {2004},
227 >  volume = {120},
228 >  pages = {8960-8972},
229 >  number = {19},
230 >  month = {May 15},
231 >  abstract = {Based on a coherent state representation of noise operator and an
232 >        ensemble averaging procedure using Wigner canonical thermal distribution
233 >        for harmonic oscillators, a generalized quantum Langevin equation
234 >        has been recently developed [Phys. Rev. E 65, 021109 (2002); 66,
235 >        051106 (2002)] to derive the equations of motion for probability
236 >        distribution functions in c-number phase-space. We extend the treatment
237 >        to explore several systematic approximation schemes for the solutions
238 >        of the Langevin equation for nonlinear potentials for a wide range
239 >        of noise correlation, strength and temperature down to the vacuum
240 >        limit. The method is exemplified by an analytic application to harmonic
241 >        oscillator for arbitrary memory kernel and with the help of a numerical
242 >        calculation of barrier crossing, in a cubic potential to demonstrate
243 >        the quantum Kramers' turnover and the quantum Arrhenius plot. (C)
244 >        2004 American Institute of Physics.},
245 >  annote = {816YY Times Cited:8 Cited References Count:35},
246 >  issn = {0021-9606},
247 >  uri = {<Go to ISI>://000221146400009},
248   }
249  
250 < @Book{Mazur97,
251 <  author =       {Eric Mazur},
252 <  title =        {Peer Instruction: A User's Manual},
253 <  publisher =    {Prentice Hall},
254 <  year =         1997,
255 <  address =      {New Jersey}
250 > @ARTICLE{Barojas1973,
251 >  author = {J. Barojas and D. Levesque},
252 >  title = {Simulation of Diatomic Homonuclear Liquids},
253 >  journal = {Phys. Rev. A},
254 >  year = {1973},
255 >  volume = {7},
256 >  pages = {1092-1105},
257   }
258  
259 < @Article{Wigner55,
260 <  author =       {E.~P. Wigner},
261 <  title =        {Characteristic Vectors of Bordered Matrices with
262 <                  Infinite Dimensions},
263 <  journal =      {Annals of Mathematics},
264 <  year =         1955,
265 <  volume =       62,
266 <  pages =        {548-564}
259 > @ARTICLE{Barth1998,
260 >  author = {E. Barth and T. Schlick},
261 >  title = {Overcoming stability limitations in biomolecular dynamics. I. Combining
262 >        force splitting via extrapolation with Langevin dynamics in LN},
263 >  journal = {Journal of Chemical Physics},
264 >  year = {1998},
265 >  volume = {109},
266 >  pages = {1617-1632},
267 >  number = {5},
268 >  month = {Aug 1},
269 >  abstract = {We present an efficient new method termed LN for propagating biomolecular
270 >        dynamics according to the Langevin equation that arose fortuitously
271 >        upon analysis of the range of harmonic validity of our normal-mode
272 >        scheme LIN. LN combines force linearization with force splitting
273 >        techniques and disposes of LIN'S computationally intensive minimization
274 >        (anharmonic correction) component. Unlike the competitive multiple-timestepping
275 >        (MTS) schemes today-formulated to be symplectic and time-reversible-LN
276 >        merges the slow and fast forces via extrapolation rather than impulses;
277 >        the Langevin heat bath prevents systematic energy drifts. This combination
278 >        succeeds in achieving more significant speedups than these MTS methods
279 >        which are Limited by resonance artifacts to an outer timestep less
280 >        than some integer multiple of half the period of the fastest motion
281 >        (around 4-5 fs for biomolecules). We show that LN achieves very
282 >        good agreement with small-timestep solutions of the Langevin equation
283 >        in terms of thermodynamics (energy means and variances), geometry,
284 >        and dynamics (spectral densities) for two proteins in vacuum and
285 >        a large water system. Significantly, the frequency of updating the
286 >        slow forces extends to 48 fs or more, resulting in speedup factors
287 >        exceeding 10. The implementation of LN in any program that employs
288 >        force-splitting computations is straightforward, with only partial
289 >        second-derivative information required, as well as sparse Hessian/vector
290 >        multiplication routines. The linearization part of LN could even
291 >        be replaced by direct evaluation of the fast components. The application
292 >        of LN to biomolecular dynamics is well suited for configurational
293 >        sampling, thermodynamic, and structural questions. (C) 1998 American
294 >        Institute of Physics.},
295 >  annote = {105HH Times Cited:29 Cited References Count:49},
296 >  issn = {0021-9606},
297 >  uri = {<Go to ISI>://000075066300006},
298   }
299  
300 < @Article{Gaukel98,
301 <  author =       {C. Gaukel and H.~R. Schober},
302 <  title =        {Diffusion Mechanisms in under-cooled Binary Metal
303 <                  Liquids of $\mbox{Zr}_{67}\mbox{Cu}_{33}$},
304 <  journal =      {Solid State Comm.},
305 <  year =         1998,
306 <  volume =       107,
307 <  pages =        {1-5}
300 > @ARTICLE{Batcho2001,
301 >  author = {P. F. Batcho and T. Schlick},
302 >  title = {Special stability advantages of position-Verlet over velocity-Verlet
303 >        in multiple-time step integration},
304 >  journal = {Journal of Chemical Physics},
305 >  year = {2001},
306 >  volume = {115},
307 >  pages = {4019-4029},
308 >  number = {9},
309 >  month = {Sep 1},
310 >  abstract = {We present an analysis for a simple two-component harmonic oscillator
311 >        that compares the use of position-Verlet to velocity-Verlet for
312 >        multiple-time step integration. The numerical stability analysis
313 >        based on the impulse-Verlet splitting shows that position-Verlet
314 >        has enhanced stability, in terms of the largest allowable time step,
315 >        for cases where an ample separation of time scales exists. Numerical
316 >        investigations confirm the advantages of the position-Verlet scheme
317 >        when used for the fastest time scales of the system. Applications
318 >        to a biomolecule. a solvated protein, for both Newtonian and Langevin
319 >        dynamics echo these trends over large outer time-step regimes. (C)
320 >        2001 American Institute of Physics.},
321 >  annote = {469KV Times Cited:6 Cited References Count:30},
322 >  issn = {0021-9606},
323 >  uri = {<Go to ISI>://000170813800005},
324   }
325  
326 < @Article{Qi99,
327 <  author =       {Y. Qi and T. \c{C}a\v{g}in and Y.
328 <                  Kimura and W.~A. {Goddard III}},
329 <  title =        {Molecular-dynamics simulations of glass formation
330 <                  and crystallization in binary liquid metals: $\mbox{Cu-Ag}$
331 <                  and $\mbox{Cu-Ni}$},
332 <  journal =      prb,
333 <  year =         1999,
334 <  volume =    59,
335 <  number =    5,
336 <  pages =     {3527-3533}
326 > @ARTICLE{Bates2005,
327 >  author = {M. A. Bates and G. R. Luckhurst},
328 >  title = {Biaxial nematic phases and V-shaped molecules: A Monte Carlo simulation
329 >        study},
330 >  journal = {Physical Review E},
331 >  year = {2005},
332 >  volume = {72},
333 >  pages = {-},
334 >  number = {5},
335 >  month = {Nov},
336 >  abstract = {Inspired by recent claims that compounds composed of V-shaped molecules
337 >        can exhibit the elusive biaxial nematic phase, we have developed
338 >        a generic simulation model for such systems. This contains the features
339 >        of the molecule that are essential to its liquid crystal behavior,
340 >        namely the anisotropies of the two arms and the angle between them.
341 >        The behavior of the model has been investigated using Monte Carlo
342 >        simulations for a wide range of these structural parameters. This
343 >        allows us to establish the relationship between the V-shaped molecule
344 >        and its ability to form a biaxial nematic phase. Of particular importance
345 >        are the criteria of geometry and the relative anisotropy necessary
346 >        for the system to exhibit a Landau point, at which the biaxial nematic
347 >        is formed directly from the isotropic phase. The simulations have
348 >        also been used to determine the orientational order parameters for
349 >        a selection of molecular axes. These are especially important because
350 >        they reveal the phase symmetry and are connected to the experimental
351 >        determination of this. The simulation results show that, whereas
352 >        some positions are extremely sensitive to the phase biaxiality,
353 >        others are totally blind to this.},
354 >  annote = {Part 1 988LQ Times Cited:0 Cited References Count:38},
355 >  issn = {1539-3755},
356 >  uri = {<Go to ISI>://000233603100030},
357   }
358  
359 < @Article{Khorunzhy97,
360 <  author =       {A. Khorunzhy and G.~J. Rodgers},
361 <  title =        {Eigenvalue distribution of large dilute random matrices},
362 <  journal =      {J. Math. Phys.},
363 <  year =         1997,
364 <  volume =       38,
365 <  pages =        {3300-3320}
359 > @ARTICLE{Beard2003,
360 >  author = {D. A. Beard and T. Schlick},
361 >  title = {Unbiased rotational moves for rigid-body dynamics},
362 >  journal = {Biophysical Journal},
363 >  year = {2003},
364 >  volume = {85},
365 >  pages = {2973-2976},
366 >  number = {5},
367 >  month = {Nov 1},
368 >  abstract = {We introduce an unbiased protocol for performing rotational moves
369 >        in rigid-body dynamics simulations. This approach - based on the
370 >        analytic solution for the rotational equations of motion for an
371 >        orthogonal coordinate system at constant angular velocity - removes
372 >        deficiencies that have been largely ignored in Brownian dynamics
373 >        simulations, namely errors for finite rotations that result from
374 >        applying the noncommuting rotational matrices in an arbitrary order.
375 >        Our algorithm should thus replace standard approaches to rotate
376 >        local coordinate frames in Langevin and Brownian dynamics simulations.},
377 >  annote = {736UA Times Cited:0 Cited References Count:11},
378 >  issn = {0006-3495},
379 >  uri = {<Go to ISI>://000186190500018},
380   }
381  
382 < @Article{Rodgers88,
383 <  author =       {G.~J. Rodgers and A. Bray},
384 <  title =        {Density of States of a Sparse Random Matrix},
385 <  journal =      {Phys. Rev. B},
386 <  year =         1988,
387 <  volume =       37,
388 <  pages =        355703562
382 > @ARTICLE{Beloborodov1998,
383 >  author = {I. S. Beloborodov and V. Y. Orekhov and A. S. Arseniev},
384 >  title = {Effect of coupling between rotational and translational Brownian
385 >        motions on NMR spin relaxation: Consideration using green function
386 >        of rigid body diffusion},
387 >  journal = {Journal of Magnetic Resonance},
388 >  year = {1998},
389 >  volume = {132},
390 >  pages = {328-329},
391 >  number = {2},
392 >  month = {Jun},
393 >  abstract = {Using the Green function of arbitrary rigid Brownian diffusion (Goldstein,
394 >        Biopolymers 33, 409-436, 1993), it was analytically shown that coupling
395 >        between translation and rotation diffusion degrees of freedom does
396 >        not affect the correlation functions relevant to the NMR intramolecular
397 >        relaxation. It follows that spectral densities usually used for
398 >        the anisotropic rotation diffusion (Woessner, J. Chem. Phys. 37,
399 >        647-654, 1962) can be regarded as exact in respect to the rotation-translation
400 >        coupling for the spin system connected with a rigid body. (C) 1998
401 >        Academic Press.},
402 >  annote = {Zu605 Times Cited:2 Cited References Count:6},
403 >  issn = {1090-7807},
404 >  uri = {<Go to ISI>://000074214800017},
405   }
406  
407 < @Article{Rodgers90,
408 <  author =       {G.~J. Rodgers and C. {De Dominicis}},
409 <  title =        {Density of states of sparse random matrices},
410 <  journal =      {J. Phys. A: Math. Gen.},
411 <  year =         1990,
412 <  volume =       23,
413 <  pages =        {1567-1573}
407 > @ARTICLE{Berardi1996,
408 >  author = {R. Berardi and S. Orlandi and C. Zannoni},
409 >  title = {Antiphase structures in polar smectic liquid crystals and their molecular
410 >        origin},
411 >  journal = {Chemical Physics Letters},
412 >  year = {1996},
413 >  volume = {261},
414 >  pages = {357-362},
415 >  number = {3},
416 >  month = {Oct 18},
417 >  abstract = {We demonstrate that the overall molecular dipole organization in a
418 >        smectic liquid crystal formed of polar molecules can be strongly
419 >        influenced by the position of the dipole in the molecule. We study
420 >        by large scale Monte Carlo simulations systems of attractive-repulsive
421 >        ''Gay-Berne'' elongated ellipsoids with an axial dipole at the center
422 >        or near the end of the molecule and we show that monolayer smectic
423 >        liquid crystals and modulated antiferroelectric bilayer stripe domains
424 >        similar to the experimentally observed ''antiphase'' structures
425 >        are obtained in the two cases.},
426 >  annote = {Vn637 Times Cited:49 Cited References Count:26},
427 >  issn = {0009-2614},
428 >  uri = {<Go to ISI>://A1996VN63700023},
429   }
430  
431 < @InProceedings{Barker80,
432 <  author =       {J.~A. Barker},
433 <  title =        {Reaction field method for polar fluids},
434 <  booktitle =    {The problem of long-range forces in the computer
435 <                  simulation of condensed matter},
436 <  pages =        {45-6},
437 <  year =         1980,
438 <  editor =       {D. Ceperley},
439 <  volume =       9,
440 <  series =       {NRCC Workshop Proceedings}
431 > @ARTICLE{Berkov2005,
432 >  author = {D. V. Berkov and N. L. Gorn},
433 >  title = {Magnetization precession due to a spin-polarized current in a thin
434 >        nanoelement: Numerical simulation study},
435 >  journal = {Physical Review B},
436 >  year = {2005},
437 >  volume = {72},
438 >  pages = {-},
439 >  number = {9},
440 >  month = {Sep},
441 >  abstract = {In this paper a detailed numerical study (in frames of the Slonczewski
442 >        formalism) of magnetization oscillations driven by a spin-polarized
443 >        current through a thin elliptical nanoelement is presented. We show
444 >        that a sophisticated micromagnetic model, where a polycrystalline
445 >        structure of a nanoelement is taken into account, can explain qualitatively
446 >        all most important features of the magnetization oscillation spectra
447 >        recently observed experimentally [S. I. Kiselev , Nature 425, 380
448 >        (2003)], namely, existence of several equidistant spectral bands,
449 >        sharp onset and abrupt disappearance of magnetization oscillations
450 >        with increasing current, absence of the out-of-plane regime predicted
451 >        by a macrospin model, and the relation between frequencies of so-called
452 >        small-angle and quasichaotic oscillations. However, a quantitative
453 >        agreement with experimental results (especially concerning the frequency
454 >        of quasichaotic oscillations) could not be achieved in the region
455 >        of reasonable parameter values, indicating that further model refinement
456 >        is necessary for a complete understanding of the spin-driven magnetization
457 >        precession even in this relatively simple experimental situation.},
458 >  annote = {969IT Times Cited:2 Cited References Count:55},
459 >  issn = {1098-0121},
460 >  uri = {<Go to ISI>://000232228500058},
461   }
462  
463 < @Article{Smith82,
464 <  author =       {W. Smith},
465 <  title =        {Point multipoles in the Ewald summation},
466 <  journal =      {CCP5 Quarterly},
467 <  year =         1982,
468 <  volume =       4,
469 <  pages =        {13-25}
463 > @ARTICLE{Berkov2005a,
464 >  author = {D. V. Berkov and N. L. Gorn},
465 >  title = {Stochastic dynamic simulations of fast remagnetization processes:
466 >        recent advances and applications},
467 >  journal = {Journal of Magnetism and Magnetic Materials},
468 >  year = {2005},
469 >  volume = {290},
470 >  pages = {442-448},
471 >  month = {Apr},
472 >  abstract = {Numerical simulations of fast remagnetization processes using stochastic
473 >        dynamics are widely used to study various magnetic systems. In this
474 >        paper, we first address several crucial methodological problems
475 >        of such simulations: (i) the influence of finite-element discretization
476 >        on simulated dynamics, (ii) choice between Ito and Stratonovich
477 >        stochastic calculi by the solution of micromagnetic stochastic equations
478 >        of motion and (iii) non-trivial correlation properties of the random
479 >        (thermal) field. Next, we discuss several examples to demonstrate
480 >        the great potential of the Langevin dynamics for studying fast remagnetization
481 >        processes in technically relevant applications: we present numerical
482 >        analysis of equilibrium magnon spectra in patterned structures,
483 >        study thermal noise effects on the magnetization dynamics of nanoelements
484 >        in pulsed fields and show some results for a remagnetization dynamics
485 >        induced by a spin-polarized current. (c) 2004 Elsevier B.V. All
486 >        rights reserved.},
487 >  annote = {Part 1 Sp. Iss. SI 922KU Times Cited:2 Cited References Count:25},
488 >  issn = {0304-8853},
489 >  uri = {<Go to ISI>://000228837600109},
490   }
491  
492 < @Article{Daw84,
493 <  author =       {M.~S. Daw and M.~I. Baskes},
494 <  title =        {Embedded-atom method: Derivation and application to
495 <                  impurities, surfaces, and other defects in metals},
496 <  journal =      prb,
497 <  year =         1984,
498 <  volume =    29,
499 <  number =    12,
500 <  pages =     {6443-6453}
492 > @ARTICLE{Berkov2002,
493 >  author = {D. V. Berkov and N. L. Gorn and P. Gornert},
494 >  title = {Magnetization dynamics in nanoparticle systems: Numerical simulation
495 >        using Langevin dynamics},
496 >  journal = {Physica Status Solidi a-Applied Research},
497 >  year = {2002},
498 >  volume = {189},
499 >  pages = {409-421},
500 >  number = {2},
501 >  month = {Feb 16},
502 >  abstract = {We report on recent progress achieved by the development of numerical
503 >        methods based on the stochastic (Langevin) dynamics applied to systems
504 >        of interacting magnetic nanoparticles. The method enables direct
505 >        simulations of the trajectories of magnetic moments taking into
506 >        account (i) all relevant interactions, (ii) precession dynamics,
507 >        and (iii) temperature fluctuations included via the random (thermal)
508 >        field. We present several novel results obtained using new methods
509 >        developed for the solution of the Langevin equations. In particular,
510 >        we have investigated magnetic nanodots and disordered granular systems
511 >        of single-domain magnetic particles. For the first case we have
512 >        calculated the spectrum and the spatial distribution of spin excitations.
513 >        For the second system the complex ac susceptibility chi(omega, T)
514 >        for various particle concentrations and particle anisotropies were
515 >        computed and compared with numerous experimental results.},
516 >  annote = {526TF Times Cited:4 Cited References Count:37},
517 >  issn = {0031-8965},
518 >  uri = {<Go to ISI>://000174145200026},
519   }
520  
521 <
522 < @Article{Chen90,
523 <  author =       {A.~P. Sutton and J. Chen},
524 <  title =        {Long-Range $\mbox{Finnis Sinclair}$ Potentials},
525 <  journal =      {Phil. Mag. Lett.},
526 <  year =         1990,
527 <  volume =    61,
528 <  pages =     {139-146}
521 > @ARTICLE{Bernal1980,
522 >  author = {J.M. Bernal and J. G. {de la Torre}},
523 >  title = {Transport Properties and Hydrodynamic Centers of Rigid Macromolecules
524 >        with Arbitrary Shape},
525 >  journal = {Biopolymers},
526 >  year = {1980},
527 >  volume = {19},
528 >  pages = {751-766},
529   }
530  
531 < @Article{Lu97,
532 <  author =       {J. Lu and J.~A. Szpunar},
533 <  title =        {Applications of the embedded-atom method to glass
534 <                  formation and crystallization of liquid and glass
535 <                  transition-metal nickel},
536 <  journal =      {Phil. Mag. A},
537 <  year =         {1997},
538 <  volume =    {75},
539 <  pages =        {1057-1066},
531 > @ARTICLE{Brunger1984,
532 >  author = {A. Brunger and C. L. Brooks and M. Karplus},
533 >  title = {Stochastic Boundary-Conditions for Molecular-Dynamics Simulations
534 >        of St2 Water},
535 >  journal = {Chemical Physics Letters},
536 >  year = {1984},
537 >  volume = {105},
538 >  pages = {495-500},
539 >  number = {5},
540 >  annote = {Sm173 Times Cited:143 Cited References Count:22},
541 >  issn = {0009-2614},
542 >  uri = {<Go to ISI>://A1984SM17300007},
543   }
544  
545 < @Article{Shlesinger99,
546 <  author =       {M.~F. Shlesinger and J. Klafter and G. Zumofen},
547 <  title =        {Above, below, and beyond Brownian motion},
548 <  journal =      {Am. J. Phys.},
549 <  year =         1999,
550 <  volume =       67,
551 <  pages =        {1253-1259}
545 > @ARTICLE{Budd1999,
546 >  author = {C. J. Budd and G. J. Collins and W. Z. Huang and R. D. Russell},
547 >  title = {Self-similar numerical solutions of the porous-medium equation using
548 >        moving mesh methods},
549 >  journal = {Philosophical Transactions of the Royal Society of London Series
550 >        a-Mathematical Physical and Engineering Sciences},
551 >  year = {1999},
552 >  volume = {357},
553 >  pages = {1047-1077},
554 >  number = {1754},
555 >  month = {Apr 15},
556 >  abstract = {This paper examines a synthesis of adaptive mesh methods with the
557 >        use of symmetry to study a partial differential equation. In particular,
558 >        it considers methods which admit discrete self-similar solutions,
559 >        examining the convergence of these to the true self-similar solution
560 >        as well as their stability. Special attention is given to the nonlinear
561 >        diffusion equation describing flow in a porous medium.},
562 >  annote = {199EE Times Cited:4 Cited References Count:14},
563 >  issn = {1364-503X},
564 >  uri = {<Go to ISI>://000080466800005},
565   }
566  
567 < @Article{Klafter96,
568 <  author =       {J. Klafter and M. Shlesinger and G. Zumofen},
569 <  title =        {Beyond Brownian Motion},
570 <  journal =      {Physics Today},
571 <  year =         1996,
572 <  volume =       49,
573 <  pages =        {33-39}
567 > @ARTICLE{Camp1999,
568 >  author = {P. J. Camp and M. P. Allen and A. J. Masters},
569 >  title = {Theory and computer simulation of bent-core molecules},
570 >  journal = {Journal of Chemical Physics},
571 >  year = {1999},
572 >  volume = {111},
573 >  pages = {9871-9881},
574 >  number = {21},
575 >  month = {Dec 1},
576 >  abstract = {Fluids of hard bent-core molecules have been studied using theory
577 >        and computer simulation. The molecules are composed of two hard
578 >        spherocylinders, with length-to-breadth ratio L/D, joined by their
579 >        ends at an angle 180 degrees - gamma. For L/D = 2 and gamma = 0,10,20
580 >        degrees, the simulations show isotropic, nematic, smectic, and solid
581 >        phases. For L/D = 2 and gamma = 30 degrees, only isotropic, nematic,
582 >        and solid phases are in evidence, which suggests that there is a
583 >        nematic-smectic-solid triple point at an angle in the range 20 degrees
584 >        < gamma < 30 degrees. In all of the orientationally ordered fluid
585 >        phases the order is purely uniaxial. For gamma = 10 degrees and
586 >        20 degrees, at the studied densities, the solid is also uniaxially
587 >        ordered, whilst for gamma = 30 degrees the solid layers are biaxially
588 >        ordered. For L/D = 2 and gamma = 60 degrees and 90 degrees we find
589 >        no spontaneous orientational ordering. This is shown to be due to
590 >        the interlocking of dimer pairs which precludes alignment. We find
591 >        similar results for L/D = 9.5 and gamma = 72 degrees, where an isotropic-biaxial
592 >        nematic transition is predicted by Onsager theory. Simulations in
593 >        the biaxial nematic phase show it to be at least mechanically stable
594 >        with respect to the isotropic phase, however. We have compared the
595 >        quasi-exact simulation results in the isotropic phase with the predicted
596 >        equations of state from three theories: the virial expansion containing
597 >        the second and third virial coefficients; the Parsons-Lee equation
598 >        of state; an application of Wertheim's theory of associating fluids
599 >        in the limit of infinite attractive association energy. For all
600 >        of the molecule elongations and geometries we have simulated, the
601 >        Wertheim theory proved to be the most accurate. Interestingly, the
602 >        isotropic equation of state is virtually independent of the dimer
603 >        bond angle-a feature that is also reflected in the lack of variation
604 >        with angle of the calculated second and third virial coefficients.
605 >        (C) 1999 American Institute of Physics. [S0021-9606(99)50445-5].},
606 >  annote = {255TC Times Cited:24 Cited References Count:38},
607 >  issn = {0021-9606},
608 >  uri = {<Go to ISI>://000083685400056},
609   }
610  
611 < @Article{Blumen83,
612 <  author =       {A. Blumen and J. Klafter and G. Zumofen},
613 <  title =        {Recombination in amorphous materials as a
614 <                  continuous-time random-walk problem},
615 <  journal =      {Phys. Rev. B},
616 <  year =         1983,
617 <  volume =       27,
618 <  pages =        {3429-3435}
611 > @ARTICLE{Care2005,
612 >  author = {C. M. Care and D. J. Cleaver},
613 >  title = {Computer simulation of liquid crystals},
614 >  journal = {Reports on Progress in Physics},
615 >  year = {2005},
616 >  volume = {68},
617 >  pages = {2665-2700},
618 >  number = {11},
619 >  month = {Nov},
620 >  abstract = {A review is presented of molecular and mesoscopic computer simulations
621 >        of liquid crystalline systems. Molecular simulation approaches applied
622 >        to such systems are described, and the key findings for bulk phase
623 >        behaviour are reported. Following this, recently developed lattice
624 >        Boltzmann approaches to the mesoscale modelling of nemato-dynanics
625 >        are reviewed. This paper concludes with a discussion of possible
626 >        areas for future development in this field.},
627 >  annote = {989TU Times Cited:2 Cited References Count:258},
628 >  issn = {0034-4885},
629 >  uri = {<Go to ISI>://000233697600004},
630   }
631  
632 < @Article{Klafter94,
633 <  author =       {J. Klafter and G. Zumofen},
634 <  title =        {Probability Distributions for Continuous-Time Random
635 <                  Walks with Long Tails},
636 <  journal =      jpc,
637 <  year =         1994,
638 <  volume =       98,
639 <  pages =        {7366-7370}
632 > @ARTICLE{Carrasco1999,
633 >  author = {B. Carrasco and J. G. {de la Torre}},
634 >  title = {Hydrodynamic properties of rigid particles: Comparison of different
635 >        modeling and computational procedures},
636 >  journal = {Biophysical Journal},
637 >  year = {1999},
638 >  volume = {76},
639 >  pages = {3044-3057},
640 >  number = {6},
641 >  month = {Jun},
642 >  abstract = {The hydrodynamic properties of rigid particles are calculated from
643 >        models composed of spherical elements (beads) using theories developed
644 >        by Kirkwood, Bloomfield, and their coworkers. Bead models have usually
645 >        been built in such a way that the beads fill the volume occupied
646 >        by the particles. Sometimes the beads are few and of varying sizes
647 >        (bead models in the strict sense), and other times there are many
648 >        small beads (filling models). Because hydrodynamic friction takes
649 >        place at the molecular surface, another possibility is to use shell
650 >        models, as originally proposed by Bloomfield. In this work, we have
651 >        developed procedures to build models of the various kinds, and we
652 >        describe the theory and methods for calculating their hydrodynamic
653 >        properties, including approximate methods that may be needed to
654 >        treat models with a very large number of elements. By combining
655 >        the various possibilities of model building and hydrodynamic calculation,
656 >        several strategies can be designed. We have made a quantitative
657 >        comparison of the performance of the various strategies by applying
658 >        them to some test cases, for which the properties are known a priori.
659 >        We provide guidelines and computational tools for bead modeling.},
660 >  annote = {200TT Times Cited:46 Cited References Count:57},
661 >  issn = {0006-3495},
662 >  uri = {<Go to ISI>://000080556700016},
663   }
664  
665 <
666 < @Article{Dzugutov92,
667 <  author =       {M. Dzugutov},
668 <  title =        {Glass formation in a simple monatomic liquid with
669 <                  icosahedral inherent local order},
670 <  journal =      pra,
671 <  year =         1992,
672 <  volume =       46,
673 <  pages =        {R2984-R2987}
665 > @ARTICLE{Chandra1999,
666 >  author = {A. Chandra and T. Ichiye},
667 >  title = {Dynamical properties of the soft sticky dipole model of water: Molecular
668 >        dynamics simulations},
669 >  journal = {Journal of Chemical Physics},
670 >  year = {1999},
671 >  volume = {111},
672 >  pages = {2701-2709},
673 >  number = {6},
674 >  month = {Aug 8},
675 >  abstract = {Dynamical properties of the soft sticky dipole (SSD) model of water
676 >        are calculated by means of molecular dynamics simulations. Since
677 >        this is not a simple point model, the forces and torques arising
678 >        from the SSD potential are derived here. Simulations are carried
679 >        out in the microcanonical ensemble employing the Ewald method for
680 >        the electrostatic interactions. Various time correlation functions
681 >        and dynamical quantities associated with the translational and rotational
682 >        motion of water molecules are evaluated and compared with those
683 >        of two other commonly used models of liquid water, namely the transferable
684 >        intermolecular potential-three points (TIP3P) and simple point charge/extended
685 >        (SPC/E) models, and also with experiments. The dynamical properties
686 >        of the SSD water model are found to be in good agreement with the
687 >        experimental results and appear to be better than the TIP3P and
688 >        SPC/E models in most cases, as has been previously shown for its
689 >        thermodynamic, structural, and dielectric properties. Also, molecular
690 >        dynamics simulations of the SSD model are found to run much faster
691 >        than TIP3P, SPC/E, and other multisite models. (C) 1999 American
692 >        Institute of Physics. [S0021-9606(99)51430-X].},
693 >  annote = {221EN Times Cited:14 Cited References Count:66},
694 >  issn = {0021-9606},
695 >  uri = {<Go to ISI>://000081711200038},
696   }
697  
698 < @Article{Moore94,
699 <  author =       {P. Moore and T. Keyes},
700 <  title =        {Normal Mode Analysis of Liquid $\mbox{CS}_2$: Velocity
701 <                  Correlation Functions and Self-Diffusion Constants},
702 <  journal =      jcp,
703 <  year =         1994,
704 <  volume =       100,
705 <  pages =        6709
698 > @ARTICLE{Channell1990,
699 >  author = {P. J. Channell and C. Scovel},
700 >  title = {Symplectic Integration of Hamiltonian-Systems},
701 >  journal = {Nonlinearity},
702 >  year = {1990},
703 >  volume = {3},
704 >  pages = {231-259},
705 >  number = {2},
706 >  month = {may},
707 >  annote = {Dk631 Times Cited:152 Cited References Count:34},
708 >  issn = {0951-7715},
709 >  uri = {<Go to ISI>://A1990DK63100001},
710   }
711  
712 < @Article{Seeley89,
713 <  author =       {G. Seeley and T. Keyes},
714 <  title =        {Normal-mode analysis of liquid-state dynamics},
715 <  journal =      jcp,
716 <  year =         1989,
717 <  volume =       91,
718 <  pages =        {5581-5586}
712 > @ARTICLE{Chen2003,
713 >  author = {B. Chen and F. Solis},
714 >  title = {Explicit mixed finite order Runge-Kutta methods},
715 >  journal = {Applied Numerical Mathematics},
716 >  year = {2003},
717 >  volume = {44},
718 >  pages = {21-30},
719 >  number = {1-2},
720 >  month = {Jan},
721 >  abstract = {We investigate the asymptotic behavior of systems of nonlinear differential
722 >        equations and introduce a family of mixed methods from combinations
723 >        of explicit Runge-Kutta methods. These methods have better stability
724 >        behavior than traditional Runge-Kutta methods and generally extend
725 >        the range of validity of the calculated solutions. These methods
726 >        also give a way of determining if the numerical solutions are real
727 >        or spurious. Emphasis is put on examples coming from mathematical
728 >        models in ecology. (C) 2002 IMACS. Published by Elsevier Science
729 >        B.V. All rights reserved.},
730 >  annote = {633ZD Times Cited:0 Cited References Count:9},
731 >  issn = {0168-9274},
732 >  uri = {<Go to ISI>://000180314200002},
733   }
734  
735 < @Article{Madan90,
736 <  author =       {B. Madan and T. Keyes and G. Seeley},
737 <  title =        {Diffusion in supercooled liquids via normal mode
738 <                  analysis},
739 <  journal =      jcp,
740 <  year =         1990,
741 <  volume =       92,
742 <  pages =        {7565-7569}
735 > @ARTICLE{Cheung2004,
736 >  author = {D. L. Cheung and S. J. Clark and M. R. Wilson},
737 >  title = {Calculation of flexoelectric coefficients for a nematic liquid crystal
738 >        by atomistic simulation},
739 >  journal = {Journal of Chemical Physics},
740 >  year = {2004},
741 >  volume = {121},
742 >  pages = {9131-9139},
743 >  number = {18},
744 >  month = {Nov 8},
745 >  abstract = {Equilibrium molecular dynamics calculations have been performed for
746 >        the liquid crystal molecule n-4-(trans-4-n-pentylcyclohexyl)benzonitrile
747 >        (PCH5) using a fully atomistic model. Simulation data have been
748 >        obtained for a series of temperatures in the nematic phase. The
749 >        simulation data have been used to calculate the flexoelectric coefficients
750 >        e(s) and e(b) using the linear response formalism of Osipov and
751 >        Nemtsov [M. A. Osipov and V. B. Nemtsov, Sov. Phys. Crstallogr.
752 >        31, 125 (1986)]. The temperature and order parameter dependence
753 >        of e(s) and e(b) are examined, as are separate contributions from
754 >        different intermolecular interactions. Values of e(s) and e(b) calculated
755 >        from simulation are consistent with those found from experiment.
756 >        (C) 2004 American Institute of Physics.},
757 >  annote = {866UM Times Cited:4 Cited References Count:61},
758 >  issn = {0021-9606},
759 >  uri = {<Go to ISI>://000224798900053},
760   }
761  
762 < @Article{Madan91,
763 <  author =       {B. Madan and T. Keyes and G. Seeley},
764 <  title =        {Normal mode analysis of the velocity correlation
765 <                  function in supercooled liquids},
766 <  journal =      jcp,
767 <  year =         1991,
768 <  volume =       94,
769 <  pages =        {6762-6769}
762 > @ARTICLE{Cheung2002,
763 >  author = {D. L. Cheung and S. J. Clark and M. R. Wilson},
764 >  title = {Calculation of the rotational viscosity of a nematic liquid crystal},
765 >  journal = {Chemical Physics Letters},
766 >  year = {2002},
767 >  volume = {356},
768 >  pages = {140-146},
769 >  number = {1-2},
770 >  month = {Apr 15},
771 >  abstract = {Equilibrium molecular dynamics calculations have been performed for
772 >        the liquid crystal molecule n-4-(trans-4-npentylcyclohexyl)benzonitrile
773 >        (PCH5) using a fully atomistic model. Simulation data has been obtained
774 >        for a series of temperatures in the nematic phase. The rotational
775 >        viscosity co-efficient gamma(1), has been calculated using the angular
776 >        velocity correlation function of the nematic director, n, the mean
777 >        squared diffusion of n and statistical mechanical methods based
778 >        on the rotational diffusion co-efficient. We find good agreement
779 >        between the first two methods and experimental values. (C) 2002
780 >        Published by Elsevier Science B.V.},
781 >  annote = {547KF Times Cited:8 Cited References Count:31},
782 >  issn = {0009-2614},
783 >  uri = {<Go to ISI>://000175331000020},
784   }
785  
786 < @Article{Buchner92,
787 <  author =       {M. Buchner, B.~M. Ladanyi and R.~M. Stratt},
788 <  title =        {The short-time dynamics of molecular
789 <                  liquids. Instantaneous-normal-mode theory},
790 <  journal =      jcp,
791 <  year =         1992,
792 <  volume =       97,
793 <  pages =        {8522-8535}
786 > @ARTICLE{Chin2004,
787 >  author = {S. A. Chin},
788 >  title = {Dynamical multiple-time stepping methods for overcoming resonance
789 >        instabilities},
790 >  journal = {Journal of Chemical Physics},
791 >  year = {2004},
792 >  volume = {120},
793 >  pages = {8-13},
794 >  number = {1},
795 >  month = {Jan 1},
796 >  abstract = {Current molecular dynamics simulations of biomolecules using multiple
797 >        time steps to update the slowly changing force are hampered by instabilities
798 >        beginning at time steps near the half period of the fastest vibrating
799 >        mode. These #resonance# instabilities have became a critical barrier
800 >        preventing the long time simulation of biomolecular dynamics. Attempts
801 >        to tame these instabilities by altering the slowly changing force
802 >        and efforts to damp them out by Langevin dynamics do not address
803 >        the fundamental cause of these instabilities. In this work, we trace
804 >        the instability to the nonanalytic character of the underlying spectrum
805 >        and show that a correct splitting of the Hamiltonian, which renders
806 >        the spectrum analytic, restores stability. The resulting Hamiltonian
807 >        dictates that in addition to updating the momentum due to the slowly
808 >        changing force, one must also update the position with a modified
809 >        mass. Thus multiple-time stepping must be done dynamically. (C)
810 >        2004 American Institute of Physics.},
811 >  annote = {757TK Times Cited:1 Cited References Count:22},
812 >  issn = {0021-9606},
813 >  uri = {<Go to ISI>://000187577400003},
814   }
815  
816 < @Article{Wan94,
817 <  author =       {Yi. Wan and R.~M. Stratt},
818 <  title =        {Liquid theory for the instantaneous normal modes of
819 <                  a liquid},
820 <  journal =      jcp,
821 <  year =         1994,
822 <  volume =       100,
823 <  pages =        {5123-5138}
816 > @ARTICLE{Cook2000,
817 >  author = {M. J. Cook and M. R. Wilson},
818 >  title = {Simulation studies of dipole correlation in the isotropic liquid
819 >        phase},
820 >  journal = {Liquid Crystals},
821 >  year = {2000},
822 >  volume = {27},
823 >  pages = {1573-1583},
824 >  number = {12},
825 >  month = {Dec},
826 >  abstract = {The Kirkwood correlation factor g(1) determines the preference for
827 >        local parallel or antiparallel dipole association in the isotropic
828 >        phase. Calamitic mesogens with longitudinal dipole moments and Kirkwood
829 >        factors greater than 1 have an enhanced effective dipole moment
830 >        along the molecular long axis. This leads to higher values of Delta
831 >        epsilon in the nematic phase. This paper describes state-of-the-art
832 >        molecular dynamics simulations of two calamitic mesogens 4-(trans-4-n-pentylcyclohexyl)benzonitrile
833 >        (PCH5) and 4-(trans-4-n-pentylcyclohexyl) chlorobenzene (PCH5-Cl)
834 >        in the isotropic liquid phase using an all-atom force field and
835 >        taking long range electrostatics into account using an Ewald summation.
836 >        Using this methodology, PCH5 is seen to prefer antiparallel dipole
837 >        alignment with a negative g(1) and PCH5-Cl is seen to prefer parallel
838 >        dipole alignment with a positive g(1); this is in accordance with
839 >        experimental dielectric measurements. Analysis of the molecular
840 >        dynamics trajectories allows an assessment of why these molecules
841 >        behave differently.},
842 >  annote = {376BF Times Cited:10 Cited References Count:16},
843 >  issn = {0267-8292},
844 >  uri = {<Go to ISI>://000165437800002},
845   }
846  
847 < @article{Stratt95,
848 <  author =       {R.~M. Stratt},
849 <  title =        {The instantaneous normal modes of liquids},
850 <  journal =      {Acc. Chem. Res.},
851 <  year =         1995,
852 <  volume =       28,
853 <  pages =        {201-207}
847 > @ARTICLE{Cui2003,
848 >  author = {B. X. Cui and M. Y. Shen and K. F. Freed},
849 >  title = {Folding and misfolding of the papillomavirus E6 interacting peptide
850 >        E6ap},
851 >  journal = {Proceedings of the National Academy of Sciences of the United States
852 >        of America},
853 >  year = {2003},
854 >  volume = {100},
855 >  pages = {7087-7092},
856 >  number = {12},
857 >  month = {Jun 10},
858 >  abstract = {All-atom Langevin dynamics simulations have been performed to study
859 >        the folding pathways of the 18-residue binding domain fragment E6ap
860 >        of the human papillomavirus E6 interacting peptide. Six independent
861 >        folding trajectories, with a total duration of nearly 2 mus, all
862 >        lead to the same native state in which the E6ap adopts a fluctuating
863 >        a-helix structure in the central portion (Ser-4-Leu-13) but with
864 >        very flexible N and C termini. Simulations starting from different
865 >        core configurations exhibit the E6ap folding dynamics as either
866 >        a two- or three-state folder with an intermediate misfolded state.
867 >        The essential leucine hydrophobic core (Leu-9, Leu-12, and Leu-13)
868 >        is well conserved in the native-state structure but absent in the
869 >        intermediate structure, suggesting that the leucine core is not
870 >        only essential for the binding activity of E6ap but also important
871 >        for the stability of the native structure. The free energy landscape
872 >        reveals a significant barrier between the basins separating the
873 >        native and misfolded states. We also discuss the various underlying
874 >        forces that drive the peptide into its native state.},
875 >  annote = {689LC Times Cited:3 Cited References Count:48},
876 >  issn = {0027-8424},
877 >  uri = {<Go to ISI>://000183493500037},
878   }
879  
880 < @Article{Nitzan95,
881 <  author =       {G.~V. Vijayadamodar and A. Nitzan},
882 <  title =        {On the application of instantaneous normal mode
883 <                  analysis to long time dynamics of liquids},
884 <  journal =      jcp,
885 <  year =         1995,
886 <  volume =       103,
887 <  pages =        {2169-2177}
888 < }
889 <
890 < @Article{Ribeiro98,
891 <  author =       "M.~C.~C. Ribeiro and P.~A. Madden",
892 <  title =        "Unstable Modes in Ionic Melts",
893 <  journal =      jcp,
894 <  year =         1998,
895 <  volume =       108,
896 <  pages =        {3256-3263}
897 < }
898 <
899 < @Article{Keyes98a,
900 <  author =       {T. Keyes and W.-X. Li and U.~Z{\"{u}}rcher},
901 <  title =        {Comment on a critique of the instantaneous normal
1141 <                  mode (INM) approach to diffusion
1142 <                  (J. Chem. Phys. {\bf 107}, 4618 (1997))},
1143 <  journal =      jcp,
1144 <  year =         1998,
1145 <  volume =       109,
1146 <  pages =        {4693-4694}
1147 < }
1148 <
1149 < @Article{Alemany98,
1150 <  author =       {M.~M.~G. Alemany and C. Rey and L.~J. Gallego},
1151 <  title =        {Transport coefficients of liquid transition metals:
1152 <                  A computer simulation study using the embedded atom
1153 <                  model},
1154 <  journal =      jcp,
1155 <  year =         1998,
1156 <  volume =       109,
1157 <  pages =        {5175-5176}
880 > @ARTICLE{Denisov2003,
881 >  author = {S. I. Denisov and T. V. Lyutyy and K. N. Trohidou},
882 >  title = {Magnetic relaxation in finite two-dimensional nanoparticle ensembles},
883 >  journal = {Physical Review B},
884 >  year = {2003},
885 >  volume = {67},
886 >  pages = {-},
887 >  number = {1},
888 >  month = {Jan 1},
889 >  abstract = {We study the slow phase of thermally activated magnetic relaxation
890 >        in finite two-dimensional ensembles of dipolar interacting ferromagnetic
891 >        nanoparticles whose easy axes of magnetization are perpendicular
892 >        to the distribution plane. We develop a method to numerically simulate
893 >        the magnetic relaxation for the case that the smallest heights of
894 >        the potential barriers between the equilibrium directions of the
895 >        nanoparticle magnetic moments are much larger than the thermal energy.
896 >        Within this framework, we analyze in detail the role that the correlations
897 >        of the nanoparticle magnetic moments and the finite size of the
898 >        nanoparticle ensemble play in magnetic relaxation.},
899 >  annote = {642XH Times Cited:11 Cited References Count:31},
900 >  issn = {1098-0121},
901 >  uri = {<Go to ISI>://000180830400056},
902   }
903  
904 < @Article{Belonoshko00,
905 <  author =       {A.~B. Belonoshko and R. Ahuja and O. Eriksson and
906 <                  B. Johansson},
907 <  title =        {Quasi ab initio molecular dynamic study of Cu melting},
908 <  journal =      prb,
909 <  year =         2000,
910 <  volume =       61,
911 <  pages =        {3838-3844}
904 > @ARTICLE{Derreumaux1998,
905 >  author = {P. Derreumaux and T. Schlick},
906 >  title = {The loop opening/closing motion of the enzyme triosephosphate isomerase},
907 >  journal = {Biophysical Journal},
908 >  year = {1998},
909 >  volume = {74},
910 >  pages = {72-81},
911 >  number = {1},
912 >  month = {Jan},
913 >  abstract = {To explore the origin of the large-scale motion of triosephosphate
914 >        isomerase's flexible loop (residues 166 to 176) at the active site,
915 >        several simulation protocols are employed both for the free enzyme
916 >        in vacuo and for the free enzyme with some solvent modeling: high-temperature
917 >        Langevin dynamics simulations, sampling by a #dynamics##driver#
918 >        approach, and potential-energy surface calculations. Our focus is
919 >        on obtaining the energy barrier to the enzyme's motion and establishing
920 >        the nature of the loop movement. Previous calculations did not determine
921 >        this energy barrier and the effect of solvent on the barrier. High-temperature
922 >        molecular dynamics simulations and crystallographic studies have
923 >        suggested a rigid-body motion with two hinges located at both ends
924 >        of the loop; Brownian dynamics simulations at room temperature pointed
925 >        to a very flexible behavior. The present simulations and analyses
926 >        reveal that although solute/solvent hydrogen bonds play a crucial
927 >        role in lowering the energy along the pathway, there still remains
928 >        a high activation barrier, This finding clearly indicates that,
929 >        if the loop opens and closes in the absence of a substrate at standard
930 >        conditions (e.g., room temperature, appropriate concentration of
931 >        isomerase), the time scale for transition is not in the nanosecond
932 >        but rather the microsecond range. Our results also indicate that
933 >        in the context of spontaneous opening in the free enzyme, the motion
934 >        is of rigid-body type and that the specific interaction between
935 >        residues Ala(176) and Tyr(208) plays a crucial role in the loop
936 >        opening/closing mechanism.},
937 >  annote = {Zl046 Times Cited:30 Cited References Count:29},
938 >  issn = {0006-3495},
939 >  uri = {<Go to ISI>://000073393400009},
940   }
941  
942 < @Article{Banhart92,
943 <  author =       {J. Banhart and H. Ebert and R. Kuentzler and
944 <                  J. Voitl\"{a}nder},
945 <  title =        {Electronic properties of single-phased metastable
946 <                  Ag-Cu alloys},
947 <  journal =      prb,
948 <  year =         1992,
949 <  volume =       46,
950 <  pages =        {9968-9975}
942 > @ARTICLE{Dullweber1997,
943 >  author = {A. Dullweber and B. Leimkuhler and R. McLachlan},
944 >  title = {Symplectic splitting methods for rigid body molecular dynamics},
945 >  journal = {Journal of Chemical Physics},
946 >  year = {1997},
947 >  volume = {107},
948 >  pages = {5840-5851},
949 >  number = {15},
950 >  month = {Oct 15},
951 >  abstract = {Rigid body molecular models possess symplectic structure and time-reversal
952 >        symmetry. Standard numerical integration methods destroy both properties,
953 >        introducing nonphysical dynamical behavior such as numerically induced
954 >        dissipative states and drift in the energy during long term simulations.
955 >        This article describes the construction, implementation, and practical
956 >        application of fast explicit symplectic-reversible integrators for
957 >        multiple rigid body molecular simulations, These methods use a reduction
958 >        to Euler equations for the free rigid body, together with a symplectic
959 >        splitting technique. In every time step, the orientational dynamics
960 >        of each rigid body is integrated by a sequence of planar rotations.
961 >        Besides preserving the symplectic and reversible structures of the
962 >        flow, this scheme accurately conserves the total angular momentum
963 >        of a system of interacting rigid bodies. Excellent energy conservation
964 >        fan be obtained relative to traditional methods, especially in long-time
965 >        simulations. The method is implemented in a research code, ORIENT
966 >        and compared with a quaternion/extrapolation scheme for the TIP4P
967 >        model of water. Our experiments show that the symplectic-reversible
968 >        scheme is far superior to the more traditional quaternion method.
969 >        (C) 1997 American Institute of Physics.},
970 >  annote = {Ya587 Times Cited:35 Cited References Count:32},
971 >  issn = {0021-9606},
972 >  uri = {<Go to ISI>://A1997YA58700024},
973   }
974  
975 < @Article{Wendt78,
976 <  author =       {H. Wendt and F.~F. Abraham},
977 <  title =        {},
978 <  journal =      prl,
979 <  year =         1978,
980 <  volume =       41,
981 <  pages =        1244
975 > @BOOK{Gamma1994,
976 >  title = {Design Patterns: Elements of Reusable Object-Oriented Software},
977 >  publisher = {Perason Education},
978 >  year = {1994},
979 >  author = {E. Gamma, R. Helm, R. Johnson and J. Vlissides},
980 >  address = {London},
981 >  chapter = {7},
982   }
983  
984 < @Article{Lewis91,
985 <  author =       {L.~J. Lewis},
986 <  title =        {Atomic dynamics through the glass transition},
987 <  journal =      prb,
988 <  year =         1991,
989 <  volume =       44,
990 <  pages =        {4245-4254}
984 > @ARTICLE{Edwards2005,
985 >  author = {S. A. Edwards and D. R. M. Williams},
986 >  title = {Stretching a single diblock copolymer in a selective solvent: Langevin
987 >        dynamics simulations},
988 >  journal = {Macromolecules},
989 >  year = {2005},
990 >  volume = {38},
991 >  pages = {10590-10595},
992 >  number = {25},
993 >  month = {Dec 13},
994 >  abstract = {Using the Langevin dynamics technique, we have carried out simulations
995 >        of a single-chain flexible diblock copolymer. The polymer consists
996 >        of two blocks of equal length, one very poorly solvated and the
997 >        other close to theta-conditions. We study what happens when such
998 >        a polymer is stretched, for a range of different stretching speeds,
999 >        and correlate our observations with features in the plot of force
1000 >        vs extension. We find that at slow speeds this force profile does
1001 >        not increase monotonically, in disagreement with earlier predictions,
1002 >        and that at high speeds there is a strong dependence on which end
1003 >        of the polymer is pulled, as well as a high level of hysteresis.},
1004 >  annote = {992EC Times Cited:0 Cited References Count:13},
1005 >  issn = {0024-9297},
1006 >  uri = {<Go to ISI>://000233866200035},
1007   }
1008  
1009 < @Article{Liu92,
1010 <  author =       {R.~S. Liu and D.~W. Qi and S. Wang},
1011 <  title =        {Subpeaks of structure factors for rapidly quenched metals},
1012 <  journal =      prb,
1013 <  year =         1992,
1014 <  volume =       45,
1015 <  pages =        {451-453}
1009 > @ARTICLE{Egberts1988,
1010 >  author = {E. Egberts and H. J. C. Berendsen},
1011 >  title = {Molecular-Dynamics Simulation of a Smectic Liquid-Crystal with Atomic
1012 >        Detail},
1013 >  journal = {Journal of Chemical Physics},
1014 >  year = {1988},
1015 >  volume = {89},
1016 >  pages = {3718-3732},
1017 >  number = {6},
1018 >  month = {Sep 15},
1019 >  annote = {Q0188 Times Cited:219 Cited References Count:43},
1020 >  issn = {0021-9606},
1021 >  uri = {<Go to ISI>://A1988Q018800036},
1022   }
1023  
1024 < @Book{pliny,
1025 <  author =       {Pliny},
1026 <  title =        {Hist. Nat.},
1027 <  publisher =    { },
1028 <  year =         { },
1029 <  volume =       {XXXVI}
1024 > @ARTICLE{Ermak1978,
1025 >  author = {D. L. Ermak and J. A. Mccammon},
1026 >  title = {Brownian Dynamics with Hydrodynamic Interactions},
1027 >  journal = {Journal of Chemical Physics},
1028 >  year = {1978},
1029 >  volume = {69},
1030 >  pages = {1352-1360},
1031 >  number = {4},
1032 >  annote = {Fp216 Times Cited:785 Cited References Count:42},
1033 >  issn = {0021-9606},
1034 >  uri = {<Go to ISI>://A1978FP21600004},
1035   }
1036  
1037 < @Article{Anheuser94,
1038 <  author =       {K. Anheuser and J.P. Northover},
1039 <  title =        {Silver plating of Roman and Celtic coins from Britan - a technical study},
1040 <  journal =      {Brit. Num. J.},
1041 <  year =         1994,
1042 <  volume =       64,
1043 <  pages =        22
1037 > @ARTICLE{Evans1977,
1038 >  author = {D. J. Evans},
1039 >  title = {Representation of Orientation Space},
1040 >  journal = {Molecular Physics},
1041 >  year = {1977},
1042 >  volume = {34},
1043 >  pages = {317-325},
1044 >  number = {2},
1045 >  annote = {Ds757 Times Cited:271 Cited References Count:18},
1046 >  issn = {0026-8976},
1047 >  uri = {<Go to ISI>://A1977DS75700002},
1048   }
1049  
1050 < @Article{Pense92,
1051 <  author =       {A. W. Pense},
1052 <  title =        {The Decline and Fall of the Roman Denarius},
1053 <  journal =      {Mat. Char.},
1054 <  year =         1992,
1055 <  volume =       29,
1056 <  pages =        213
1050 > @ARTICLE{Fennell2004,
1051 >  author = {C. J. Fennell and J. D. Gezelter},
1052 >  title = {On the structural and transport properties of the soft sticky dipole
1053 >        and related single-point water models},
1054 >  journal = {Journal of Chemical Physics},
1055 >  year = {2004},
1056 >  volume = {120},
1057 >  pages = {9175-9184},
1058 >  number = {19},
1059 >  month = {May 15},
1060 >  abstract = {The density maximum and temperature dependence of the self-diffusion
1061 >        constant were investigated for the soft sticky dipole (SSD) water
1062 >        model and two related reparametrizations of this single-point model.
1063 >        A combination of microcanonical and isobaric-isothermal molecular
1064 >        dynamics simulations was used to calculate these properties, both
1065 >        with and without the use of reaction field to handle long-range
1066 >        electrostatics. The isobaric-isothermal simulations of the melting
1067 >        of both ice-I-h and ice-I-c showed a density maximum near 260 K.
1068 >        In most cases, the use of the reaction field resulted in calculated
1069 >        densities which were significantly lower than experimental densities.
1070 >        Analysis of self-diffusion constants shows that the original SSD
1071 >        model captures the transport properties of experimental water very
1072 >        well in both the normal and supercooled liquid regimes. We also
1073 >        present our reparametrized versions of SSD for use both with the
1074 >        reaction field or without any long-range electrostatic corrections.
1075 >        These are called the SSD/RF and SSD/E models, respectively. These
1076 >        modified models were shown to maintain or improve upon the experimental
1077 >        agreement with the structural and transport properties that can
1078 >        be obtained with either the original SSD or the density-corrected
1079 >        version of the original model (SSD1). Additionally, a novel low-density
1080 >        ice structure is presented which appears to be the most stable ice
1081 >        structure for the entire SSD family. (C) 2004 American Institute
1082 >        of Physics.},
1083 >  annote = {816YY Times Cited:5 Cited References Count:39},
1084 >  issn = {0021-9606},
1085 >  uri = {<Go to ISI>://000221146400032},
1086   }
1087  
1088 < @Article{Ngai81,
1089 <  author =       {K.~L. Ngai and F.-S. Liu},
1090 <  title =        {Dispersive diffusion transport and noise,
1091 <                  time-dependent diffusion coefficient, generalized
1092 <                  Einstein-Nernst relation, and dispersive
1093 <                  diffusion-controlled unimolecular and bimolecular
1094 <                  reactions},
1095 <  journal =      prb,
1096 <  year =         1981,
1097 <  volume =       24,
1098 <  pages =        {1049-1065}
1088 > @ARTICLE{Fernandes2002,
1089 >  author = {M. X. Fernandes and J. G. {de la Torre}},
1090 >  title = {Brownian dynamics simulation of rigid particles of arbitrary shape
1091 >        in external fields},
1092 >  journal = {Biophysical Journal},
1093 >  year = {2002},
1094 >  volume = {83},
1095 >  pages = {3039-3048},
1096 >  number = {6},
1097 >  month = {Dec},
1098 >  abstract = {We have developed a Brownian dynamics simulation algorithm to generate
1099 >        Brownian trajectories of an isolated, rigid particle of arbitrary
1100 >        shape in the presence of electric fields or any other external agents.
1101 >        Starting from the generalized diffusion tensor, which can be calculated
1102 >        with the existing HYDRO software, the new program BROWNRIG (including
1103 >        a case-specific subprogram for the external agent) carries out a
1104 >        simulation that is analyzed later to extract the observable dynamic
1105 >        properties. We provide a variety of examples of utilization of this
1106 >        method, which serve as tests of its performance, and also illustrate
1107 >        its applicability. Examples include free diffusion, transport in
1108 >        an electric field, and diffusion in a restricting environment.},
1109 >  annote = {633AD Times Cited:2 Cited References Count:43},
1110 >  issn = {0006-3495},
1111 >  uri = {<Go to ISI>://000180256300012},
1112   }
1113  
1114 < @Unpublished{Truhlar00,
1115 <  author =       {D.~G. Truhlar and A. Kohen},
1116 <  note =         {private correspondence}
1114 > @BOOK{Frenkel1996,
1115 >  title = {Understanding Molecular Simulation : From Algorithms to Applications},
1116 >  publisher = {Academic Press},
1117 >  year = {1996},
1118 >  author = {D. Frenkel and B. Smit},
1119 >  address = {New York},
1120   }
1121  
1122 < @Article{Truhlar78,
1123 <  author =       {Donald G. Truhlar},
1124 <  title =        {Interpretation of the Activation Energy},
1125 <  journal =      {J. Chem. Ed.},
1126 <  year =         1978,
1127 <  volume =       55,
1128 <  pages =        309
1122 > @ARTICLE{Gay1981,
1123 >  author = {J. G. Gay and B. J. Berne},
1124 >  title = {Modification of the Overlap Potential to Mimic a Linear Site-Site
1125 >        Potential},
1126 >  journal = {Journal of Chemical Physics},
1127 >  year = {1981},
1128 >  volume = {74},
1129 >  pages = {3316-3319},
1130 >  number = {6},
1131 >  annote = {Lj347 Times Cited:482 Cited References Count:13},
1132 >  issn = {0021-9606},
1133 >  uri = {<Go to ISI>://A1981LJ34700029},
1134   }
1135  
1136 < @Book{Tolman27,
1137 <  author =       {R. C. Tolman},
1138 <  title =        {Statistical Mechanics with Applications to Physics and Chemistry},
1139 <  chapter =      {},
1140 <  publisher =    {Chemical Catalog Co.},
1141 <  address =      {New York},
1142 <  year =         1927,
1143 <  pages =        {260-270}
1136 > @ARTICLE{Gelin1999,
1137 >  author = {M. F. Gelin},
1138 >  title = {Inertial effects in the Brownian dynamics with rigid constraints},
1139 >  journal = {Macromolecular Theory and Simulations},
1140 >  year = {1999},
1141 >  volume = {8},
1142 >  pages = {529-543},
1143 >  number = {6},
1144 >  month = {Nov},
1145 >  abstract = {To investigate the influence of inertial effects on the dynamics of
1146 >        an assembly of beads subjected to rigid constraints and placed in
1147 >        a buffer medium, a convenient method to introduce suitable generalized
1148 >        coordinates is presented. Without any restriction on the nature
1149 >        of the soft forces involved (both stochastic and deterministic),
1150 >        pertinent Langevin equations are derived. Provided that the Brownian
1151 >        forces are Gaussian and Markovian, the corresponding Fokker-Planck
1152 >        equation (FPE) is obtained in the complete phase space of generalized
1153 >        coordinates and momenta. The correct short time behavior for correlation
1154 >        functions (CFs) of generalized coordinates is established, and the
1155 >        diffusion equation with memory (DEM) is deduced from the FPE in
1156 >        the high friction Limit. The DEM is invoked to perform illustrative
1157 >        calculations in two dimensions of the orientational CFs for once
1158 >        broken nonrigid rods immobilized on a surface. These calculations
1159 >        reveal that the CFs under certain conditions exhibit an oscillatory
1160 >        behavior, which is irreproducible within the standard diffusion
1161 >        equation. Several methods are considered for the approximate solution
1162 >        of the DEM, and their application to three dimensional DEMs is discussed.},
1163 >  annote = {257MM Times Cited:2 Cited References Count:82},
1164 >  issn = {1022-1344},
1165 >  uri = {<Go to ISI>://000083785700002},
1166   }
1167  
1168 < @Article{Tolman20,
1169 <  author =       {R. C. Tolman},
1170 <  title =        {Statistical Mechanics Applied to Chemical Kinetics},
1171 <  journal =      jacs,
1172 <  year =         1920,
1173 <  volume =       42,
1174 <  pages =        2506
1168 > @BOOK{Goldstein2001,
1169 >  title = {Classical Mechanics},
1170 >  publisher = {Addison Wesley},
1171 >  year = {2001},
1172 >  author = {H. Goldstein and C. Poole and J. Safko},
1173 >  address = {San Francisco},
1174 >  edition = {3rd},
1175   }
1176  
1177 < @Article{Nagel96,
1178 <  author =       {M.D. Ediger and  C.A. Angell and Sidney R. Nagel},
1179 <  title =        {Supercooled Liquids and Glasses},
1180 <  journal =      jpc,
1181 <  year =         1996,
1182 <  volume =       100,
1183 <  pages =        13200
1177 > @ARTICLE{Gray2003,
1178 >  author = {J. J. Gray and S. Moughon and C. Wang and O. Schueler-Furman and
1179 >        B. Kuhlman and C. A. Rohl and D. Baker},
1180 >  title = {Protein-protein docking with simultaneous optimization of rigid-body
1181 >        displacement and side-chain conformations},
1182 >  journal = {Journal of Molecular Biology},
1183 >  year = {2003},
1184 >  volume = {331},
1185 >  pages = {281-299},
1186 >  number = {1},
1187 >  month = {Aug 1},
1188 >  abstract = {Protein-protein docking algorithms provide a means to elucidate structural
1189 >        details for presently unknown complexes. Here, we present and evaluate
1190 >        a new method to predict protein-protein complexes from the coordinates
1191 >        of the unbound monomer components. The method employs a low-resolution,
1192 >        rigid-body, Monte Carlo search followed by simultaneous optimization
1193 >        of backbone displacement and side-chain conformations using Monte
1194 >        Carlo minimization. Up to 10(5) independent simulations are carried
1195 >        out, and the resulting #decoys# are ranked using an energy function
1196 >        dominated by van der Waals interactions, an implicit solvation model,
1197 >        and an orientation-dependent hydrogen bonding potential. Top-ranking
1198 >        decoys are clustered to select the final predictions. Small-perturbation
1199 >        studies reveal the formation of binding funnels in 42 of 54 cases
1200 >        using coordinates derived from the bound complexes and in 32 of
1201 >        54 cases using independently determined coordinates of one or both
1202 >        monomers. Experimental binding affinities correlate with the calculated
1203 >        score function and explain the predictive success or failure of
1204 >        many targets. Global searches using one or both unbound components
1205 >        predict at least 25% of the native residue-residue contacts in 28
1206 >        of the 32 cases where binding funnels exist. The results suggest
1207 >        that the method may soon be useful for generating models of biologically
1208 >        important complexes from the structures of the isolated components,
1209 >        but they also highlight the challenges that must be met to achieve
1210 >        consistent and accurate prediction of protein-protein interactions.
1211 >        (C) 2003 Elsevier Ltd. All rights reserved.},
1212 >  annote = {704QL Times Cited:48 Cited References Count:60},
1213 >  issn = {0022-2836},
1214 >  uri = {<Go to ISI>://000184351300022},
1215   }
1216  
1217 < @InBook{Blumen86,
1218 <  author =       {A. Blumen and J. Klafter and G. Zumofen},
1219 <  editor =       {Luciano Peitronero and E. Tosatti},
1220 <  title =        {Fractals in Physics},
1221 <  chapter =      {Reactions in Disordered Media Modelled by Fractals},
1222 <  publisher =    {North-Holland},
1223 <  year =         1986,
1224 <  series =       {International Symposium on Fractals in Physics},
1225 <  address =      {Amsterdam},
1226 <  pages =        399
1217 > @ARTICLE{Greengard1994,
1218 >  author = {L. Greengard},
1219 >  title = {Fast Algorithms for Classical Physics},
1220 >  journal = {Science},
1221 >  year = {1994},
1222 >  volume = {265},
1223 >  pages = {909-914},
1224 >  number = {5174},
1225 >  month = {Aug 12},
1226 >  abstract = {Some of the recently developed fast summation methods that have arisen
1227 >        in scientific computing are described. These methods require an
1228 >        amount of work proportional to N or N log N to evaluate all pairwise
1229 >        interactions in an ensemble of N particles. Traditional methods,
1230 >        by contrast, require an amount of work proportional to N-2. AS a
1231 >        result, large-scale simulations can be carried out using only modest
1232 >        computer resources. In combination with supercomputers, it is possible
1233 >        to address questions that were previously out of reach. Problems
1234 >        from diffusion, gravitation, and wave propagation are considered.},
1235 >  annote = {Pb499 Times Cited:99 Cited References Count:44},
1236 >  issn = {0036-8075},
1237 >  uri = {<Go to ISI>://A1994PB49900031},
1238   }
1239  
1240 < @Article{Shlesinger84,
1241 <  author =       {M.~F. Shlesinger and E.~W. Montroll},
1242 <  title =        {On the Williams-Watts function of dielectric relaxation},
1243 <  journal =      {Proc. Natl. Acad. Sci. USA},
1244 <  year =         1984,
1245 <  volume =       81,
1246 <  pages =        {1280-1283}
1240 > @ARTICLE{Greengard1987,
1241 >  author = {L. Greengard and V. Rokhlin},
1242 >  title = {A Fast Algorithm for Particle Simulations},
1243 >  journal = {Journal of Computational Physics},
1244 >  year = {1987},
1245 >  volume = {73},
1246 >  pages = {325-348},
1247 >  number = {2},
1248 >  month = {Dec},
1249 >  annote = {L0498 Times Cited:899 Cited References Count:7},
1250 >  issn = {0021-9991},
1251 >  uri = {<Go to ISI>://A1987L049800006},
1252   }
1253  
1254 < @Article{Klafter86,
1255 <  author =       {J. Klafter and M.~F. Shlesinger},
1256 <  title =        {On the relationship among three theories of
1257 <                  relaxation in disordered systems},
1258 <  journal =      {Proc. Natl. Acad. Sci. USA},
1259 <  year =         1986,
1260 <  volume =       83,
1261 <  pages =        {848-851}
1254 > @ARTICLE{Hairer1997,
1255 >  author = {E. Hairer and C. Lubich},
1256 >  title = {The life-span of backward error analysis for numerical integrators},
1257 >  journal = {Numerische Mathematik},
1258 >  year = {1997},
1259 >  volume = {76},
1260 >  pages = {441-462},
1261 >  number = {4},
1262 >  month = {Jun},
1263 >  abstract = {Backward error analysis is a useful tool for the study of numerical
1264 >        approximations to ordinary differential equations. The numerical
1265 >        solution is formally interpreted as the exact solution of a perturbed
1266 >        differential equation, given as a formal and usually divergent series
1267 >        in powers of the step size. For a rigorous analysis, this series
1268 >        has to be truncated. In this article we study the influence of this
1269 >        truncation to the difference between the numerical solution and
1270 >        the exact solution of the perturbed differential equation. Results
1271 >        on the long-time behaviour of numerical solutions are obtained in
1272 >        this way. We present applications to the numerical phase portrait
1273 >        near hyperbolic equilibrium points, to asymptotically stable periodic
1274 >        orbits and Hopf bifurcation, and to energy conservation and approximation
1275 >        of invariant tori in Hamiltonian systems.},
1276 >  annote = {Xj488 Times Cited:50 Cited References Count:19},
1277 >  issn = {0029-599X},
1278 >  uri = {<Go to ISI>://A1997XJ48800002},
1279   }
1280  
1281 < @Article{Li2001,
1282 <  author =   {Z. Li and M. Lieberman and W. Hill},
1283 <  title =    {{\sc xps} and {\sc sers} Study of Silicon Phthalocyanine
1284 <                  Monolayers: umbrella vs. octopus design strategies
1285 <                  for formation of oriented {\sc sam}s},
1286 <  journal =      {Langmuir},
1287 <  year =     2001,
1288 <  volume =       17,
1289 <  pages =        {4887-4894}
1281 > @ARTICLE{Hao1993,
1282 >  author = {M. H. Hao and M. R. Pincus and S. Rackovsky and H. A. Scheraga},
1283 >  title = {Unfolding and Refolding of the Native Structure of Bovine Pancreatic
1284 >        Trypsin-Inhibitor Studied by Computer-Simulations},
1285 >  journal = {Biochemistry},
1286 >  year = {1993},
1287 >  volume = {32},
1288 >  pages = {9614-9631},
1289 >  number = {37},
1290 >  month = {Sep 21},
1291 >  abstract = {A new procedure for studying the folding and unfolding of proteins,
1292 >        with an application to bovine pancreatic trypsin inhibitor (BPTI),
1293 >        is reported. The unfolding and refolding of the native structure
1294 >        of the protein are characterized by the dimensions of the protein,
1295 >        expressed in terms of the three principal radii of the structure
1296 >        considered as an ellipsoid. A dynamic equation, describing the variations
1297 >        of the principal radii on the unfolding path, and a numerical procedure
1298 >        to solve this equation are proposed. Expanded and distorted conformations
1299 >        are refolded to the native structure by a dimensional-constraint
1300 >        energy minimization procedure. A unique and reproducible unfolding
1301 >        pathway for an intermediate of BPTI lacking the [30,51] disulfide
1302 >        bond is obtained. The resulting unfolded conformations are extended;
1303 >        they contain near-native local structure, but their longest principal
1304 >        radii are more than 2.5 times greater than that of the native structure.
1305 >        The most interesting finding is that the majority of expanded conformations,
1306 >        generated under various conditions, can be refolded closely to the
1307 >        native structure, as measured by the correct overall chain fold,
1308 >        by the rms deviations from the native structure of only 1.9-3.1
1309 >        angstrom, and by the energy differences of about 10 kcal/mol from
1310 >        the native structure. Introduction of the [30,51] disulfide bond
1311 >        at this stage, followed by minimization, improves the closeness
1312 >        of the refolded structures to the native structure, reducing the
1313 >        rms deviations to 0.9-2.0 angstrom. The unique refolding of these
1314 >        expanded structures over such a large conformational space implies
1315 >        that the folding is strongly dictated by the interactions in the
1316 >        amino acid sequence of BPTI. The simulations indicate that, under
1317 >        conditions that favor a compact structure as mimicked by the volume
1318 >        constraints in our algorithm; the expanded conformations have a
1319 >        strong tendency to move toward the native structure; therefore,
1320 >        they probably would be favorable folding intermediates. The results
1321 >        presented here support a general model for protein folding, i.e.,
1322 >        progressive formation of partially folded structural units, followed
1323 >        by collapse to the compact native structure. The general applicability
1324 >        of the procedure is also discussed.},
1325 >  annote = {Ly294 Times Cited:27 Cited References Count:57},
1326 >  issn = {0006-2960},
1327 >  uri = {<Go to ISI>://A1993LY29400014},
1328   }
1329  
1330 < @Article{Evans1993,
1331 <  author =       {J.~W. Evans},
1332 <  title =        {Random and Cooperative Sequential Adsorption},
1333 <  journal =      rmp,
1334 <  year =         1993,
1335 <  volume =       65,
1336 <  pages =        {1281-1329}
1330 > @ARTICLE{Hinsen2000,
1331 >  author = {K. Hinsen and A. J. Petrescu and S. Dellerue and M. C. Bellissent-Funel
1332 >        and G. R. Kneller},
1333 >  title = {Harmonicity in slow protein dynamics},
1334 >  journal = {Chemical Physics},
1335 >  year = {2000},
1336 >  volume = {261},
1337 >  pages = {25-37},
1338 >  number = {1-2},
1339 >  month = {Nov 1},
1340 >  abstract = {The slow dynamics of proteins around its native folded state is usually
1341 >        described by diffusion in a strongly anharmonic potential. In this
1342 >        paper, we try to understand the form and origin of the anharmonicities,
1343 >        with the principal aim of gaining a better understanding of the
1344 >        principal motion types, but also in order to develop more efficient
1345 >        numerical methods for simulating neutron scattering spectra of large
1346 >        proteins. First, we decompose a molecular dynamics (MD) trajectory
1347 >        of 1.5 ns for a C-phycocyanin dimer surrounded by a layer of water
1348 >        into three contributions that we expect to be independent: the global
1349 >        motion of the residues, the rigid-body motion of the sidechains
1350 >        relative to the backbone, and the internal deformations of the sidechains.
1351 >        We show that they are indeed almost independent by verifying the
1352 >        factorization of the incoherent intermediate scattering function.
1353 >        Then, we show that the global residue motions, which include all
1354 >        large-scale backbone motions, can be reproduced by a simple harmonic
1355 >        model which contains two contributions: a short-time vibrational
1356 >        term, described by a standard normal mode calculation in a local
1357 >        minimum, and a long-time diffusive term, described by Brownian motion
1358 >        in an effective harmonic potential. The potential and the friction
1359 >        constants were fitted to the MD data. The major anharmonic contribution
1360 >        to the incoherent intermediate scattering function comes from the
1361 >        rigid-body diffusion of the sidechains. This model can be used to
1362 >        calculate scattering functions for large proteins and for long-time
1363 >        scales very efficiently, and thus provides a useful complement to
1364 >        MD simulations, which are best suited for detailed studies on smaller
1365 >        systems or for shorter time scales. (C) 2000 Elsevier Science B.V.
1366 >        All rights reserved.},
1367 >  annote = {Sp. Iss. SI 368MT Times Cited:16 Cited References Count:31},
1368 >  issn = {0301-0104},
1369 >  uri = {<Go to ISI>://000090121700003},
1370   }
1371  
1372 <
1373 < @Article{Dwyer1977,
1374 <  author =   {D.~J. Dwyer and G.~W. Simmons and R.~P. Wei},
1375 <  title =    {},
1376 <  journal =      {Surf. Sci.},
1377 <  year =     1977,
1378 <  volume =   64,
1379 <  pages =    617
1372 > @ARTICLE{Ho1992,
1373 >  author = {C. Ho and C. D. Stubbs},
1374 >  title = {Hydration at the Membrane Protein-Lipid Interface},
1375 >  journal = {Biophysical Journal},
1376 >  year = {1992},
1377 >  volume = {63},
1378 >  pages = {897-902},
1379 >  number = {4},
1380 >  month = {Oct},
1381 >  abstract = {Evidence has been found for the existence water at the protein-lipid
1382 >        hydrophobic interface ot the membrane proteins, gramicidin and apocytochrome
1383 >        C, using two related fluorescence spectroscopic approaches. The
1384 >        first approach exploited the fact that the presence of water in
1385 >        the excited state solvent cage of a fluorophore increases the rate
1386 >        of decay. For 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5-hexatrienyl)
1387 >        phenyl]ethyl]carbonyl]-3-sn-PC (DPH-PC), where the fluorophores
1388 >        are located in the hydrophobic core of the lipid bilayer, the introduction
1389 >        of gramicidin reduced the fluorescence lifetime, indicative of an
1390 >        increased presence of water in the bilayer. Since a high protein:lipid
1391 >        ratio was used, the fluorophores were forced to be adjacent to the
1392 >        protein hydrophobic surface, hence the presence of water in this
1393 >        region could be inferred. Cholesterol is known to reduce the water
1394 >        content of lipid bilayers and this effect was maintained at the
1395 >        protein-lipid interface with both gramicidin and apocytochrome C,
1396 >        again suggesting hydration in this region. The second approach was
1397 >        to use the fluorescence enhancement induced by exchanging deuterium
1398 >        oxide (D2O) for H2O. Both the fluorescence intensities of trimethylammonium-DPH,
1399 >        located in the lipid head group region, and of the gramicidin intrinsic
1400 >        tryptophans were greater in a D2O buffer compared with H2O, showing
1401 >        that the fluorophores were exposed to water in the bilayer at the
1402 >        protein-lipid interface. In the presence of cholesterol the fluorescence
1403 >        intensity ratio of D2O to H2O decreased, indicating a removal of
1404 >        water by the cholesterol, in keeping with the lifetime data. Altered
1405 >        hydration at the protein-lipid interface could affect conformation,
1406 >        thereby offering a new route by which membrane protein functioning
1407 >        may be modified.},
1408 >  annote = {Ju251 Times Cited:55 Cited References Count:44},
1409 >  issn = {0006-3495},
1410 >  uri = {<Go to ISI>://A1992JU25100002},
1411   }
1412  
1413 < @Article{Macritche1978,
1414 <  author =   {F. MacRitche},
1415 <  title =    {},
1416 <  journal =      {Adv. Protein Chem.},
1417 <  year =     1978,
1418 <  volume =   32,
1356 <  pages =    283
1413 > @BOOK{Hockney1981,
1414 >  title = {Computer Simulation Using Particles},
1415 >  publisher = {McGraw-Hill},
1416 >  year = {1981},
1417 >  author = {R.W. Hockney and J.W. Eastwood},
1418 >  address = {New York},
1419   }
1420  
1421 < @Article{Feder1980,
1422 <  author =   {J. Feder},
1423 <  title =    {},
1424 <  journal =      {J. Theor. Biol.},
1425 <  year =     1980,
1426 <  volume =   87,
1427 <  pages =    237
1421 > @ARTICLE{Hoover1985,
1422 >  author = {W. G. Hoover},
1423 >  title = {Canonical Dynamics - Equilibrium Phase-Space Distributions},
1424 >  journal = {Physical Review A},
1425 >  year = {1985},
1426 >  volume = {31},
1427 >  pages = {1695-1697},
1428 >  number = {3},
1429 >  annote = {Acr30 Times Cited:1809 Cited References Count:11},
1430 >  issn = {1050-2947},
1431 >  uri = {<Go to ISI>://A1985ACR3000056},
1432   }
1433  
1434 < @Article{Ramsden1993,
1435 <  author =   {J.~J. Ramsden},
1436 <  title =    {},
1437 <  journal =      prl,
1438 <  year =     1993,
1439 <  volume =   71,
1440 <  pages =    295
1434 > @ARTICLE{Huh2004,
1435 >  author = {Y. Huh and N. M. Cann},
1436 >  title = {Discrimination in isotropic, nematic, and smectic phases of chiral
1437 >        calamitic molecules: A computer simulation study},
1438 >  journal = {Journal of Chemical Physics},
1439 >  year = {2004},
1440 >  volume = {121},
1441 >  pages = {10299-10308},
1442 >  number = {20},
1443 >  month = {Nov 22},
1444 >  abstract = {Racemic fluids of chiral calamitic molecules are investigated with
1445 >        molecular dynamics simulations. In particular, the phase behavior
1446 >        as a function of density is examined for eight racemates. The relationship
1447 >        between chiral discrimination and orientational order in the phase
1448 >        is explored. We find that the transition from the isotropic phase
1449 >        to a liquid crystal phase is accompanied by an increase in chiral
1450 >        discrimination, as measured by differences in radial distributions.
1451 >        Among ordered phases, discrimination is largest for smectic phases
1452 >        with a significant preference for heterochiral contact within the
1453 >        layers. (C) 2004 American Institute of Physics.},
1454 >  annote = {870FJ Times Cited:0 Cited References Count:63},
1455 >  issn = {0021-9606},
1456 >  uri = {<Go to ISI>://000225042700059},
1457   }
1458  
1459 <
1460 < @Article{Egelhoff1989,
1461 <  author =   {W.~F. Egelhoff and I. Jacob},
1462 <  title =    {},
1463 <  journal =      prl,
1464 <  year =     1989,
1465 <  volume =   62,
1466 <  pages =    921
1459 > @ARTICLE{Izaguirre2001,
1460 >  author = {J. A. Izaguirre and D. P. Catarello and J. M. Wozniak and R. D. Skeel},
1461 >  title = {Langevin stabilization of molecular dynamics},
1462 >  journal = {Journal of Chemical Physics},
1463 >  year = {2001},
1464 >  volume = {114},
1465 >  pages = {2090-2098},
1466 >  number = {5},
1467 >  month = {Feb 1},
1468 >  abstract = {In this paper we show the possibility of using very mild stochastic
1469 >        damping to stabilize long time step integrators for Newtonian molecular
1470 >        dynamics. More specifically, stable and accurate integrations are
1471 >        obtained for damping coefficients that are only a few percent of
1472 >        the natural decay rate of processes of interest, such as the velocity
1473 >        autocorrelation function. Two new multiple time stepping integrators,
1474 >        Langevin Molly (LM) and Brunger-Brooks-Karplus-Molly (BBK-M), are
1475 >        introduced in this paper. Both use the mollified impulse method
1476 >        for the Newtonian term. LM uses a discretization of the Langevin
1477 >        equation that is exact for the constant force, and BBK-M uses the
1478 >        popular Brunger-Brooks-Karplus integrator (BBK). These integrators,
1479 >        along with an extrapolative method called LN, are evaluated across
1480 >        a wide range of damping coefficient values. When large damping coefficients
1481 >        are used, as one would for the implicit modeling of solvent molecules,
1482 >        the method LN is superior, with LM closely following. However, with
1483 >        mild damping of 0.2 ps(-1), LM produces the best results, allowing
1484 >        long time steps of 14 fs in simulations containing explicitly modeled
1485 >        flexible water. With BBK-M and the same damping coefficient, time
1486 >        steps of 12 fs are possible for the same system. Similar results
1487 >        are obtained for a solvated protein-DNA simulation of estrogen receptor
1488 >        ER with estrogen response element ERE. A parallel version of BBK-M
1489 >        runs nearly three times faster than the Verlet-I/r-RESPA (reversible
1490 >        reference system propagator algorithm) when using the largest stable
1491 >        time step on each one, and it also parallelizes well. The computation
1492 >        of diffusion coefficients for flexible water and ER/ERE shows that
1493 >        when mild damping of up to 0.2 ps-1 is used the dynamics are not
1494 >        significantly distorted. (C) 2001 American Institute of Physics.},
1495 >  annote = {397CQ Times Cited:14 Cited References Count:36},
1496 >  issn = {0021-9606},
1497 >  uri = {<Go to ISI>://000166676100020},
1498   }
1499  
1500 <
1501 < @Article{Viot1992a,
1502 <  author =   {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1503 <  title =    {RANDOM SEQUENTIAL ADSORPTION OF ANISOTROPIC
1504 <                  PARTICLES 1. JAMMING LIMIT AND ASYMPTOTIC-BEHAVIOR},
1505 <  journal =      jpc,
1506 <  year =     1992,
1394 <  volume =   97,
1395 <  pages =    {5212-5218}
1500 > @ARTICLE{Torre1977,
1501 >  author = {Jose Garcia De La Torre, V.A. Bloomfield},
1502 >  title = {Hydrodynamic properties of macromolecular complexes. I. Translation},
1503 >  journal = {Biopolymers},
1504 >  year = {1977},
1505 >  volume = {16},
1506 >  pages = {1747-1763},
1507   }
1508  
1509 < @Article{Viot1992b,
1510 <  author =   {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1511 <  title =    {SATURATION COVERAGE IN RANDOM SEQUENTIAL ADSORPTION
1512 <                  OF VERY ELONGATED PARTICLES},
1513 <  journal =      {Physica A},
1514 <  year =     1992,
1515 <  volume =   191,
1516 <  pages =    {248-252}
1509 > @ARTICLE{Kane2000,
1510 >  author = {C. Kane and J. E. Marsden and M. Ortiz and M. West},
1511 >  title = {Variational integrators and the Newmark algorithm for conservative
1512 >        and dissipative mechanical systems},
1513 >  journal = {International Journal for Numerical Methods in Engineering},
1514 >  year = {2000},
1515 >  volume = {49},
1516 >  pages = {1295-1325},
1517 >  number = {10},
1518 >  month = {Dec 10},
1519 >  abstract = {The purpose of this work is twofold. First, we demonstrate analytically
1520 >        that the classical Newmark family as well as related integration
1521 >        algorithms are variational in the sense of the Veselov formulation
1522 >        of discrete mechanics. Such variational algorithms are well known
1523 >        to be symplectic and momentum preserving and to often have excellent
1524 >        global energy behaviour. This analytical result is verified through
1525 >        numerical examples and is believed to be one of the primary reasons
1526 >        that this class of algorithms performs so well. Second, we develop
1527 >        algorithms for mechanical systems with forcing, and in particular,
1528 >        for dissipative systems. In this case, we develop integrators that
1529 >        are based on a discretization of the Lagrange d'Alembert principle
1530 >        as well as on a variational formulation of dissipation. It is demonstrated
1531 >        that these types of structured integrators have good numerical behaviour
1532 >        in terms of obtaining the correct amounts by which the energy changes
1533 >        over the integration run. Copyright (C) 2000 John Wiley & Sons,
1534 >        Ltd.},
1535 >  annote = {373CJ Times Cited:30 Cited References Count:41},
1536 >  issn = {0029-5981},
1537 >  uri = {<Go to ISI>://000165270600004},
1538   }
1539  
1540 < @Article{Dobson1987,
1541 <  author =       {B.~W. Dobson},
1542 <  title =        {},
1543 <  journal =      prb,
1544 <  year =         1987,
1545 <  volume =       36,
1546 <  pages =        1068
1540 > @ARTICLE{Klimov1997,
1541 >  author = {D. K. Klimov and D. Thirumalai},
1542 >  title = {Viscosity dependence of the folding rates of proteins},
1543 >  journal = {Physical Review Letters},
1544 >  year = {1997},
1545 >  volume = {79},
1546 >  pages = {317-320},
1547 >  number = {2},
1548 >  month = {Jul 14},
1549 >  abstract = {The viscosity (eta) dependence of the folding rates for four sequences
1550 >        (the native state of three sequences is a beta sheet, while the
1551 >        fourth forms an alpha helix) is calculated for off-lattice models
1552 >        of proteins. Assuming that the dynamics is given by the Langevin
1553 >        equation, we show that the folding rates increase linearly at low
1554 >        viscosities eta, decrease as 1/eta at large eta, and have a maximum
1555 >        at intermediate values. The Kramers' theory of barrier crossing
1556 >        provides a quantitative fit of the numerical results. By mapping
1557 >        the simulation results to real proteins we estimate that for optimized
1558 >        sequences the time scale for forming a four turn alpha-helix topology
1559 >        is about 500 ns, whereas for beta sheet it is about 10 mu s.},
1560 >  annote = {Xk293 Times Cited:77 Cited References Count:17},
1561 >  issn = {0031-9007},
1562 >  uri = {<Go to ISI>://A1997XK29300035},
1563   }
1564  
1565 < @Article{Boyer1995,
1566 <  author =       {D. Boyer and P. Viot and G. Tarjus and J. Talbot},
1567 <  title =        {PERCUS-$\mbox{Y}$EVICK-LIKE INTERGRAL EQUATION FOR RANDOM SEQUENTIAL
1568 <                  ADSORPTION},
1569 <  journal =      jcp,
1570 <  year =         1995,
1571 <  volume =       103,
1572 <  pages =        1607
1565 > @ARTICLE{Kol1997,
1566 >  author = {A. Kol and B. B. Laird and B. J. Leimkuhler},
1567 >  title = {A symplectic method for rigid-body molecular simulation},
1568 >  journal = {Journal of Chemical Physics},
1569 >  year = {1997},
1570 >  volume = {107},
1571 >  pages = {2580-2588},
1572 >  number = {7},
1573 >  month = {Aug 15},
1574 >  abstract = {Rigid-body molecular dynamics simulations typically are performed
1575 >        in a quaternion representation. The nonseparable form of the Hamiltonian
1576 >        in quaternions prevents the use of a standard leapfrog (Verlet)
1577 >        integrator, so nonsymplectic Runge-Kutta, multistep, or extrapolation
1578 >        methods are generally used, This is unfortunate since symplectic
1579 >        methods like Verlet exhibit superior energy conservation in long-time
1580 >        integrations. In this article, we describe an alternative method,
1581 >        which we call RSHAKE (for rotation-SHAKE), in which the entire rotation
1582 >        matrix is evolved (using the scheme of McLachlan and Scovel [J.
1583 >        Nonlin. Sci, 16 233 (1995)]) in tandem with the particle positions.
1584 >        We employ a fast approximate Newton solver to preserve the orthogonality
1585 >        of the rotation matrix. We test our method on a system of soft-sphere
1586 >        dipoles and compare with quaternion evolution using a 4th-order
1587 >        predictor-corrector integrator, Although the short-time error of
1588 >        the quaternion algorithm is smaller for fixed time step than that
1589 >        for RSHAKE, the quaternion scheme exhibits an energy drift which
1590 >        is not observed in simulations with RSHAKE, hence a fixed energy
1591 >        tolerance can be achieved by using a larger time step, The superiority
1592 >        of RSHAKE increases with system size. (C) 1997 American Institute
1593 >        of Physics.},
1594 >  annote = {Xq332 Times Cited:11 Cited References Count:18},
1595 >  issn = {0021-9606},
1596 >  uri = {<Go to ISI>://A1997XQ33200046},
1597   }
1598  
1599 < @Article{Viot1992c,
1600 <  author =       {P. Viot and G. Tarjus and S.~M. Ricci and J. Talbot},
1601 <  title =        {SATURATION COVERAGE OF HIGHLY ELONGATED ANISOTROPIC
1602 <                  PARTICLES},
1603 <  journal =      {Physica A},
1604 <  year =         1992,
1605 <  volume =       191,
1606 <  pages =        {248-252}
1599 > @ARTICLE{Lansac2001,
1600 >  author = {Y. Lansac and M. A. Glaser and N. A. Clark},
1601 >  title = {Microscopic structure and dynamics of a partial bilayer smectic liquid
1602 >        crystal},
1603 >  journal = {Physical Review E},
1604 >  year = {2001},
1605 >  volume = {6405},
1606 >  pages = {-},
1607 >  number = {5},
1608 >  month = {Nov},
1609 >  abstract = {Cyanobiphenyls (nCB's) represent a useful and intensively studied
1610 >        class of mesogens. Many of the peculiar properties of nCB's (e.g.,
1611 >        the occurence of the partial bilayer smectic-A(d) phase) are thought
1612 >        to be a manifestation of short-range antiparallel association of
1613 >        neighboring molecules, resulting from strong dipole-dipole interactions
1614 >        between cyano groups. To test and extend existing models of microscopic
1615 >        ordering in nCB's, we carry out large-scale atomistic simulation
1616 >        studies of the microscopic structure and dynamics of the Sm-A(d)
1617 >        phase of 4-octyl-4'-cyanobiphenyl (8CB). We compute a variety of
1618 >        thermodynamic, structural, and dynamical properties for this material,
1619 >        and make a detailed comparison of our results with experimental
1620 >        measurements in order to validate our molecular model. Semiquantitative
1621 >        agreement with experiment is found: the smectic layer spacing and
1622 >        mass density are well reproduced, translational diffusion constants
1623 >        are similar to experiment, but the orientational ordering of alkyl
1624 >        chains is overestimated. This simulation provides a detailed picture
1625 >        of molecular conformation, smectic layer structure, and intermolecular
1626 >        correlations in Sm-A(d) 8CB, and demonstrates that pronounced short-range
1627 >        antiparallel association of molecules arising from dipole-dipole
1628 >        interactions plays a dominant role in determining the molecular-scale
1629 >        structure of 8CB.},
1630 >  annote = {Part 1 496QF Times Cited:10 Cited References Count:60},
1631 >  issn = {1063-651X},
1632 >  uri = {<Go to ISI>://000172406900063},
1633   }
1634  
1635 < @Article{Ricci1994,
1636 <  author =       {S.~M. Ricci and J. Talbot and G. Tarjus and P. Viot},
1637 <  title =        {A STRUCTURAL COMPARISON OF RANDOM SEQUENTIAL ADSORPTION AND
1638 <                  EQUILIBRIUM CONFIGURATIONS OF SPHEROCYLINDERS},
1639 <  journal =      jcp,
1640 <  year =         1994,
1641 <  volume =       101,
1642 <  pages =        9164
1635 > @ARTICLE{Lansac2003,
1636 >  author = {Y. Lansac and P. K. Maiti and N. A. Clark and M. A. Glaser},
1637 >  title = {Phase behavior of bent-core molecules},
1638 >  journal = {Physical Review E},
1639 >  year = {2003},
1640 >  volume = {67},
1641 >  pages = {-},
1642 >  number = {1},
1643 >  month = {Jan},
1644 >  abstract = {Recently, a new class of smectic liquid crystal phases characterized
1645 >        by the spontaneous formation of macroscopic chiral domains from
1646 >        achiral bent-core molecules has been discovered. We have carried
1647 >        out Monte Carlo simulations of a minimal hard spherocylinder dimer
1648 >        model to investigate the role of excluded volume interactions in
1649 >        determining the phase behavior of bent-core materials and to probe
1650 >        the molecular origins of polar and chiral symmetry breaking. We
1651 >        present the phase diagram of hard spherocylinder dimers of length-diameter
1652 >        ratio of 5 as a function of pressure or density and dimer opening
1653 >        angle psi. With decreasing psi, a transition from a nonpolar to
1654 >        a polar smectic A phase is observed near psi=167degrees, and the
1655 >        nematic phase becomes thermodynamically unstable for psi<135degrees.
1656 >        Free energy calculations indicate that the antipolar smectic A (SmAP(A))
1657 >        phase is more stable than the polar smectic A phase (SmAP(F)). No
1658 >        chiral smectic or biaxial nematic phases were found.},
1659 >  annote = {Part 1 646CM Times Cited:15 Cited References Count:38},
1660 >  issn = {1063-651X},
1661 >  uri = {<Go to ISI>://000181017300042},
1662   }
1663  
1664 < @Article{Semmler1998,
1665 <  author =   {M. Semmler and E.~K. Mann and J. Ricka and M. Borkovec},
1666 <  title =    {Diffusional Deposition of Charged Latex Particles on
1667 <                  Water-Solid Interfaces at Low Ionic Strength},
1668 <  journal =      {Langmuir},
1669 <  year =     1998,
1670 <  volume =   14,
1454 <  pages =    {5127-5132}
1664 > @BOOK{Leach2001,
1665 >  title = {Molecular Modeling: Principles and Applications},
1666 >  publisher = {Pearson Educated Limited},
1667 >  year = {2001},
1668 >  author = {A. Leach},
1669 >  address = {Harlow, England},
1670 >  edition = {2nd},
1671   }
1672  
1673 < @Article{Solomon1986,
1674 <  author =   {H. Solomon and H. Weiner},
1675 <  title =    {A REVIEW OF THE PACKING PROBLEM},
1676 <  journal =      {Comm. Statistics A},
1677 <  year =     1986,
1678 <  volume =   15,
1679 <  pages =    {2571-2607}
1673 > @ARTICLE{Leimkuhler1999,
1674 >  author = {B. Leimkuhler},
1675 >  title = {Reversible adaptive regularization: perturbed Kepler motion and classical
1676 >        atomic trajectories},
1677 >  journal = {Philosophical Transactions of the Royal Society of London Series
1678 >        a-Mathematical Physical and Engineering Sciences},
1679 >  year = {1999},
1680 >  volume = {357},
1681 >  pages = {1101-1133},
1682 >  number = {1754},
1683 >  month = {Apr 15},
1684 >  abstract = {Reversible and adaptive integration methods based on Kustaanheimo-Stiefel
1685 >        regularization and modified Sundman transformations are applied
1686 >        to simulate general perturbed Kepler motion and to compute classical
1687 >        trajectories of atomic systems (e.g. Rydberg atoms). The new family
1688 >        of reversible adaptive regularization methods also conserves angular
1689 >        momentum and exhibits superior energy conservation and numerical
1690 >        stability in long-time integrations. The schemes are appropriate
1691 >        for scattering, for astronomical calculations of escape time and
1692 >        long-term stability, and for classical and semiclassical studies
1693 >        of atomic dynamics. The components of an algorithm for trajectory
1694 >        calculations are described. Numerical experiments illustrate the
1695 >        effectiveness of the reversible approach.},
1696 >  annote = {199EE Times Cited:11 Cited References Count:48},
1697 >  issn = {1364-503X},
1698 >  uri = {<Go to ISI>://000080466800007},
1699   }
1700  
1701 < @Article{Bonnier1993,
1702 <  author =   {B. Bonnier and M. Hontebeyrie and C. Meyers},
1703 <  title =    {ON THE RANDOM FILLING OF R(D) BY NONOVERLAPPING
1704 <                  D-DIMENSIONAL CUBES},
1705 <  journal =      {Physica A},
1706 <  year =     1993,
1472 <  volume =   198,
1473 <  pages =    {1-10}
1474 < }
1475 <
1476 < @Book{Frenkel1996,
1477 <  author =   {D. Frenkel and B. Smit},
1478 <  title =    {Understanding Molecular Simulation : From Algorithms
1479 <                  to Applications},
1480 <  publisher =    {Academic Press},
1481 <  year =     1996,
1482 <  address =  {New York}
1483 <
1484 <
1701 > @BOOK{Leimkuhler2004,
1702 >  title = {Simulating Hamiltonian Dynamics},
1703 >  publisher = {Cambridge University Press},
1704 >  year = {2004},
1705 >  author = {B. Leimkuhler and S. Reich},
1706 >  address = {Cambridge},
1707   }
1708  
1709 < @Article{Dullweber1997,
1710 <  author =   {A. Dullweber and B. Leimkuhler and R. McLachlan},
1711 <  title =    {Symplectic splitting methods for rigid body molecular
1712 <                  dynamics},
1713 <  journal =      jcp,
1714 <  year =     1997,
1715 <  volume =   107,
1716 <  number =   15,
1717 <  pages =    {5840-5851}
1709 > @ARTICLE{Levelut1981,
1710 >  author = {A. M. Levelut and R. J. Tarento and F. Hardouin and M. F. Achard
1711 >        and G. Sigaud},
1712 >  title = {Number of Sa Phases},
1713 >  journal = {Physical Review A},
1714 >  year = {1981},
1715 >  volume = {24},
1716 >  pages = {2180-2186},
1717 >  number = {4},
1718 >  annote = {Ml751 Times Cited:96 Cited References Count:16},
1719 >  issn = {1050-2947},
1720 >  uri = {<Go to ISI>://A1981ML75100057},
1721   }
1722  
1723 < @Article{Siepmann1998,
1724 <  author =   {M. Martin and J.~I. Siepmann},
1725 <  title =    {Transferable Potentials for Phase Equilibria. 1. United-Atom
1726 <                  Description of n-Alkanes},
1727 <  journal =      jpcB,
1728 <  year =     1998,
1729 <  volume =   102,
1730 <  pages =    {2569-2577}
1723 > @ARTICLE{Lieb1982,
1724 >  author = {W. R. Lieb and M. Kovalycsik and R. Mendelsohn},
1725 >  title = {Do Clinical-Levels of General-Anesthetics Affect Lipid Bilayers -
1726 >        Evidence from Raman-Scattering},
1727 >  journal = {Biochimica Et Biophysica Acta},
1728 >  year = {1982},
1729 >  volume = {688},
1730 >  pages = {388-398},
1731 >  number = {2},
1732 >  annote = {Nu461 Times Cited:40 Cited References Count:28},
1733 >  issn = {0006-3002},
1734 >  uri = {<Go to ISI>://A1982NU46100012},
1735   }
1736  
1737 < @Article{Marrink01,
1738 <  author =   {S.~J. Marrink and E. Lindahl and O. Edholm and A.~E. Mark},
1739 <  title =    {Simulations of the Spontaneous Aggregation of Phospholipids
1740 <                  into Bilayers},
1741 <  journal =      jacs,
1742 <  year =     2001,
1743 <  volume =   123,
1744 <  pages =    {8638-8639}
1737 > @ARTICLE{Link1997,
1738 >  author = {D. R. Link and G. Natale and R. Shao and J. E. Maclennan and N. A.
1739 >        Clark and E. Korblova and D. M. Walba},
1740 >  title = {Spontaneous formation of macroscopic chiral domains in a fluid smectic
1741 >        phase of achiral molecules},
1742 >  journal = {Science},
1743 >  year = {1997},
1744 >  volume = {278},
1745 >  pages = {1924-1927},
1746 >  number = {5345},
1747 >  month = {Dec 12},
1748 >  abstract = {A smectic liquid-crystal phase made from achiral molecules with bent
1749 >        cores was found to have fluid layers that exhibit two spontaneous
1750 >        symmetry-breaking instabilities: polar molecular orientational ordering
1751 >        about the layer normal and molecular tilt. These instabilities combine
1752 >        to form a chiral layer structure with a handedness that depends
1753 >        on the sign of the tilt. The bulk states are either antiferroelectric-racemic,
1754 >        with the layer polar direction and handedness alternating in sign
1755 >        from layer to layer, or antiferroelectric-chiral, which is of uniform
1756 >        layer handedness. Both states exhibit an electric field-induced
1757 >        transition from antiferroelectric to ferroelectric.},
1758 >  annote = {Yl002 Times Cited:407 Cited References Count:25},
1759 >  issn = {0036-8075},
1760 >  uri = {<Go to ISI>://A1997YL00200028},
1761   }
1762  
1763 < @Article{liu96:new_model,
1764 <  author =   {Y. Liu and T. Ichiye},
1765 <  title =    {Soft sticky dipole potential for liquid water: a new model},
1766 <  journal =      jpc,
1767 <  year =     1996,
1768 <  volume =   100,
1769 <  pages =    {2723-2730}
1763 > @ARTICLE{Liwo2005,
1764 >  author = {A. Liwo and M. Khalili and H. A. Scheraga},
1765 >  title = {Ab initio simulations of protein folding pathways by molecular dynamics
1766 >        with the united-residue (UNRES) model of polypeptide chains},
1767 >  journal = {Febs Journal},
1768 >  year = {2005},
1769 >  volume = {272},
1770 >  pages = {359-360},
1771 >  month = {Jul},
1772 >  annote = {Suppl. 1 005MG Times Cited:0 Cited References Count:0},
1773 >  issn = {1742-464X},
1774 >  uri = {<Go to ISI>://000234826102043},
1775   }
1776  
1777 < @Article{liu96:monte_carlo,
1778 <  author =   {Y. Liu and T. Ichiye},
1779 <  title =    {The static dielectric constant of the soft sticky dipole model of liquid water: $\mbox{Monte Carlo}$ simulation},
1780 <  journal =      {Chemical Physics Letters},
1781 <  year =     1996,
1782 <  volume =   256,
1783 <  pages =    {334-340}
1777 > @ARTICLE{Luty1994,
1778 >  author = {B. A. Luty and M. E. Davis and I. G. Tironi and W. F. Vangunsteren},
1779 >  title = {A Comparison of Particle-Particle, Particle-Mesh and Ewald Methods
1780 >        for Calculating Electrostatic Interactions in Periodic Molecular-Systems},
1781 >  journal = {Molecular Simulation},
1782 >  year = {1994},
1783 >  volume = {14},
1784 >  pages = {11-20},
1785 >  number = {1},
1786 >  abstract = {We compare the Particle-Particle Particle-Mesh (PPPM) and Ewald methods
1787 >        for calculating electrostatic interactions in periodic molecular
1788 >        systems. A brief comparison of the theories shows that the methods
1789 >        are very similar differing mainly in the technique which is used
1790 >        to perform the ''k-space'' or mesh calculation. Because the PPPM
1791 >        utilizes the highly efficient numerical Fast Fourier Transform (FFT)
1792 >        method it requires significantly less computational effort than
1793 >        the Ewald method and scale's almost linearly with system size.},
1794 >  annote = {Qf464 Times Cited:50 Cited References Count:20},
1795 >  issn = {0892-7022},
1796 >  uri = {<Go to ISI>://A1994QF46400002},
1797   }
1798  
1799 < @Article{chandra99:ssd_md,
1800 <  author =   {A. Chandra and T. Ichiye},
1801 <  title =    {Dynamical properties of the soft sticky dipole model of water: Molecular dynamics simulation},
1802 <  journal =      {Journal of Chemical Physics},
1803 <  year =     1999,
1804 <  volume =   111,
1805 <  number =   6,
1543 <  pages =    {2701-2709}
1799 > @BOOK{Marion1990,
1800 >  title = {Classical Dynamics of Particles and Systems},
1801 >  publisher = {Academic Press},
1802 >  year = {1990},
1803 >  author = {J.~B. Marion},
1804 >  address = {New York},
1805 >  edition = {2rd},
1806   }
1807  
1808 < @Book{allen87:csl,
1809 <  author =   {M.~P. Allen and D.~J. Tildesley},
1810 <  title =    {Computer Simulations of Liquids},
1811 <  publisher =    {Oxford University Press},
1812 <  year =     1987,
1813 <  address =  {New York}
1808 > @ARTICLE{Marrink1994,
1809 >  author = {S. J. Marrink and H. J. C. Berendsen},
1810 >  title = {Simulation of Water Transport through a Lipid-Membrane},
1811 >  journal = {Journal of Physical Chemistry},
1812 >  year = {1994},
1813 >  volume = {98},
1814 >  pages = {4155-4168},
1815 >  number = {15},
1816 >  month = {Apr 14},
1817 >  abstract = {To obtain insight in the process of water permeation through a lipid
1818 >        membrane, we performed molecular dynamics simulations on a phospholipid
1819 >        (DPPC)/water system with atomic detail. Since the actual process
1820 >        of permeation is too slow to be studied directly, we deduced the
1821 >        permeation rate indirectly via computation of the free energy and
1822 >        diffusion rate profiles of a water molecule across the bilayer.
1823 >        We conclude that the permeation of water through a lipid membrane
1824 >        cannot be described adequately by a simple homogeneous solubility-diffusion
1825 >        model. Both the excess free energy and the diffusion rate strongly
1826 >        depend on the position in the membrane, as a result from the inhomogeneous
1827 >        nature of the membrane. The calculated excess free energy profile
1828 >        has a shallow slope and a maximum height of 26 kJ/mol. The diffusion
1829 >        rate is highest in the middle of the membrane where the lipid density
1830 >        is low. In the interfacial region almost all water molecules are
1831 >        bound by the lipid headgroups, and the diffusion turns out to be
1832 >        1 order of magnitude smaller. The total transport process is essentially
1833 >        determined by the free energy barrier. The rate-limiting step is
1834 >        the permeation through the dense part of the lipid tails, where
1835 >        the resistance is highest. We found a permeation rate of 7(+/-3)
1836 >        x 10(-2) cm/s at 350 K, comparable to experimental values for DPPC
1837 >        membranes, if corrected for the temperature of the simulation. Taking
1838 >        the inhomogeneity of the membrane into account, we define a new
1839 >        ''four-region'' model which seems to be more realistic than the
1840 >        ''two-phase'' solubility-diffusion model.},
1841 >  annote = {Ng219 Times Cited:187 Cited References Count:25},
1842 >  issn = {0022-3654},
1843 >  uri = {<Go to ISI>://A1994NG21900040},
1844   }
1845  
1846 < @Book{leach01:mm,
1847 <  author =   {A. Leach},
1848 <  title =    {Molecular Modeling: Principles and Applications},
1849 <  publisher =    {Pearson Educated Limited},
1850 <  year =     2001,
1851 <  address =  {Harlow, England},
1852 <  edition =  {2nd}
1846 > @ARTICLE{Marsden1998,
1847 >  author = {J. E. Marsden and G. W. Patrick and S. Shkoller},
1848 >  title = {Multisymplectic geometry, variational integrators, and nonlinear
1849 >        PDEs},
1850 >  journal = {Communications in Mathematical Physics},
1851 >  year = {1998},
1852 >  volume = {199},
1853 >  pages = {351-395},
1854 >  number = {2},
1855 >  month = {Dec},
1856 >  abstract = {This paper presents a geometric-variational approach to continuous
1857 >        and discrete mechanics and field theories. Using multisymplectic
1858 >        geometry, we show that the existence of the fundamental geometric
1859 >        structures as well as their preservation along solutions can be
1860 >        obtained directly from the variational principle. In particular,
1861 >        we prove that a unique multisymplectic structure is obtained by
1862 >        taking the derivative of an action function, and use this structure
1863 >        to prove covariant generalizations of conservation of symplecticity
1864 >        and Noether's theorem. Natural discretization schemes for PDEs,
1865 >        which have these important preservation properties, then follow
1866 >        by choosing a discrete action functional. In the case of mechanics,
1867 >        we recover the variational symplectic integrators of Veselov type,
1868 >        while for PDEs we obtain covariant spacetime integrators which conserve
1869 >        the corresponding discrete multisymplectic form as well as the discrete
1870 >        momentum mappings corresponding to symmetries. We show that the
1871 >        usual notion of symplecticity along an infinite-dimensional space
1872 >        of fields can be naturally obtained by making a spacetime split.
1873 >        All of the aspects of our method are demonstrated with a nonlinear
1874 >        sine-Gordon equation, including computational results and a comparison
1875 >        with other discretization schemes.},
1876 >  annote = {154RH Times Cited:88 Cited References Count:36},
1877 >  issn = {0010-3616},
1878 >  uri = {<Go to ISI>://000077902200006},
1879   }
1880  
1881 <
1882 < @Article{katsaras00,
1883 <  author =   {J. Katsaras and S. Tristram-Nagle and Y. Liu and R.~L. Headrick and E. Fontes and P.~C. Mason and J.~F. Nagle},
1884 <  title =    {Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples},
1885 <  journal =      {Physical Review E},
1886 <  year =     2000,
1887 <  volume =   61,
1570 <  number =   5,
1571 <  pages =    {5668-5677}
1881 > @ARTICLE{McLachlan1993,
1882 >  author = {R.~I McLachlan},
1883 >  title = {Explicit Lie-Poisson integration and the Euler equations},
1884 >  journal = {prl},
1885 >  year = {1993},
1886 >  volume = {71},
1887 >  pages = {3043-3046},
1888   }
1889  
1890 < @Article{sengupta00,
1891 <  author =   {K. Sengupta and V.~A. Raghunathan and J. Katsaras},
1892 <  title =    {Novel structural Features of the ripple phase of phospholipids},
1893 <  journal =      {Europhysics Letters},
1894 <  year =     2000,
1895 <  volume =   49,
1896 <  number =   6,
1897 <  pages =    {722-728}
1890 > @ARTICLE{McLachlan1998,
1891 >  author = {R. I. McLachlan and G. R. W. Quispel},
1892 >  title = {Generating functions for dynamical systems with symmetries, integrals,
1893 >        and differential invariants},
1894 >  journal = {Physica D},
1895 >  year = {1998},
1896 >  volume = {112},
1897 >  pages = {298-309},
1898 >  number = {1-2},
1899 >  month = {Jan 15},
1900 >  abstract = {We give a survey and some new examples of generating functions for
1901 >        systems with symplectic structure, systems with a first integral,
1902 >        systems that preserve volume, and systems with symmetries and/or
1903 >        time-reversing symmetries. Both ODEs and maps are treated, and we
1904 >        discuss how generating functions may be used in the structure-preserving
1905 >        numerical integration of ODEs with the above properties.},
1906 >  annote = {Yt049 Times Cited:7 Cited References Count:26},
1907 >  issn = {0167-2789},
1908 >  uri = {<Go to ISI>://000071558900021},
1909   }
1910  
1911 < @Article{venable00,
1912 <  author =   {R.~M. Venable and B.~R. Brooks and R.~W. Pastor},
1913 <  title =    {Molecular dynamics simulations of gel ($L_{\beta I}$) phase lipid bilayers in constant pressure and constant surface area ensembles},
1914 <  journal =      jcp,
1915 <  year =     2000,
1916 <  volume =   112,
1917 <  number =   10,
1918 <  pages =    {4822-4832}
1911 > @ARTICLE{McLachlan1998a,
1912 >  author = {R. I. McLachlan and G. R. W. Quispel and G. S. Turner},
1913 >  title = {Numerical integrators that preserve symmetries and reversing symmetries},
1914 >  journal = {Siam Journal on Numerical Analysis},
1915 >  year = {1998},
1916 >  volume = {35},
1917 >  pages = {586-599},
1918 >  number = {2},
1919 >  month = {Apr},
1920 >  abstract = {We consider properties of flows, the relationships between them, and
1921 >        whether numerical integrators can be made to preserve these properties.
1922 >        This is done in the context of automorphisms and antiautomorphisms
1923 >        of a certain group generated by maps associated to vector fields.
1924 >        This new framework unifies several known constructions. We also
1925 >        use the concept of #covariance# of a numerical method with respect
1926 >        to a group of coordinate transformations. The main application is
1927 >        to explore the relationship between spatial symmetries, reversing
1928 >        symmetries, and time symmetry of flows and numerical integrators.},
1929 >  annote = {Zc449 Times Cited:14 Cited References Count:33},
1930 >  issn = {0036-1429},
1931 >  uri = {<Go to ISI>://000072580500010},
1932   }
1933  
1934 < @Article{lindahl00,
1935 <  author =   {E. Lindahl and O. Edholm},
1936 <  title =    {Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations},
1937 <  journal =      {Biophysical Journal},
1938 <  year =     2000,
1939 <  volume =   79,
1940 <  pages =    {426-433},
1941 <  month =    {July}
1934 > @ARTICLE{McLachlan2005,
1935 >  author = {R. I. McLachlan and A. Zanna},
1936 >  title = {The discrete Moser-Veselov algorithm for the free rigid body, revisited},
1937 >  journal = {Foundations of Computational Mathematics},
1938 >  year = {2005},
1939 >  volume = {5},
1940 >  pages = {87-123},
1941 >  number = {1},
1942 >  month = {Feb},
1943 >  abstract = {In this paper we revisit the Moser-Veselov description of the free
1944 >        rigid body in body coordinates, which, in the 3 x 3 case, can be
1945 >        implemented as an explicit, second-order, integrable approximation
1946 >        of the continuous solution. By backward error analysis, we study
1947 >        the modified vector field which is integrated exactly by the discrete
1948 >        algorithm. We deduce that the discrete Moser-Veselov (DMV) is well
1949 >        approximated to higher order by time reparametrizations of the continuous
1950 >        equations (modified vector field). We use the modified vector field
1951 >        to scale the initial data of the DMV to improve the order of the
1952 >        approximation and show the equivalence of the DMV and the RATTLE
1953 >        algorithm. Numerical integration with these preprocessed initial
1954 >        data is several orders of magnitude more accurate than the original
1955 >        DMV and RATTLE approach.},
1956 >  annote = {911NS Times Cited:0 Cited References Count:14},
1957 >  issn = {1615-3375},
1958 >  uri = {<Go to ISI>://000228011900003},
1959   }
1960  
1961 <
1962 < @Article{saiz02,
1963 <  author =   {L. Saiz and M. Klein},
1964 <  title =    {Electrostatic interactions in a neutral model phospholipid bilayer by molecular dynamics simulations},
1965 <  journal =      jcp,
1966 <  year =     2002,
1967 <  volume =   116,
1968 <  number =   7,
1969 <  pages =    {3052-3057}
1961 > @ARTICLE{Melchionna1993,
1962 >  author = {S. Melchionna and G. Ciccotti and B. L. Holian},
1963 >  title = {Hoover Npt Dynamics for Systems Varying in Shape and Size},
1964 >  journal = {Molecular Physics},
1965 >  year = {1993},
1966 >  volume = {78},
1967 >  pages = {533-544},
1968 >  number = {3},
1969 >  month = {Feb 20},
1970 >  abstract = {In this paper we write down equations of motion (following the approach
1971 >        pioneered by Hoover) for an exact isothermal-isobaric molecular
1972 >        dynamics simulation, and we extend them to multiple thermostating
1973 >        rates, to a shape-varying cell and to molecular systems, coherently
1974 >        with the previous 'extended system method'. An integration scheme
1975 >        is proposed together with a numerical illustration of the method.},
1976 >  annote = {Kq355 Times Cited:172 Cited References Count:17},
1977 >  issn = {0026-8976},
1978 >  uri = {<Go to ISI>://A1993KQ35500002},
1979   }
1980  
1981 < @Article{stevens95,
1982 <  author =   {M.~J. Stevens and G.~S. Grest},
1983 <  title =    {Phase coexistence of a Stockmayer fluid in an aplied field},
1984 <  journal =      {Physical Review E},
1985 <  year =     1995,
1986 <  volume =   51,
1987 <  number =   6,
1988 <  pages =    {5976-5983}
1981 > @ARTICLE{Memmer2002,
1982 >  author = {R. Memmer},
1983 >  title = {Liquid crystal phases of achiral banana-shaped molecules: a computer
1984 >        simulation study},
1985 >  journal = {Liquid Crystals},
1986 >  year = {2002},
1987 >  volume = {29},
1988 >  pages = {483-496},
1989 >  number = {4},
1990 >  month = {Apr},
1991 >  abstract = {The phase behaviour of achiral banana-shaped molecules was studied
1992 >        by computer simulation. The banana-shaped molecules were described
1993 >        by model intermolecular interactions based on the Gay-Berne potential.
1994 >        The characteristic molecular structure was considered by joining
1995 >        two calamitic Gay-Berne particles through a bond to form a biaxial
1996 >        molecule of point symmetry group C-2v with a suitable bending angle.
1997 >        The dependence on temperature of systems of N=1024 rigid banana-shaped
1998 >        molecules with bending angle phi=140degrees has been studied by
1999 >        means of Monte Carlo simulations in the isobaric-isothermal ensemble
2000 >        (NpT). On cooling an isotropic system, two phase transitions characterized
2001 >        by phase transition enthalpy, entropy and relative volume change
2002 >        have been observed. For the first time by computer simulation of
2003 >        a many-particle system of banana-shaped molecules, at low temperature
2004 >        an untilted smectic phase showing a global phase biaxiality and
2005 >        a spontaneous local polarization in the layers, i.e. a local polar
2006 >        arrangement of the steric dipoles, with an antiferroelectric-like
2007 >        superstructure could be proven, a phase structure which recently
2008 >        has been discovered experimentally. Additionally, at intermediate
2009 >        temperature a nematic-like phase has been proved, whereas close
2010 >        to the transition to the smectic phase hints of a spontaneous achiral
2011 >        symmetry breaking have been determined. Here, in the absence of
2012 >        a layered structure a helical superstructure has been formed. All
2013 >        phases have been characterized by visual representations of selected
2014 >        configurations, scalar and pseudoscalar correlation functions, and
2015 >        order parameters.},
2016 >  annote = {531HT Times Cited:12 Cited References Count:37},
2017 >  issn = {0267-8292},
2018 >  uri = {<Go to ISI>://000174410500001},
2019   }
2020  
2021 < @Article{darden93:pme,
2022 <  author =   {T. Darden and D. York and L. Pedersen},
2023 <  title =    {Particle mesh Ewald: An $N \log N$ method for Ewald sums in large systems},
2024 <  journal =      {Journal of Chemical Physics},
2025 <  year =     1993,
2026 <  volume =   98,
2027 <  number =   12,
1632 <  pages =    {10089-10092}
2021 > @ARTICLE{Metropolis1949,
2022 >  author = {N. Metropolis and S. Ulam},
2023 >  title = {The $\mbox{Monte Carlo}$ Method},
2024 >  journal = {J. Am. Stat. Ass.},
2025 >  year = {1949},
2026 >  volume = {44},
2027 >  pages = {335-341},
2028   }
2029  
2030 <
2031 <
2032 < @Article{goetz98,
2033 <  author =   {R. Goetz and R. Lipowsky},
2034 <  title =    {Computer simulations of bilayer membranes: Self-assembly and interfacial tension},
2035 <  journal =      {Journal of Chemical Physics},
2036 <  year =     1998,
2037 <  volume =   108,
2038 <  number =   17,
2039 <  pages =    7397
2030 > @ARTICLE{Mielke2004,
2031 >  author = {S. P. Mielke and W. H. Fink and V. V. Krishnan and N. Gronbech-Jensen
2032 >        and C. J. Benham},
2033 >  title = {Transcription-driven twin supercoiling of a DNA loop: A Brownian
2034 >        dynamics study},
2035 >  journal = {Journal of Chemical Physics},
2036 >  year = {2004},
2037 >  volume = {121},
2038 >  pages = {8104-8112},
2039 >  number = {16},
2040 >  month = {Oct 22},
2041 >  abstract = {The torque generated by RNA polymerase as it tracks along double-stranded
2042 >        DNA can potentially induce long-range structural deformations integral
2043 >        to mechanisms of biological significance in both prokaryotes and
2044 >        eukaryotes. In this paper, we introduce a dynamic computer model
2045 >        for investigating this phenomenon. Duplex DNA is represented as
2046 >        a chain of hydrodynamic beads interacting through potentials of
2047 >        linearly elastic stretching, bending, and twisting, as well as excluded
2048 >        volume. The chain, linear when relaxed, is looped to form two open
2049 >        but topologically constrained subdomains. This permits the dynamic
2050 >        introduction of torsional stress via a centrally applied torque.
2051 >        We simulate by Brownian dynamics the 100 mus response of a 477-base
2052 >        pair B-DNA template to the localized torque generated by the prokaryotic
2053 >        transcription ensemble. Following a sharp rise at early times, the
2054 >        distributed twist assumes a nearly constant value in both subdomains,
2055 >        and a succession of supercoiling deformations occurs as superhelical
2056 >        stress is increasingly partitioned to writhe. The magnitude of writhe
2057 >        surpasses that of twist before also leveling off when the structure
2058 >        reaches mechanical equilibrium with the torsional load. Superhelicity
2059 >        is simultaneously right handed in one subdomain and left handed
2060 >        in the other, as predicted by the #transcription-induced##twin-supercoiled-domain#
2061 >        model [L. F. Liu and J. C. Wang, Proc. Natl. Acad. Sci. U.S.A. 84,
2062 >        7024 (1987)]. The properties of the chain at the onset of writhing
2063 >        agree well with predictions from theory, and the generated stress
2064 >        is ample for driving secondary structural transitions in physiological
2065 >        DNA. (C) 2004 American Institute of Physics.},
2066 >  annote = {861ZF Times Cited:3 Cited References Count:34},
2067 >  issn = {0021-9606},
2068 >  uri = {<Go to ISI>://000224456500064},
2069   }
2070  
2071 < @Article{marrink01:undulation,
2072 <  author =   {S.~J. Marrink and A.~E. Mark},
2073 <  title =    {Effect of undulations on surface tension in simulated bilayers},
2074 <  journal =      {Journal of Physical Chemistry B},
2075 <  year =     2001,
2076 <  volume =   105,
2077 <  pages =    {6122-6127}
2071 > @ARTICLE{Naess2001,
2072 >  author = {S. N. Naess and H. M. Adland and A. Mikkelsen and A. Elgsaeter},
2073 >  title = {Brownian dynamics simulation of rigid bodies and segmented polymer
2074 >        chains. Use of Cartesian rotation vectors as the generalized coordinates
2075 >        describing angular orientations},
2076 >  journal = {Physica A},
2077 >  year = {2001},
2078 >  volume = {294},
2079 >  pages = {323-339},
2080 >  number = {3-4},
2081 >  month = {May 15},
2082 >  abstract = {The three Eulerian angles constitute the classical choice of generalized
2083 >        coordinates used to describe the three degrees of rotational freedom
2084 >        of a rigid body, but it has long been known that this choice yields
2085 >        singular equations of motion. The latter is also true when Eulerian
2086 >        angles are used in Brownian dynamics analyses of the angular orientation
2087 >        of single rigid bodies and segmented polymer chains. Starting from
2088 >        kinetic theory we here show that by instead employing the three
2089 >        components of Cartesian rotation vectors as the generalized coordinates
2090 >        describing angular orientation, no singularity appears in the configuration
2091 >        space diffusion equation and the associated Brownian dynamics algorithm.
2092 >        The suitability of Cartesian rotation vectors in Brownian dynamics
2093 >        simulations of segmented polymer chains with spring-like or ball-socket
2094 >        joints is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.},
2095 >  annote = {433TA Times Cited:7 Cited References Count:19},
2096 >  issn = {0378-4371},
2097 >  uri = {<Go to ISI>://000168774800005},
2098   }
2099  
2100 < @Article{lindahl00:undulation,
2101 <  author =   {E. Lindahl and O. Edholm},
2102 <  title =    {Mesoscopic undulation and thickness fluctuations in lipid bilayers from molecular dynamics simulation},
2103 <  journal =      {Biophysical Journal},
2104 <  year =     2000,
2105 <  volume =   79,
2106 <  pages =    {426-433}
2100 > @ARTICLE{Niori1996,
2101 >  author = {T. Niori and T. Sekine and J. Watanabe and T. Furukawa and H. Takezoe},
2102 >  title = {Distinct ferroelectric smectic liquid crystals consisting of banana
2103 >        shaped achiral molecules},
2104 >  journal = {Journal of Materials Chemistry},
2105 >  year = {1996},
2106 >  volume = {6},
2107 >  pages = {1231-1233},
2108 >  number = {7},
2109 >  month = {Jul},
2110 >  abstract = {The synthesis of a banana-shaped molecule is reported and it is found
2111 >        that the smectic phase which it forms is biaxial with the molecules
2112 >        packed in the best,direction into a layer. Because of this characteristic
2113 >        packing, spontaneous polarization appears parallel to the layer
2114 >        and switches on reversal of an applied electric field. This is the
2115 >        first obvious example of ferroelectricity in an achiral smectic
2116 >        phase and is ascribed to the C-2v symmetry of the molecular packing.},
2117 >  annote = {Ux855 Times Cited:447 Cited References Count:18},
2118 >  issn = {0959-9428},
2119 >  uri = {<Go to ISI>://A1996UX85500025},
2120   }
2121  
2122 < @Article{metropolis:1949,
2123 <  author =   {N. Metropolis and S. Ulam},
2124 <  title =    {The $\mbox{Monte Carlo}$ Method},
2125 <  journal =      {J. Am. Stat. Ass.},
2126 <  year =     1949,
2127 <  volume =   44,
2128 <  pages =    {335-341}
2122 > @ARTICLE{Noguchi2002,
2123 >  author = {H. Noguchi and M. Takasu},
2124 >  title = {Structural changes of pulled vesicles: A Brownian dynamics simulation},
2125 >  journal = {Physical Review E},
2126 >  year = {2002},
2127 >  volume = {65},
2128 >  pages = {-},
2129 >  number = {5},
2130 >  month = {may},
2131 >  abstract = {We Studied the structural changes of bilayer vesicles induced by mechanical
2132 >        forces using a Brownian dynamics simulation. Two nanoparticles,
2133 >        which interact repulsively with amphiphilic molecules, are put inside
2134 >        a vesicle. The position of one nanoparticle is fixed, and the other
2135 >        is moved by a constant force as in optical-trapping experiments.
2136 >        First, the pulled vesicle stretches into a pear or tube shape. Then
2137 >        the inner monolayer in the tube-shaped region is deformed, and a
2138 >        cylindrical structure is formed between two vesicles. After stretching
2139 >        the cylindrical region, fission occurs near the moved vesicle. Soon
2140 >        after this the cylindrical region shrinks. The trapping force similar
2141 >        to 100 pN is needed to induce the formation of the cylindrical structure
2142 >        and fission.},
2143 >  annote = {Part 1 568PX Times Cited:5 Cited References Count:39},
2144 >  issn = {1063-651X},
2145 >  uri = {<Go to ISI>://000176552300084},
2146   }
2147  
2148 < @Article{metropolis:1953,
2149 <  author =   {N. Metropolis and A.~W. Rosenbluth and M.~N. Rosenbluth and A.~H. Teller and E. Teller},
2150 <  title =    {Equation of State Calculations by Fast Computing Machines},
2151 <  journal =      {J. Chem. Phys.},
2152 <  year =     1953,
2153 <  volume =   21,
2154 <  pages =    {1087-1092}
2148 > @ARTICLE{Noguchi2001,
2149 >  author = {H. Noguchi and M. Takasu},
2150 >  title = {Fusion pathways of vesicles: A Brownian dynamics simulation},
2151 >  journal = {Journal of Chemical Physics},
2152 >  year = {2001},
2153 >  volume = {115},
2154 >  pages = {9547-9551},
2155 >  number = {20},
2156 >  month = {Nov 22},
2157 >  abstract = {We studied the fusion dynamics of vesicles using a Brownian dynamics
2158 >        simulation. Amphiphilic molecules spontaneously form vesicles with
2159 >        a bilayer structure. Two vesicles come into contact and form a stalk
2160 >        intermediate, in which a necklike structure only connects the outer
2161 >        monolayers, as predicted by the stalk hypothesis. We have found
2162 >        a new pathway of pore opening from stalks at high temperature: the
2163 >        elliptic stalk bends and contact between the ends of the arc-shaped
2164 >        stalk leads to pore opening. On the other hand, we have clarified
2165 >        that the pore-opening process at low temperature agrees with the
2166 >        modified stalk model: a pore is induced by contact between the inner
2167 >        monolayers inside the stalk. (C) 2001 American Institute of Physics.},
2168 >  annote = {491UW Times Cited:48 Cited References Count:25},
2169 >  issn = {0021-9606},
2170 >  uri = {<Go to ISI>://000172129300049},
2171   }
2172  
2173 < @Article{born:1912,
2174 <  author =   {M. Born and Th. Von~Karman},
2175 <  title =    {Uber Schwingungen in Raumgittern},
2176 <  journal =      {Physik Z.},
2177 <  year =     1912,
2178 <  volume =   13,
1689 <  number =   {297-309}
2173 > @BOOK{Olver1986,
2174 >  title = {Applications of Lie groups to differential equatitons},
2175 >  publisher = {Springer},
2176 >  year = {1986},
2177 >  author = {P.J. Olver},
2178 >  address = {New York},
2179   }
2180  
2181 < @Book{chandler:1987,
2182 <  author =   {David Chandler},
2183 <  title =    {Introduction to Modern Statistical Mechanics},
2184 <  publisher =    {Oxford University Press},
2185 <  year =     1987
2181 > @ARTICLE{Omelyan1998,
2182 >  author = {I. P. Omelyan},
2183 >  title = {On the numerical integration of motion for rigid polyatomics: The
2184 >        modified quaternion approach},
2185 >  journal = {Computers in Physics},
2186 >  year = {1998},
2187 >  volume = {12},
2188 >  pages = {97-103},
2189 >  number = {1},
2190 >  month = {Jan-Feb},
2191 >  abstract = {A revised version of the quaternion approach for numerical integration
2192 >        of the equations of motion for rigid polyatomic molecules is proposed.
2193 >        The modified approach is based on a formulation of the quaternion
2194 >        dynamics with constraints. This allows one to resolve the rigidity
2195 >        problem rigorously using constraint forces. It is shown that the
2196 >        procedure for preservation of molecular rigidity can be realized
2197 >        particularly simply within the Verlet algorithm in velocity form.
2198 >        We demonstrate that the method presented leads to an improved numerical
2199 >        stability with respect to the usual quaternion rescaling scheme
2200 >        and it is roughly as good as the cumbersome atomic-constraint technique.
2201 >        (C) 1998 American Institute of Physics.},
2202 >  annote = {Yx279 Times Cited:12 Cited References Count:28},
2203 >  issn = {0894-1866},
2204 >  uri = {<Go to ISI>://000072024300025},
2205   }
2206  
2207 <
2208 < @Article{pearlman:1995,
2209 <  author =   {David~A. Pearlman and David~A. Case and James~W. Caldwell and Wilson~S. Ross and Thomas~E. Cheatham~III and Steve DeBolt and David Ferguson and George Seibel and Peter Kollman},
2210 <  title =    {{\sc amber}, a package of computer programs for applying molecular mechanics. normal mode analysis, molecular dynamics, and free energy calculations to simulate the structural and energetic properties of molecules},
2211 <  journal =      {Computer Physics Communications},
2212 <  year =     1995,
2213 <  volume =   91,
2214 <  pages =    {1-41}
2207 > @ARTICLE{Omelyan1998a,
2208 >  author = {I. P. Omelyan},
2209 >  title = {Algorithm for numerical integration of the rigid-body equations of
2210 >        motion},
2211 >  journal = {Physical Review E},
2212 >  year = {1998},
2213 >  volume = {58},
2214 >  pages = {1169-1172},
2215 >  number = {1},
2216 >  month = {Jul},
2217 >  abstract = {An algorithm for numerical integration of the rigid-body equations
2218 >        of motion is proposed. The algorithm uses the leapfrog scheme and
2219 >        the quantities involved are angular velocities and orientational
2220 >        variables that can be expressed in terms of either principal axes
2221 >        or quaternions. Due to specific features of the algorithm, orthonormality
2222 >        and unit norms of the orientational variables are integrals of motion,
2223 >        despite an approximate character of the produced trajectories. It
2224 >        is shown that the method presented appears to be the most efficient
2225 >        among all such algorithms known.},
2226 >  annote = {101XL Times Cited:8 Cited References Count:22},
2227 >  issn = {1063-651X},
2228 >  uri = {<Go to ISI>://000074893400151},
2229   }
2230  
2231 < @Book{Goldstein01,
2232 <  author =   {H. Goldstein and C. Poole and J. Safko},
2233 <  title =    {Classical Mechanics},
2234 <  publisher =    {Addison Wesley},
2235 <  year =     2001,
2236 <  address =  {San Francisco},
2237 <  edition =  {3rd}
2231 > @ARTICLE{Orlandi2006,
2232 >  author = {S. Orlandi and R. Berardi and J. Steltzer and C. Zannoni},
2233 >  title = {A Monte Carlo study of the mesophases formed by polar bent-shaped
2234 >        molecules},
2235 >  journal = {Journal of Chemical Physics},
2236 >  year = {2006},
2237 >  volume = {124},
2238 >  pages = {-},
2239 >  number = {12},
2240 >  month = {Mar 28},
2241 >  abstract = {Liquid crystal phases formed by bent-shaped (or #banana#) molecules
2242 >        are currently of great interest. Here we investigate by Monte Carlo
2243 >        computer simulations the phases formed by rigid banana molecules
2244 >        modeled combining three Gay-Berne sites and containing either one
2245 >        central or two lateral and transversal dipoles. We show that changing
2246 >        the dipole position and orientation has a profound effect on the
2247 >        mesophase stability and molecular organization. In particular, we
2248 >        find a uniaxial nematic phase only for off-center dipolar models
2249 >        and tilted phases only for the one with terminal dipoles. (c) 2006
2250 >        American Institute of Physics.},
2251 >  annote = {028CP Times Cited:0 Cited References Count:42},
2252 >  issn = {0021-9606},
2253 >  uri = {<Go to ISI>://000236464000072},
2254   }
2255  
2256 < @Article{Bratko85,
2257 <  author =   {D. Bratko and L. Blum and A. Luzar},
2258 <  title =    {A simple model for the intermolecular potential of water},
2259 <  journal =      jcp,
2260 <  year =     1985,
2261 <  volume =   83,
2262 <  number =   12,
2263 <  pages =    {6367-6370}
2256 > @ARTICLE{Owren1992,
2257 >  author = {B. Owren and M. Zennaro},
2258 >  title = {Derivation of Efficient, Continuous, Explicit Runge-Kutta Methods},
2259 >  journal = {Siam Journal on Scientific and Statistical Computing},
2260 >  year = {1992},
2261 >  volume = {13},
2262 >  pages = {1488-1501},
2263 >  number = {6},
2264 >  month = {Nov},
2265 >  abstract = {Continuous, explicit Runge-Kutta methods with the minimal number of
2266 >        stages are considered. These methods are continuously differentiable
2267 >        if and only if one of the stages is the FSAL evaluation. A characterization
2268 >        of a subclass of these methods is developed for orders 3, 4, and
2269 >        5. It is shown how the free parameters of these methods can be used
2270 >        either to minimize the continuous truncation error coefficients
2271 >        or to maximize the stability region. As a representative for these
2272 >        methods the fifth-order method with minimized error coefficients
2273 >        is chosen, supplied with an error estimation method, and analysed
2274 >        by using the DETEST software. The results are compared with a similar
2275 >        implementation of the Dormand-Prince 5(4) pair with interpolant,
2276 >        showing a significant advantage in the new method for the chosen
2277 >        problems.},
2278 >  annote = {Ju936 Times Cited:25 Cited References Count:20},
2279 >  issn = {0196-5204},
2280 >  uri = {<Go to ISI>://A1992JU93600013},
2281   }
2282  
2283 < @Article{Bratko95,
2284 <  author =   {L. Blum and F. Vericat and D. Bratko},
2285 <  title =    {Towards an analytical model of water: The octupolar model},
2286 <  journal =      jcp,
2287 <  year =     1995,
2288 <  volume =   102,
2289 <  number =   3,
2290 <  pages =    {1461-1462}
2283 > @ARTICLE{Palacios1998,
2284 >  author = {J. L. Garcia-Palacios and F. J. Lazaro},
2285 >  title = {Langevin-dynamics study of the dynamical properties of small magnetic
2286 >        particles},
2287 >  journal = {Physical Review B},
2288 >  year = {1998},
2289 >  volume = {58},
2290 >  pages = {14937-14958},
2291 >  number = {22},
2292 >  month = {Dec 1},
2293 >  abstract = {The stochastic Landau-Lifshitz-Gilbert equation of motion for a classical
2294 >        magnetic moment is numerically solved (properly observing the customary
2295 >        interpretation of it as a Stratonovich stochastic differential equation),
2296 >        in order to study the dynamics of magnetic nanoparticles. The corresponding
2297 >        Langevin-dynamics approach allows for the study of the fluctuating
2298 >        trajectories of individual magnetic moments, where we have encountered
2299 >        remarkable phenomena in the overbarrier rotation process, such as
2300 >        crossing-back or multiple crossing of the potential barrier, rooted
2301 >        in the gyromagnetic nature of the system. Concerning averaged quantities,
2302 >        we study the linear dynamic response of the archetypal ensemble
2303 >        of noninteracting classical magnetic moments with axially symmetric
2304 >        magnetic anisotropy. The results are compared with different analytical
2305 >        expressions used to model the relaxation of nanoparticle ensembles,
2306 >        assessing their accuracy. It has been found that, among a number
2307 >        of heuristic expressions for the linear dynamic susceptibility,
2308 >        only the simple formula proposed by Shliomis and Stepanov matches
2309 >        the coarse features of the susceptibility reasonably. By comparing
2310 >        the numerical results with the asymptotic formula of Storonkin {Sov.
2311 >        Phys. Crystallogr. 30, 489 (1985) [Kristallografiya 30, 841 (1985)]},
2312 >        the effects of the intra-potential-well relaxation modes on the
2313 >        low-temperature longitudinal dynamic response have been assessed,
2314 >        showing their relatively small reflection in the susceptibility
2315 >        curves but their dramatic influence on the phase shifts. Comparison
2316 >        of the numerical results with the exact zero-damping expression
2317 >        for the transverse susceptibility by Garanin, Ishchenko, and Panina
2318 >        {Theor. Math. Phys. (USSR) 82, 169 (1990) [Teor. Mat. Fit. 82, 242
2319 >        (1990)]}, reveals a sizable contribution of the spread of the precession
2320 >        frequencies of the magnetic moment in the anisotropy field to the
2321 >        dynamic response at intermediate-to-high temperatures. [S0163-1829
2322 >        (98)00446-9].},
2323 >  annote = {146XW Times Cited:66 Cited References Count:45},
2324 >  issn = {0163-1829},
2325 >  uri = {<Go to ISI>://000077460000052},
2326   }
2327  
2328 < @Article{Ichiye03,
2329 <  author =   {M.-L. Tan and J.~T. Fischer and A. Chandra and B.~R. Brooks
2330 <                  and T. Ichiye},
2331 <  title =    {A temperature of maximum density in soft sticky dipole
2332 <                  water},
2333 <  journal =      cpl,
2334 <  year =     2003,
2335 <  volume =   376,
2336 <  pages =    {646-652},
2328 > @ARTICLE{Pastor1988,
2329 >  author = {R. W. Pastor and B. R. Brooks and A. Szabo},
2330 >  title = {An Analysis of the Accuracy of Langevin and Molecular-Dynamics Algorithms},
2331 >  journal = {Molecular Physics},
2332 >  year = {1988},
2333 >  volume = {65},
2334 >  pages = {1409-1419},
2335 >  number = {6},
2336 >  month = {Dec 20},
2337 >  annote = {T1302 Times Cited:61 Cited References Count:26},
2338 >  issn = {0026-8976},
2339 >  uri = {<Go to ISI>://A1988T130200011},
2340   }
2341  
2342 <
2343 < @Article{Soper86,
2344 <  author =   {A.~K. Soper and M.~G. Phillips},
2345 <  title =    {A new determination of the structure of water at 298K},
2346 <  journal =      cp,
2347 <  year =     1986,
2348 <  volume =   107,
2349 <  number =   1,
2350 <  pages =    {47-60},
2342 > @ARTICLE{Pelzl1999,
2343 >  author = {G. Pelzl and S. Diele and W. Weissflog},
2344 >  title = {Banana-shaped compounds - A new field of liquid crystals},
2345 >  journal = {Advanced Materials},
2346 >  year = {1999},
2347 >  volume = {11},
2348 >  pages = {707-724},
2349 >  number = {9},
2350 >  month = {Jul 5},
2351 >  annote = {220RC Times Cited:313 Cited References Count:49},
2352 >  issn = {0935-9648},
2353 >  uri = {<Go to ISI>://000081680400007},
2354   }
2355  
2356 < @Article{plimpton95,
2357 <  author =   {S. Plimpton},
2358 <  title =    {Fast Parallel Algorithms for Short-Range Molecular Dymanics},
2359 <  journal =      {J. Comp. Phys.},
2360 <  year =     1995,
2361 <  volume =   117,
2362 <  pages =    {1-19},
2356 > @ARTICLE{Perram1985,
2357 >  author = {J. W. Perram and M. S. Wertheim},
2358 >  title = {Statistical-Mechanics of Hard Ellipsoids .1. Overlap Algorithm and
2359 >        the Contact Function},
2360 >  journal = {Journal of Computational Physics},
2361 >  year = {1985},
2362 >  volume = {58},
2363 >  pages = {409-416},
2364 >  number = {3},
2365 >  annote = {Akb93 Times Cited:71 Cited References Count:12},
2366 >  issn = {0021-9991},
2367 >  uri = {<Go to ISI>://A1985AKB9300008},
2368   }
2369  
2370 < @Article{plimpton93,
2371 <  author =   {S.~J. Plimpton and B.~A. Hendrickson},
2372 <  title =    {Parallel Molecular Dynamics with the Embedded Atom Method},
2373 <  journal =      {MRS Proceedings},
2374 <  year =     1993,
2375 <  volume =   291,
2376 <  pages =    37
2370 > @ARTICLE{Rotne1969,
2371 >  author = {F. Perrin},
2372 >  title = {Variational treatment of hydrodynamic interaction in polymers},
2373 >  journal = {J. Chem. Phys.},
2374 >  year = {1969},
2375 >  volume = {50},
2376 >  pages = {4831¨C4837},
2377   }
2378  
2379 <
2380 < @Article{Ercolessi02,
2381 <  author =   {U. Tartaglino and E. Tosatti and D. Passerone and F. Ercolessi},
2382 <  title =    {Bending strain-driven modification of surface resconstructions: Au(111)},
2383 <  journal =      prb,
2384 <  year =     2002,
2385 <  volume =   65,
2386 <  pages =    241406
2379 > @ARTICLE{Perrin1936,
2380 >  author = {F. Perrin},
2381 >  title = {Mouvement brownien d'un ellipsoid(II). Rotation libre et depolarisation
2382 >        des fluorescences. Translation et diffusion de moleculese ellipsoidales},
2383 >  journal = {J. Phys. Radium},
2384 >  year = {1936},
2385 >  volume = {7},
2386 >  pages = {1-11},
2387   }
2388  
2389 < @Article{Ercolessi88,
2390 <  author =   {F. Ercolessi  and M. Parrinello  and E. Tosatti},
2391 <  title =    {Simulation of Gold in the Glue Model.},
2392 <  journal =      {Philosophical Magazine A},
2393 <  year =     1988,
2394 <  volume =   58,
2395 <  pages =    {213-226}
2389 > @ARTICLE{Perrin1934,
2390 >  author = {F. Perrin},
2391 >  title = {Mouvement brownien d'un ellipsoid(I). Dispersion dielectrique pour
2392 >        des molecules ellipsoidales},
2393 >  journal = {J. Phys. Radium},
2394 >  year = {1934},
2395 >  volume = {5},
2396 >  pages = {497-511},
2397   }
2398  
2399 < @Article{Finnis84,
2400 <  author =   {M.~W Finnis and J.~E. Sinclair },
2401 <  title =    {A Simple Empirical N-Body Potential for Transition-Metals},
2402 <  journal =      {Phil. Mag. A},
2403 <  year =     1984,
2404 <  volume =   50,
2405 <  pages =    {45-55}
2399 > @ARTICLE{Petrache1998,
2400 >  author = {H. I. Petrache and S. Tristram-Nagle and J. F. Nagle},
2401 >  title = {Fluid phase structure of EPC and DMPC bilayers},
2402 >  journal = {Chemistry and Physics of Lipids},
2403 >  year = {1998},
2404 >  volume = {95},
2405 >  pages = {83-94},
2406 >  number = {1},
2407 >  month = {Sep},
2408 >  abstract = {X-ray diffraction data taken at high instrumental resolution were
2409 >        obtained for EPC and DMPC under various osmotic pressures, primarily
2410 >        at T = 30 degrees C. The headgroup thickness D-HH was obtained from
2411 >        relative electron density profiles. By using volumetric results
2412 >        and by comparing to gel phase DPPC we obtain areas A(EPC)(F) = 69.4
2413 >        +/- 1.1 Angstrom(2) and A(DMPC)(F) = 59.7 +/- 0.2 Angstrom(2). The
2414 >        analysis also gives estimates for the areal compressibility K-A.
2415 >        The A(F) results lead to other structural results regarding membrane
2416 >        thickness and associated waters. Using the recently determined absolute
2417 >        electrons density profile of DPPC, the AF results also lead to absolute
2418 >        electron density profiles and absolute continuous transforms \F(q)\
2419 >        for EPC and DMPC, Limited measurements of temperature dependence
2420 >        show directly that fluctuations increase with increasing temperature
2421 >        and that a small decrease in bending modulus K-c accounts for the
2422 >        increased water spacing reported by Simon et al. (1995) Biophys.
2423 >        J. 69, 1473-1483. (C) 1998 Elsevier Science Ireland Ltd. All rights
2424 >        reserved.},
2425 >  annote = {130AT Times Cited:98 Cited References Count:39},
2426 >  issn = {0009-3084},
2427 >  uri = {<Go to ISI>://000076497600007},
2428   }
2429  
2430 < @Article{FBD86,
2431 <  author =       {S.~M. Foiles and M.~I. Baskes and M.~S. Daw},
2432 <  title =        {Embedded-atom-method functions for the fcc metals
2433 < $\mbox{Cu, Ag, Au, Ni, Pd, Pt}$, and their alloys},
2434 <  journal =      prb,
2435 <  year =         1986,
2436 <  volume =       33,
2437 <  number =       12,
1814 <  pages =        7983
2430 > @ARTICLE{Powles1973,
2431 >  author = {J.~G. Powles},
2432 >  title = {A general ellipsoid can not always serve as a modle for the rotational
2433 >        diffusion properties of arbitrary shaped rigid molecules},
2434 >  journal = {Advan. Phys.},
2435 >  year = {1973},
2436 >  volume = {22},
2437 >  pages = {1-56},
2438   }
2439  
2440 < @Article{johnson89,
2441 <  author =   {R.~A. Johnson},
2442 <  title =    {Alloy models with the embedded-atom method},
2443 <  journal =      prb,
2444 <  year =     1989,
2445 <  volume =   39,
2446 <  number =   17,
2447 <  pages =    12554
2440 > @ARTICLE{Recio2004,
2441 >  author = {J. Fernandez-Recio and M. Totrov and R. Abagyan},
2442 >  title = {Identification of protein-protein interaction sites from docking
2443 >        energy landscapes},
2444 >  journal = {Journal of Molecular Biology},
2445 >  year = {2004},
2446 >  volume = {335},
2447 >  pages = {843-865},
2448 >  number = {3},
2449 >  month = {Jan 16},
2450 >  abstract = {Protein recognition is one of the most challenging and intriguing
2451 >        problems in structural biology. Despite all the available structural,
2452 >        sequence and biophysical information about protein-protein complexes,
2453 >        the physico-chemical patterns, if any, that make a protein surface
2454 >        likely to be involved in protein-protein interactions, remain elusive.
2455 >        Here, we apply protein docking simulations and analysis of the interaction
2456 >        energy landscapes to identify protein-protein interaction sites.
2457 >        The new protocol for global docking based on multi-start global
2458 >        energy optimization of an allatom model of the ligand, with detailed
2459 >        receptor potentials and atomic solvation parameters optimized in
2460 >        a training set of 24 complexes, explores the conformational space
2461 >        around the whole receptor without restrictions. The ensembles of
2462 >        the rigid-body docking solutions generated by the simulations were
2463 >        subsequently used to project the docking energy landscapes onto
2464 >        the protein surfaces. We found that highly populated low-energy
2465 >        regions consistently corresponded to actual binding sites. The procedure
2466 >        was validated on a test set of 21 known protein-protein complexes
2467 >        not used in the training set. As much as 81% of the predicted high-propensity
2468 >        patch residues were located correctly in the native interfaces.
2469 >        This approach can guide the design of mutations on the surfaces
2470 >        of proteins, provide geometrical details of a possible interaction,
2471 >        and help to annotate protein surfaces in structural proteomics.
2472 >        (C) 2003 Elsevier Ltd. All rights reserved.},
2473 >  annote = {763GQ Times Cited:21 Cited References Count:59},
2474 >  issn = {0022-2836},
2475 >  uri = {<Go to ISI>://000188066900016},
2476   }
2477  
2478 < @Article{Laird97,
2479 <  author =   {A. Kol and B.~B. Laird and B.~J. Leimkuhler},
2480 <  title =    {A symplectic method for rigid-body molecular simulation},
2481 <  journal =      jcp,
2482 <  year =     1997,
2483 <  volume =   107,
2484 <  number =   7,
2485 <  pages =    {2580-2588}
2486 < }
2487 <
2488 <
2489 < @Article{hoover85,
2490 <  author =   {W.~G. Hoover},
2491 <  title =    {Canonical dynamics: Equilibrium phase-space distributions},
2492 <  journal =      pra,
2493 <  year =     1985,
2494 <  volume =   31,
2495 <  pages =    1695
2496 < }
2497 <
2498 < @Article{Roux91,
2499 <  author =   {B. Roux and M. Karplus},
2500 <  title =    {Ion transport in a Gramicidin-like channel: dynamics and mobility},
1850 <  journal =      jpc,
1851 <  year =     1991,
1852 <  volume =   95,
1853 <  number =   15,
1854 <  pages =    {4856-4868}
1855 < }
1856 <
1857 <
1858 < @Article{Marrink94,
1859 <  author =   {S.~J Marrink and H.~J.~C. Berendsen},
1860 <  title =    {Simulation of water transport through a lipid membrane},
1861 <  journal =      jpc,
1862 <  year =     1994,
1863 <  volume =   98,
1864 <  number =   15,
1865 <  pages =    {4155-4168}
1866 < }
1867 <
1868 <
1869 < @Article{Daw89,
1870 <  author =   {Murray~S. Daw},
1871 <  title =    {Model of metallic cohesion: The embedded-atom method},
1872 <  journal =      {Physical Review B},
1873 <  year =     1989,
1874 <  volume =   39,
1875 <  pages =    {7441-7452}
2478 > @ARTICLE{Reddy2006,
2479 >  author = {R. A. Reddy and C. Tschierske},
2480 >  title = {Bent-core liquid crystals: polar order, superstructural chirality
2481 >        and spontaneous desymmetrisation in soft matter systems},
2482 >  journal = {Journal of Materials Chemistry},
2483 >  year = {2006},
2484 >  volume = {16},
2485 >  pages = {907-961},
2486 >  number = {10},
2487 >  abstract = {An overview on the recent developments in the field of liquid crystalline
2488 >        bent-core molecules (so-called banana liquid crystals) is given.
2489 >        After some basic issues, dealing with general aspects of the systematisation
2490 >        of the mesophases, development of polar order and chirality in this
2491 >        class of LC systems and explaining some general structure-property
2492 >        relationships, we focus on fascinating new developments in this
2493 >        field, such as modulated, undulated and columnar phases, so-called
2494 >        B7 phases, phase biaxiality, ferroelectric and antiferroelectric
2495 >        polar order in smectic and columnar phases, amplification and switching
2496 >        of chirality and the spontaneous formation of superstructural and
2497 >        supramolecular chirality.},
2498 >  annote = {021NS Times Cited:2 Cited References Count:316},
2499 >  issn = {0959-9428},
2500 >  uri = {<Go to ISI>://000235990500001},
2501   }
2502  
2503 < @InBook{voter,
2504 <  author =   {A.~F. Voter},
2505 <  editor =   {J.~H. Westbrook and R.~L. Fleischer},
2506 <  title =    {Intermetallic Compounds: Principles and Practice},
2507 <  chapter =      4,
2508 <  publisher =    {John Wiley and Sons Ltd},
2509 <  year =     1995,
2510 <  volume =   1,
2511 <  pages =    77
2503 > @ARTICLE{Reich1999,
2504 >  author = {S. Reich},
2505 >  title = {Backward error analysis for numerical integrators},
2506 >  journal = {Siam Journal on Numerical Analysis},
2507 >  year = {1999},
2508 >  volume = {36},
2509 >  pages = {1549-1570},
2510 >  number = {5},
2511 >  month = {Sep 8},
2512 >  abstract = {Backward error analysis has become an important tool for understanding
2513 >        the long time behavior of numerical integration methods. This is
2514 >        true in particular for the integration of Hamiltonian systems where
2515 >        backward error analysis can be used to show that a symplectic method
2516 >        will conserve energy over exponentially long periods of time. Such
2517 >        results are typically based on two aspects of backward error analysis:
2518 >        (i) It can be shown that the modified vector fields have some qualitative
2519 >        properties which they share with the given problem and (ii) an estimate
2520 >        is given for the difference between the best interpolating vector
2521 >        field and the numerical method. These aspects have been investigated
2522 >        recently, for example, by Benettin and Giorgilli in [J. Statist.
2523 >        Phys., 74 (1994), pp. 1117-1143], by Hairer in [Ann. Numer. Math.,
2524 >        1 (1994), pp. 107-132], and by Hairer and Lubich in [Numer. Math.,
2525 >        76 (1997), pp. 441-462]. In this paper we aim at providing a unifying
2526 >        framework and a simplification of the existing results and corresponding
2527 >        proofs. Our approach to backward error analysis is based on a simple
2528 >        recursive definition of the modified vector fields that does not
2529 >        require explicit Taylor series expansion of the numerical method
2530 >        and the corresponding flow maps as in the above-cited works. As
2531 >        an application we discuss the long time integration of chaotic Hamiltonian
2532 >        systems and the approximation of time averages along numerically
2533 >        computed trajectories.},
2534 >  annote = {237HV Times Cited:43 Cited References Count:41},
2535 >  issn = {0036-1429},
2536 >  uri = {<Go to ISI>://000082650600010},
2537   }
2538  
2539 < @Article{marrink:2002,
2540 <  author =   {S.~J. Marrink and D.~P. Teileman},
2541 <  title =    {Molecular Dynamics Simulation of Spontaneous Membrane Fusion during a Cubic-Hexagonal Phase Transition},
2542 <  journal =      {Biophysical Journal},
2543 <  year =     2002,
2544 <  volume =   83,
2545 <  pages =    {2386-2392}
2539 > @ARTICLE{Ros2005,
2540 >  author = {M. B. Ros and J. L. Serrano and M. R. {de la Fuente} and C. L. Folcia},
2541 >  title = {Banana-shaped liquid crystals: a new field to explore},
2542 >  journal = {Journal of Materials Chemistry},
2543 >  year = {2005},
2544 >  volume = {15},
2545 >  pages = {5093-5098},
2546 >  number = {48},
2547 >  abstract = {The recent literature in the field of liquid crystals shows that banana-shaped
2548 >        mesogenic materials represent a bewitching and stimulating field
2549 >        of research that is interesting both academically and in terms of
2550 >        applications. Numerous topics are open to investigation in this
2551 >        area because of the rich phenomenology and new possibilities that
2552 >        these materials offer. The principal concepts in this area are reviewed
2553 >        along with recent results. In addition, new directions to stimulate
2554 >        further research activities are highlighted.},
2555 >  annote = {990XA Times Cited:3 Cited References Count:72},
2556 >  issn = {0959-9428},
2557 >  uri = {<Go to ISI>://000233775500001},
2558   }
2559  
2560 < @Article{sum:2003,
2561 <  author =   {A.~K. Sum and J.~J. de~Pablo},
2562 <  title =    {Molecular Simulation Study on the influence of Dimethylsulfoxide on the structure of Phospholipid Bilayers},
2563 <  journal =      {Biophysical Journal},
2564 <  year =     2003,
2565 <  volume =   85,
2566 <  pages =    {3636-3645}
2560 > @ARTICLE{Roux1991,
2561 >  author = {B. Roux and M. Karplus},
2562 >  title = {Ion-Transport in a Gramicidin-Like Channel - Dynamics and Mobility},
2563 >  journal = {Journal of Physical Chemistry},
2564 >  year = {1991},
2565 >  volume = {95},
2566 >  pages = {4856-4868},
2567 >  number = {12},
2568 >  month = {Jun 13},
2569 >  abstract = {The mobility of water, Na+. and K+ has been calculated inside a periodic
2570 >        poly-(L,D)-alanine beta-helix, a model for the interior of the gramicidin
2571 >        channel. Because of the different dynamical regimes for the three
2572 >        species (high barrier for Na+, low barrier for K+, almost free diffusion
2573 >        for water), different methods are used to calculate the mobilities.
2574 >        By use of activated dynamics and a potential of mean force determined
2575 >        previously (Roux, B.; Karplus, M. Biophys. J. 1991, 59, 961), the
2576 >        barrier crossing rate of Na+ ion is determined. The motion of Na+
2577 >        at the transition state is controlled by local interactions and
2578 >        collisions with the neighboring carbonyls and the two nearest water
2579 >        molecules. There are significant deviations from transition-state
2580 >        theory; the transmission coefficient is equal to 0.11. The water
2581 >        and K+ motions are found to be well described by a diffusive model;
2582 >        the motion of K+ appears to be controlled by the diffusion of water.
2583 >        The time-dependent friction functions of Na+ and K+ ions in the
2584 >        periodic beta-helix are calculated and analyzed by using a generalized
2585 >        Langevin equation approach. Both Na+ and K+ suffer many rapid collisions,
2586 >        and their dynamics is overdamped and noninertial. Thus, the selectivity
2587 >        sequence of ions in the beta-helix is not influenced strongly by
2588 >        their masses.},
2589 >  annote = {Fr756 Times Cited:97 Cited References Count:65},
2590 >  issn = {0022-3654},
2591 >  uri = {<Go to ISI>://A1991FR75600049},
2592   }
2593  
2594 < @Article{gomez:2003,
2595 <  author =   {J.~D. Faraldo-Gomez and G.~R. Smith and M.~S.P. Sansom},
2596 <  title =    {Setting up and optimization of membrane protein simulations},
2597 <  journal =      {Eur. Biophys. J.},
2598 <  year =     2002,
2599 <  volume =   31,
2600 <  pages =    {217-227}
2594 > @ARTICLE{Roy2005,
2595 >  author = {A. Roy and N. V. Madhusudana},
2596 >  title = {A frustrated packing model for the B-6-B-1-SmAP(A) sequence of phases
2597 >        in banana shaped molecules},
2598 >  journal = {European Physical Journal E},
2599 >  year = {2005},
2600 >  volume = {18},
2601 >  pages = {253-258},
2602 >  number = {3},
2603 >  month = {Nov},
2604 >  abstract = {A vast majority of compounds with bent core or banana shaped molecules
2605 >        exhibit the phase sequence B-6-B-1-B-2 as the chain length is increased
2606 >        in a homologous series. The B-6 phase has an intercalated fluid
2607 >        lamellar structure with a layer spacing of half the molecular length.
2608 >        The B-1 phase has a two dimensionally periodic rectangular columnar
2609 >        structure. The B-2 phase has a monolayer fluid lamellar structure
2610 >        with molecules tilted with respect to the layer normal. Neglecting
2611 >        the tilt order of the molecules in the B-2 phase, we have developed
2612 >        a frustrated packing model to describe this phase sequence qualitatively.
2613 >        The model has some analogy with that of the frustrated smectics
2614 >        exhibited by highly polar rod like molecules.},
2615 >  annote = {985FW Times Cited:0 Cited References Count:30},
2616 >  issn = {1292-8941},
2617 >  uri = {<Go to ISI>://000233363300002},
2618   }
2619  
2620 <
2621 < @Article{smondyrev:1999,
2622 <  author =   {A.~M. Smondyrev and M.~L. Berkowitz},
2623 <  title =    {Molecular Dynamics Simulation of {\sc dppc} Bilayer in {\sc dmso}},
2624 <  journal =      {Biophysical Journal},
2625 <  year =     1999,
2626 <  volume =   76,
2627 <  pages =    {2472-2478}
2620 > @ARTICLE{Ryckaert1977,
2621 >  author = {J. P. Ryckaert and G. Ciccotti and H. J. C. Berendsen},
2622 >  title = {Numerical-Integration of Cartesian Equations of Motion of a System
2623 >        with Constraints - Molecular-Dynamics of N-Alkanes},
2624 >  journal = {Journal of Computational Physics},
2625 >  year = {1977},
2626 >  volume = {23},
2627 >  pages = {327-341},
2628 >  number = {3},
2629 >  annote = {Cz253 Times Cited:3680 Cited References Count:7},
2630 >  issn = {0021-9991},
2631 >  uri = {<Go to ISI>://A1977CZ25300007},
2632   }
2633  
2634 < @Article{nina:2002,
2635 <  author =   {M. Nina and T. Simonson},
2636 <  title =    {Molecular Dynamics of the $\text{tRNA}^{\text{Ala}}$ Acceptor Stem: Comparison between Continuum Reaction Field and Particle-Mesh Ewald Electrostatic Treatments},
2637 <  journal =      {J. Phys. Chem. B},
2638 <  year =     2002,
2639 <  volume =   106,
2640 <  pages =    {3696-3705}
2634 > @ARTICLE{Sagui1999,
2635 >  author = {C. Sagui and T. A. Darden},
2636 >  title = {Molecular dynamics simulations of biomolecules: Long-range electrostatic
2637 >        effects},
2638 >  journal = {Annual Review of Biophysics and Biomolecular Structure},
2639 >  year = {1999},
2640 >  volume = {28},
2641 >  pages = {155-179},
2642 >  abstract = {Current computer simulations of biomolecules typically make use of
2643 >        classical molecular dynamics methods, as a very large number (tens
2644 >        to hundreds of thousands) of atoms are involved over timescales
2645 >        of many nanoseconds. The methodology for treating short-range bonded
2646 >        and van der Waals interactions has matured. However, long-range
2647 >        electrostatic interactions still represent a bottleneck in simulations.
2648 >        In this article, we introduce the basic issues for an accurate representation
2649 >        of the relevant electrostatic interactions. In spite of the huge
2650 >        computational time demanded by most biomolecular systems, it is
2651 >        no longer necessary to resort to uncontrolled approximations such
2652 >        as the use of cutoffs. In particular, we discuss the Ewald summation
2653 >        methods, the fast particle mesh methods, and the fast multipole
2654 >        methods. We also review recent efforts to understand the role of
2655 >        boundary conditions in systems with long-range interactions, and
2656 >        conclude with a short perspective on future trends.},
2657 >  annote = {213KJ Times Cited:126 Cited References Count:73},
2658 >  issn = {1056-8700},
2659 >  uri = {<Go to ISI>://000081271400008},
2660   }
2661  
2662 < @Article{norberg:2000,
2663 <  author =   {J. Norberg and L. Nilsson},
2664 <  title =    {On the truncation of Long-Range Electrostatic Interactions in {\sc dna}},
2665 <  journal =      {Biophysical Journal},
2666 <  year =     2000,
2667 <  volume =   79,
2668 <  pages =    {1537-1553}
2662 > @ARTICLE{Sandu1999,
2663 >  author = {A. Sandu and T. Schlick},
2664 >  title = {Masking resonance artifacts in force-splitting methods for biomolecular
2665 >        simulations by extrapolative Langevin dynamics},
2666 >  journal = {Journal of Computational Physics},
2667 >  year = {1999},
2668 >  volume = {151},
2669 >  pages = {74-113},
2670 >  number = {1},
2671 >  month = {May 1},
2672 >  abstract = {Numerical resonance artifacts have become recognized recently as a
2673 >        limiting factor to increasing the timestep in multiple-timestep
2674 >        (MTS) biomolecular dynamics simulations. At certain timesteps correlated
2675 >        to internal motions (e.g., 5 fs, around half the period of the fastest
2676 >        bond stretch, T-min), visible inaccuracies or instabilities can
2677 >        occur. Impulse-MTS schemes are vulnerable to these resonance errors
2678 >        since large energy pulses are introduced to the governing dynamics
2679 >        equations when the slow forces are evaluated. We recently showed
2680 >        that such resonance artifacts can be masked significantly by applying
2681 >        extrapolative splitting to stochastic dynamics. Theoretical and
2682 >        numerical analyses of force-splitting integrators based on the Verlet
2683 >        discretization are reported here for linear models to explain these
2684 >        observations and to suggest how to construct effective integrators
2685 >        for biomolecular dynamics that balance stability with accuracy.
2686 >        Analyses for Newtonian dynamics demonstrate the severe resonance
2687 >        patterns of the Impulse splitting, with this severity worsening
2688 >        with the outer timestep. Delta t: Constant Extrapolation is generally
2689 >        unstable, but the disturbances do not grow with Delta t. Thus. the
2690 >        stochastic extrapolative combination can counteract generic instabilities
2691 >        and largely alleviate resonances with a sufficiently strong Langevin
2692 >        heat-bath coupling (gamma), estimates for which are derived here
2693 >        based on the fastest and slowest motion periods. These resonance
2694 >        results generally hold for nonlinear test systems: a water tetramer
2695 >        and solvated protein. Proposed related approaches such as Extrapolation/Correction
2696 >        and Midpoint Extrapolation work better than Constant Extrapolation
2697 >        only for timesteps less than T-min/2. An effective extrapolative
2698 >        stochastic approach for biomolecules that balances long-timestep
2699 >        stability with good accuracy for the fast subsystem is then applied
2700 >        to a biomolecule using a three-class partitioning: the medium forces
2701 >        are treated by Midpoint Extrapolation via position Verlet, and the
2702 >        slow forces are incorporated by Constant Extrapolation. The resulting
2703 >        algorithm (LN) performs well on a solvated protein system in terms
2704 >        of thermodynamic properties and yields an order of magnitude speedup
2705 >        with respect to single-timestep Langevin trajectories. Computed
2706 >        spectral density functions also show how the Newtonian modes can
2707 >        be approximated by using a small gamma in the range Of 5-20 ps(-1).
2708 >        (C) 1999 Academic Press.},
2709 >  annote = {194FM Times Cited:14 Cited References Count:32},
2710 >  issn = {0021-9991},
2711 >  uri = {<Go to ISI>://000080181500004},
2712   }
2713  
2714 < @Article{patra:2003,
2715 <  author =   {M. Patra and M. Karttunen and M.~T. Hyv\"{o}nen and E. Falk and P. Lindqvist and I. Vattulainen},
2716 <  title =    {Molecular Dynamics Simulations of Lipid Bilayers: Major Artifacts Due to Truncating Electrostatic Interactions},
2717 <  journal =      {Biophysical Journal},
2718 <  year =     2003,
2719 <  volume =   84,
2720 <  pages =    {3636-3645}
2714 > @ARTICLE{Sasaki2004,
2715 >  author = {Y. Sasaki and R. Shukla and B. D. Smith},
2716 >  title = {Facilitated phosphatidylserine flip-flop across vesicle and cell
2717 >        membranes using urea-derived synthetic translocases},
2718 >  journal = {Organic \& Biomolecular Chemistry},
2719 >  year = {2004},
2720 >  volume = {2},
2721 >  pages = {214-219},
2722 >  number = {2},
2723 >  abstract = {Tris(2-aminoethyl) amine derivatives with appended urea and sulfonamide
2724 >        groups are shown to facilitate the translocation of fluorescent
2725 >        phospholipid probes and endogenous phosphatidylserine across vesicle
2726 >        and erythrocyte cell membranes. The synthetic translocases appear
2727 >        to operate by binding to the phospholipid head groups and forming
2728 >        lipophilic supramolecular complexes which diffuse through the non-polar
2729 >        interior of the bilayer membrane.},
2730 >  annote = {760PX Times Cited:8 Cited References Count:25},
2731 >  issn = {1477-0520},
2732 >  uri = {<Go to ISI>://000187843800012},
2733   }
2734  
2735 < @Article{marrink04,
2736 <  author =   {S.~J. Marrink and A.~H. de~Vries and A.~E. Mark},
2737 <  title =    {Coarse Grained Model for Semiquantitative Lipid Simulations},
2738 <  journal =      {J. Phys. Chem. B},
2739 <  year =     2004,
2740 <  volume =   108,
2741 <  pages =    {750-760}
2735 > @ARTICLE{Satoh1996,
2736 >  author = {K. Satoh and S. Mita and S. Kondo},
2737 >  title = {Monte Carlo simulations using the dipolar Gay-Berne model: Effect
2738 >        of terminal dipole moment on mesophase formation},
2739 >  journal = {Chemical Physics Letters},
2740 >  year = {1996},
2741 >  volume = {255},
2742 >  pages = {99-104},
2743 >  number = {1-3},
2744 >  month = {Jun 7},
2745 >  abstract = {The effects of dipole-dipole interaction on mesophase formation are
2746 >        investigated with a Monte Carlo simulation using the dipolar Gay-Berne
2747 >        potential. It is shown that the dipole moment at the end of a molecule
2748 >        causes a shift in the nematic-isotropic transition toward higher
2749 >        temperature and a spread of the temperature range of the nematic
2750 >        phase and that layer structures with various interdigitations are
2751 >        formed in the smectic phase.},
2752 >  annote = {Uq975 Times Cited:32 Cited References Count:33},
2753 >  issn = {0009-2614},
2754 >  uri = {<Go to ISI>://A1996UQ97500017},
2755   }
2756  
2757 < @Article{andersen83,
2758 <  author =   {H.~C. Andersen},
2759 <  title =    {{\sc rattle}: A Velocity Version of the Shake Algorithm for Molecular Dynamics Calculations},
2760 <  journal =      {Journal of Computational Physics},
2761 <  year =     1983,
2762 <  volume =   52,
2763 <  pages =    {24-34}
2757 > @ARTICLE{Shen2002,
2758 >  author = {M. Y. Shen and K. F. Freed},
2759 >  title = {Long time dynamics of met-enkephalin: Comparison of explicit and
2760 >        implicit solvent models},
2761 >  journal = {Biophysical Journal},
2762 >  year = {2002},
2763 >  volume = {82},
2764 >  pages = {1791-1808},
2765 >  number = {4},
2766 >  month = {Apr},
2767 >  abstract = {Met-enkephalin is one of the smallest opiate peptides. Yet, its dynamical
2768 >        structure and receptor docking mechanism are still not well understood.
2769 >        The conformational dynamics of this neuron peptide in liquid water
2770 >        are studied here by using all-atom molecular dynamics (MID) and
2771 >        implicit water Langevin dynamics (LD) simulations with AMBER potential
2772 >        functions and the three-site transferable intermolecular potential
2773 >        (TIP3P) model for water. To achieve the same simulation length in
2774 >        physical time, the full MID simulations require 200 times as much
2775 >        CPU time as the implicit water LID simulations. The solvent hydrophobicity
2776 >        and dielectric behavior are treated in the implicit solvent LD simulations
2777 >        by using a macroscopic solvation potential, a single dielectric
2778 >        constant, and atomic friction coefficients computed using the accessible
2779 >        surface area method with the TIP3P model water viscosity as determined
2780 >        here from MID simulations for pure TIP3P water. Both the local and
2781 >        the global dynamics obtained from the implicit solvent LD simulations
2782 >        agree very well with those from the explicit solvent MD simulations.
2783 >        The simulations provide insights into the conformational restrictions
2784 >        that are associated with the bioactivity of the opiate peptide dermorphin
2785 >        for the delta-receptor.},
2786 >  annote = {540MH Times Cited:36 Cited References Count:45},
2787 >  issn = {0006-3495},
2788 >  uri = {<Go to ISI>://000174932400010},
2789   }
2790  
2791 < @Article{hura00,
2792 <  author =   {G. Hura and J.~M. Sorenson and R.~M. Glaeser and T. Head-Gordon},
2793 <  title =    {A high-quality x-ray scattering experiment on liquid water at ambient conditions},
2794 <  journal =      {J. Chem. Phys.},
2795 <  year =     2000,
2796 <  volume =   113,
2797 <  pages =    {9140-9148}
2791 > @ARTICLE{Shillcock2005,
2792 >  author = {J. C. Shillcock and R. Lipowsky},
2793 >  title = {Tension-induced fusion of bilayer membranes and vesicles},
2794 >  journal = {Nature Materials},
2795 >  year = {2005},
2796 >  volume = {4},
2797 >  pages = {225-228},
2798 >  number = {3},
2799 >  month = {Mar},
2800 >  annote = {901QJ Times Cited:9 Cited References Count:23},
2801 >  issn = {1476-1122},
2802 >  uri = {<Go to ISI>://000227296700019},
2803   }
2804  
2805 <
2806 < @Article{ryckaert77,
2807 <  author =   {J.~P. Ryckaert and G. Ciccotti and H.~J.~C. Berendsen},
2808 <  title =    {Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes},
2809 <  journal =      {Journal of Computational Physics},
2810 <  year =     1977,
2811 <  volume =   23,
2812 <  pages =    {327-341}
2805 > @ARTICLE{Shimada1993,
2806 >  author = {J. Shimada and H. Kaneko and T. Takada},
2807 >  title = {Efficient Calculations of Coulombic Interactions in Biomolecular
2808 >        Simulations with Periodic Boundary-Conditions},
2809 >  journal = {Journal of Computational Chemistry},
2810 >  year = {1993},
2811 >  volume = {14},
2812 >  pages = {867-878},
2813 >  number = {7},
2814 >  month = {Jul},
2815 >  abstract = {To make improved treatments of electrostatic interactions in biomacromolecular
2816 >        simulations, two possibilities are considered. The first is the
2817 >        famous particle-particle and particle-mesh (PPPM) method developed
2818 >        by Hockney and Eastwood, and the second is a new one developed here
2819 >        in their spirit but by the use of the multipole expansion technique
2820 >        suggested by Ladd. It is then numerically found that the new PPPM
2821 >        method gives more accurate results for a two-particle system at
2822 >        small separation of particles. Preliminary numerical examination
2823 >        of the various computational methods for a single configuration
2824 >        of a model BPTI-water system containing about 24,000 particles indicates
2825 >        that both of the PPPM methods give far more accurate values with
2826 >        reasonable computational cost than do the conventional truncation
2827 >        methods. It is concluded the two PPPM methods are nearly comparable
2828 >        in overall performance for the many-particle systems, although the
2829 >        first method has the drawback that the accuracy in the total electrostatic
2830 >        energy is not high for configurations of charged particles randomly
2831 >        generated.},
2832 >  annote = {Lh164 Times Cited:27 Cited References Count:47},
2833 >  issn = {0192-8651},
2834 >  uri = {<Go to ISI>://A1993LH16400011},
2835   }
2836  
2837 <
2838 < @InBook{fowles99:lagrange,
2839 <  author =   {G.~R. Fowles and G.~L. Cassiday},
2840 <  title =    {Analytical Mechanics},
2841 <  chapter =      10,
2842 <  publisher =    {Saunders College Publishing},
2843 <  year =     1999,
2844 <  edition =  {6th}
2837 > @ARTICLE{Skeel2002,
2838 >  author = {R. D. Skeel and J. A. Izaguirre},
2839 >  title = {An impulse integrator for Langevin dynamics},
2840 >  journal = {Molecular Physics},
2841 >  year = {2002},
2842 >  volume = {100},
2843 >  pages = {3885-3891},
2844 >  number = {24},
2845 >  month = {Dec 20},
2846 >  abstract = {The best simple method for Newtonian molecular dynamics is indisputably
2847 >        the leapfrog Stormer-Verlet method. The appropriate generalization
2848 >        to simple Langevin dynamics is unclear. An analysis is presented
2849 >        comparing an 'impulse method' (kick; fluctuate; kick), the 1982
2850 >        method of van Gunsteren and Berendsen, and the Brunger-Brooks-Karplus
2851 >        (BBK) method. It is shown how the impulse method and the van Gunsteren-Berendsen
2852 >        methods can be implemented as efficiently as the BBK method. Other
2853 >        considerations suggest that the impulse method is the best basic
2854 >        method for simple Langevin dynamics, with the van Gunsteren-Berendsen
2855 >        method a close contender.},
2856 >  annote = {633RX Times Cited:8 Cited References Count:22},
2857 >  issn = {0026-8976},
2858 >  uri = {<Go to ISI>://000180297200014},
2859   }
2860  
2861 < @Article{petrache00,
2862 <  author =   {H.~I. Petrache and S.~W. Dodd and M.~F. Brown},
2863 <  title =    {Area per Lipid and Acyl Length Distributions in Fluid Phosphatidylcholines Determined by $^2\text{H}$ {\sc nmr} Spectroscopy},
2864 <  journal =      {Biophysical Journal},
2865 <  year =     2000,
2866 <  volume =   79,
2867 <  pages =    {3172-3192}
2861 > @ARTICLE{Skeel1997,
2862 >  author = {R. D. Skeel and G. H. Zhang and T. Schlick},
2863 >  title = {A family of symplectic integrators: Stability, accuracy, and molecular
2864 >        dynamics applications},
2865 >  journal = {Siam Journal on Scientific Computing},
2866 >  year = {1997},
2867 >  volume = {18},
2868 >  pages = {203-222},
2869 >  number = {1},
2870 >  month = {Jan},
2871 >  abstract = {The following integration methods for special second-order ordinary
2872 >        differential equations are studied: leapfrog, implicit midpoint,
2873 >        trapezoid, Stormer-Verlet, and Cowell-Numerov. We show that all
2874 >        are members, or equivalent to members, of a one-parameter family
2875 >        of schemes. Some methods have more than one common form, and we
2876 >        discuss a systematic enumeration of these forms. We also present
2877 >        a stability and accuracy analysis based on the idea of ''modified
2878 >        equations'' and a proof of symplecticness. It follows that Cowell-Numerov
2879 >        and ''LIM2'' (a method proposed by Zhang and Schlick) are symplectic.
2880 >        A different interpretation of the values used by these integrators
2881 >        leads to higher accuracy and better energy conservation. Hence,
2882 >        we suggest that the straightforward analysis of energy conservation
2883 >        is misleading.},
2884 >  annote = {We981 Times Cited:30 Cited References Count:35},
2885 >  issn = {1064-8275},
2886 >  uri = {<Go to ISI>://A1997WE98100012},
2887   }
2888  
2889 < @Article{egberts88,
2890 <  author =   {E. Egberts and H.~J.~C. Berendsen},
2891 <  title =    {Molecular Dynamics Simulation of a smectic liquid crystal with atomic detail},
2892 <  journal =      {J. Chem. Phys.},
2893 <  year =     1988,
2894 <  volume =   89,
2895 <  pages =    {3718-3732}
2889 > @ARTICLE{Tao2005,
2890 >  author = {Y. G. Tao and W. K. {den Otter} and J. T. Padding and J. K. G. Dhont
2891 >        and W. J. Briels},
2892 >  title = {Brownian dynamics simulations of the self- and collective rotational
2893 >        diffusion coefficients of rigid long thin rods},
2894 >  journal = {Journal of Chemical Physics},
2895 >  year = {2005},
2896 >  volume = {122},
2897 >  pages = {-},
2898 >  number = {24},
2899 >  month = {Jun 22},
2900 >  abstract = {Recently a microscopic theory for the dynamics of suspensions of long
2901 >        thin rigid rods was presented, confirming and expanding the well-known
2902 >        theory by Doi and Edwards [The Theory of Polymer Dynamics (Clarendon,
2903 >        Oxford, 1986)] and Kuzuu [J. Phys. Soc. Jpn. 52, 3486 (1983)]. Here
2904 >        this theory is put to the test by comparing it against computer
2905 >        simulations. A Brownian dynamics simulation program was developed
2906 >        to follow the dynamics of the rods, with a length over a diameter
2907 >        ratio of 60, on the Smoluchowski time scale. The model accounts
2908 >        for excluded volume interactions between rods, but neglects hydrodynamic
2909 >        interactions. The self-rotational diffusion coefficients D-r(phi)
2910 >        of the rods were calculated by standard methods and by a new, more
2911 >        efficient method based on calculating average restoring torques.
2912 >        Collective decay of orientational order was calculated by means
2913 >        of equilibrium and nonequilibrium simulations. Our results show
2914 >        that, for the currently accessible volume fractions, the decay times
2915 >        in both cases are virtually identical. Moreover, the observed decay
2916 >        of diffusion coefficients with volume fraction is much quicker than
2917 >        predicted by the theory, which is attributed to an oversimplification
2918 >        of dynamic correlations in the theory. (c) 2005 American Institute
2919 >        of Physics.},
2920 >  annote = {943DN Times Cited:3 Cited References Count:26},
2921 >  issn = {0021-9606},
2922 >  uri = {<Go to ISI>://000230332400077},
2923   }
2924  
2925 < @Article{Holz00,
2926 <  author =       {M. Holz and S.~R. Heil and A. Sacco},
2927 <  title =        {Temperature-dependent self-diffusion coefficients of
2928 <                  water and six selected molecular liquids for calibration
2929 <                  in accurate $^1${\sc h} {\sc nmr pfg} measurements},
2930 <  journal =      {Phys. Chem. Chem. Phys.},
2931 <  year =         2000,
2932 <  volume =       2,
2026 <  pages =        {4740-4742},
2925 > @BOOK{Tolman1979,
2926 >  title = {The Principles of Statistical Mechanics},
2927 >  publisher = {Dover Publications, Inc.},
2928 >  year = {1979},
2929 >  author = {R.~C. Tolman},
2930 >  address = {New York},
2931 >  chapter = {2},
2932 >  pages = {19-22},
2933   }
2934  
2935 < @InCollection{zannoni94,
2936 <  author =   {C. Zannoni},
2937 <  title =    {An introduction to the molecular dynamics method and to orientational dynamics in liquid crystals},
2938 <  booktitle =    {The Molecular Dynamics of Liquid Crstals},
2939 <  pages =    {139-169},
2940 <  publisher =    {Kluwer Academic Publishers},
2941 <  year =     1994,
2942 <  editor =   {G.~R. Luckhurst and C.~A. Veracini},
2943 <  chapter =  6
2935 > @ARTICLE{Tu1995,
2936 >  author = {K. Tu and D. J. Tobias and M. L. Klein},
2937 >  title = {Constant pressure and temperature molecular dynamics simulation of
2938 >        a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine
2939 >        bilayer},
2940 >  journal = {Biophysical Journal},
2941 >  year = {1995},
2942 >  volume = {69},
2943 >  pages = {2558-2562},
2944 >  number = {6},
2945 >  month = {Dec},
2946 >  abstract = {We report a constant pressure and temperature molecular dynamics simulation
2947 >        of a fully hydrated liquid crystal (L(alpha) phase bilayer of dipalmitoylphosphatidylcholine
2948 >        at 50 degrees C and 28 water molecules/lipid. We have shown that
2949 >        the bilayer is stable throughout the 1550-ps simulation and have
2950 >        demonstrated convergence of the system dimensions. Several important
2951 >        aspects of the bilayer structure have been investigated and compared
2952 >        favorably with experimental results. For example, the average positions
2953 >        of specific carbon atoms along the bilayer normal agree well with
2954 >        neutron diffraction data, and the electron density profile is in
2955 >        accord with x-ray diffraction results. The hydrocarbon chain deuterium
2956 >        order parameters agree reasonably well with NMR results for the
2957 >        middles of the chains, but the simulation predicts too much order
2958 >        at the chain ends. In spite of the deviations in the order parameters,
2959 >        the hydrocarbon chain packing density appears to be essentially
2960 >        correct, inasmuch as the area/lipid and bilayer thickness are in
2961 >        agreement with the most refined experimental estimates. The deuterium
2962 >        order parameters for the glycerol and choline groups, as well as
2963 >        the phosphorus chemical shift anisotropy, are in qualitative agreement
2964 >        with those extracted from NMR measurements.},
2965 >  annote = {Tv018 Times Cited:108 Cited References Count:34},
2966 >  issn = {0006-3495},
2967 >  uri = {<Go to ISI>://A1995TV01800037},
2968   }
2969  
2970 <
2971 < @Article{melchionna93,
2972 <  author =   {S. Melchionna and G. Ciccotti and B.~L. Holian},
2973 <  title =    {Hoover {\sc npt} dynamics for systems varying in shape and size},
2974 <  journal =      {Molecular Physics},
2975 <  year =     1993,
2976 <  volume =   78,
2977 <  pages =    {533-544}
2970 > @ARTICLE{Tuckerman1992,
2971 >  author = {M. Tuckerman and B. J. Berne and G. J. Martyna},
2972 >  title = {Reversible Multiple Time Scale Molecular-Dynamics},
2973 >  journal = {Journal of Chemical Physics},
2974 >  year = {1992},
2975 >  volume = {97},
2976 >  pages = {1990-2001},
2977 >  number = {3},
2978 >  month = {Aug 1},
2979 >  abstract = {The Trotter factorization of the Liouville propagator is used to generate
2980 >        new reversible molecular dynamics integrators. This strategy is
2981 >        applied to derive reversible reference system propagator algorithms
2982 >        (RESPA) that greatly accelerate simulations of systems with a separation
2983 >        of time scales or with long range forces. The new algorithms have
2984 >        all of the advantages of previous RESPA integrators but are reversible,
2985 >        and more stable than those methods. These methods are applied to
2986 >        a set of paradigmatic systems and are shown to be superior to earlier
2987 >        methods. It is shown how the new RESPA methods are related to predictor-corrector
2988 >        integrators. Finally, we show how these methods can be used to accelerate
2989 >        the integration of the equations of motion of systems with Nose
2990 >        thermostats.},
2991 >  annote = {Je891 Times Cited:680 Cited References Count:19},
2992 >  issn = {0021-9606},
2993 >  uri = {<Go to ISI>://A1992JE89100044},
2994   }
2995  
2996 < @Article{fennell04,
2997 <  author =   {C.~J. Fennell and J.~D. Gezelter},
2998 <  title =    {On the structural and transport properties of the soft sticky dipole(SSD) and related single point water models},
2999 <  journal =      {J. Chem. Phys},
3000 <  year =     {in press 2004}
2996 > @BOOK{Varadarajan1974,
2997 >  title = {Lie groups, Lie algebras, and their representations},
2998 >  publisher = {Prentice-Hall},
2999 >  year = {1974},
3000 >  author = {V.S. Varadarajan},
3001 >  address = {New York},
3002   }
3003  
3004 < @Article{klein01,
3005 <  author =   {J.~C. Shelley andf M.~Y. Shelley and R.~C. Reeder and S. Bandyopadhyay and M.~L. Klein},
3006 <  title =    {A coarse Grain Model for Phospholipid Simulations},
3007 <  journal =      {J. Phys. Chem. B},
3008 <  year =     2001,
3009 <  volume =   105,
3010 <  pages =    {4464-4470}
3004 > @ARTICLE{Wegener1979,
3005 >  author = {W.~A. Wegener, V.~J. Koester and R.~M. Dowben},
3006 >  title = {A general ellipsoid can not always serve as a modle for the rotational
3007 >        diffusion properties of arbitrary shaped rigid molecules},
3008 >  journal = {Proc. Natl. Acad. Sci.},
3009 >  year = {1979},
3010 >  volume = {76},
3011 >  pages = {6356-6360},
3012 >  number = {12},
3013   }
3014  
3015 <
3016 < @Article{marrink03:vesicles,
3017 <  author =   {S.~J. Marrink and A.~E. Mark},
3018 <  title =    {Molecular Dynaimcs Simulation of the Formation, Structure, and Dynamics of Small Phospholipid Vesicles},
3019 <  journal =      {J. Am. Chem. Soc.},
3020 <  year =     2003,
2072 <  volume =   125,
2073 <  pages =    {15233-15242}
3015 > @ARTICLE{Wilson2006,
3016 >  author = {G.~V. Wilson },
3017 >  title = {Where's the Real Bottleneck in Scientific Computing?},
3018 >  journal = {American Scientist},
3019 >  year = {2006},
3020 >  volume = {94},
3021   }
3022  
3023 < @Book{gamma94,
3024 <  author =       {E. Gamma, R. Helm, R. Johnson and J. Vlissides},
3025 <  title =        {Design Patterns: Elements of Reusable Object-Oriented Software},
3026 <  chapter =      7,
3027 <  publisher =    {Perason Education},
3028 <  year =         1994,
3029 <  address =      {London},
3030 <  pages =        {199-206}
3023 > @ARTICLE{Withers2003,
3024 >  author = {I. M. Withers},
3025 >  title = {Effects of longitudinal quadrupoles on the phase behavior of a Gay-Berne
3026 >        fluid},
3027 >  journal = {Journal of Chemical Physics},
3028 >  year = {2003},
3029 >  volume = {119},
3030 >  pages = {10209-10223},
3031 >  number = {19},
3032 >  month = {Nov 15},
3033 >  abstract = {The effects of longitudinal quadrupole moments on the formation of
3034 >        liquid crystalline phases are studied by means of constant NPT Monte
3035 >        Carlo simulation methods. The popular Gay-Berne model mesogen is
3036 >        used as the reference fluid, which displays the phase sequences
3037 >        isotropic-smectic A-smectic B and isotropic-smectic B at high (T*=2.0)
3038 >        and low (T*=1.5) temperatures, respectively. With increasing quadrupole
3039 >        magnitude the smectic phases are observed to be stabilized with
3040 >        respect to the isotropic liquid, while the smectic B is destabilized
3041 >        with respect to the smectic A. At the lower temperature, a sufficiently
3042 >        large quadrupole magnitude results in the injection of the smectic
3043 >        A phase into the phase sequence and the replacement of the smectic
3044 >        B phase by the tilted smectic J phase. The nematic phase is also
3045 >        injected into the phase sequence at both temperatures considered,
3046 >        and ultimately for sufficiently large quadrupole magnitudes no coherent
3047 >        layered structures were observed. The stabilization of the smectic
3048 >        A phase supports the commonly held belief that, while the inclusion
3049 >        of polar groups is not a prerequisite for the formation of the smectic
3050 >        A phase, quadrupolar interactions help to increase the temperature
3051 >        and pressure range for which the smectic A phase is observed. The
3052 >        quality of the layered structure is worsened with increasing quadrupole
3053 >        magnitude. This behavior, along with the injection of the nematic
3054 >        phase into the phase sequence, indicate that the general tendency
3055 >        of the quadrupolar interactions is to destabilize the layered structure.
3056 >        A pressure dependence upon the smectic layer spacing is observed.
3057 >        This behavior is in much closer agreement with experimental findings
3058 >        than has been observed previously for nonpolar Gay-Berne and hard
3059 >        spherocylinder models. (C) 2003 American Institute of Physics.},
3060 >  annote = {738EF Times Cited:3 Cited References Count:43},
3061 >  issn = {0021-9606},
3062 >  uri = {<Go to ISI>://000186273200027},
3063   }
3064  
3065 < @Book{alexander,
3066 <  author =       {C. Alexander},
3067 <  title =        {A Pattern Language: Towns, Buildings, Construction},
3068 <  publisher =    {Oxford University Press},
3069 <  year =         1987,
3070 <  address =      {New York}
3065 > @ARTICLE{Wolf1999,
3066 >  author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
3067 >  title = {Exact method for the simulation of Coulombic systems by spherically
3068 >        truncated, pairwise r(-1) summation},
3069 >  journal = {Journal of Chemical Physics},
3070 >  year = {1999},
3071 >  volume = {110},
3072 >  pages = {8254-8282},
3073 >  number = {17},
3074 >  month = {May 1},
3075 >  abstract = {Based on a recent result showing that the net Coulomb potential in
3076 >        condensed ionic systems is rather short ranged, an exact and physically
3077 >        transparent method permitting the evaluation of the Coulomb potential
3078 >        by direct summation over the r(-1) Coulomb pair potential is presented.
3079 >        The key observation is that the problems encountered in determining
3080 >        the Coulomb energy by pairwise, spherically truncated r(-1) summation
3081 >        are a direct consequence of the fact that the system summed over
3082 >        is practically never neutral. A simple method is developed that
3083 >        achieves charge neutralization wherever the r(-1) pair potential
3084 >        is truncated. This enables the extraction of the Coulomb energy,
3085 >        forces, and stresses from a spherically truncated, usually charged
3086 >        environment in a manner that is independent of the grouping of the
3087 >        pair terms. The close connection of our approach with the Ewald
3088 >        method is demonstrated and exploited, providing an efficient method
3089 >        for the simulation of even highly disordered ionic systems by direct,
3090 >        pairwise r(-1) summation with spherical truncation at rather short
3091 >        range, i.e., a method which fully exploits the short-ranged nature
3092 >        of the interactions in ionic systems. The method is validated by
3093 >        simulations of crystals, liquids, and interfacial systems, such
3094 >        as free surfaces and grain boundaries. (C) 1999 American Institute
3095 >        of Physics. [S0021-9606(99)51517-1].},
3096 >  annote = {189PD Times Cited:70 Cited References Count:34},
3097 >  issn = {0021-9606},
3098 >  uri = {<Go to ISI>://000079913000008},
3099   }
3100  
3101 < @Article{wilson,
3102 <  author =   {G.~V. Wilson },
3103 <  title =    {Where's the Real Bottleneck in Scientific Computing?},
3104 <  journal =      {American Scientist},
3105 <  year =     2006,
3106 <  volume =   94
3101 > @ARTICLE{Yoshida1990,
3102 >  author = {H. Yoshida},
3103 >  title = {Construction of Higher-Order Symplectic Integrators},
3104 >  journal = {Physics Letters A},
3105 >  year = {1990},
3106 >  volume = {150},
3107 >  pages = {262-268},
3108 >  number = {5-7},
3109 >  month = {Nov 12},
3110 >  annote = {Ej798 Times Cited:492 Cited References Count:9},
3111 >  issn = {0375-9601},
3112 >  uri = {<Go to ISI>://A1990EJ79800009},
3113   }
3114  
2102 @article{Meineke05,
2103        Author = {M.~A. Meineke and C.~F. {Vardeman II} and T. Lin and C.~J. Fennell and J.~D. Gezelter},
2104        Date-Modified = {2006-03-05 12:37:31 -0500},
2105        Journal = {J. Comp. Chem.},
2106        Local-Url = {file://localhost/Users/cfennell/Documents/pdf_files/MyPapers/Meineke_OOPSE_05.pdf},
2107        Pages = {252-271},
2108        Title = {OOPSE: An Open Source Object-Oriented Parallel Simulation Engine for Molecular Dynamics},
2109        Volume = 26,
2110        Year = 2005
2111 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines