ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/xDissertation/mc.tex
(Generate patch)

Comparing trunk/xDissertation/mc.tex (file contents):
Revision 3354 by xsun, Sat Mar 1 22:11:41 2008 UTC vs.
Revision 3362 by xsun, Fri Mar 7 01:53:18 2008 UTC

# Line 1 | Line 1
1 < \chapter{\label{chap:mc}Spontaneous Corrugation of Dipolar Membranes}
1 > \chapter{\label{chap:mc}SPONTANEOUS CORRUGATION OF DIPOLAR MEMBRANES}
2  
3   \section{Introduction}
4   \label{mc:sec:Int}
# Line 29 | Line 29 | X-ray diffraction~\cite{Sun96,Katsaras00} and freeze-f
29   substantial experimental interest over the past 30 years. Most
30   structural information of the ripple phase has been obtained by the
31   X-ray diffraction~\cite{Sun96,Katsaras00} and freeze-fracture electron
32 < microscopy (FFEM).~\cite{Copeland80,Meyer96} Recently, Kaasgaard {\it
33 < et al.} used atomic force microscopy (AFM) to observe ripple phase
34 < morphology in bilayers supported on mica.~\cite{Kaasgaard03} The
32 > microscopy (FFEM).~\cite{Copeland80,Meyer96} The X-ray diffraction
33 > work by Katsaras {\it et al.} showed that a rich phase diagram
34 > exhibiting both {\it asymmetric} and {\it symmetric} ripples is
35 > possible for lecithin bilayers.\cite{Katsaras00} Recently, Kaasgaard
36 > {\it et al.} used atomic force microscopy (AFM) to observe ripple
37 > phase morphology in bilayers supported on mica.~\cite{Kaasgaard03} The
38   experimental results provide strong support for a 2-dimensional
39   triangular packing lattice of the lipid molecules within the ripple
40   phase.  This is a notable change from the observed lipid packing
41 < within the gel phase.~\cite{Cevc87} There have been a number of
41 > within the gel phase,~\cite{Cevc87} although Tenchov {\it et al.} have
42 > recently observed near-hexagonal packing in some phosphatidylcholine
43 > (PC) gel phases.~\cite{Tenchov2001} There have been a number of
44   theoretical
45 < approaches~\cite{Marder84,Goldstein88,McCullough90,Lubensky93,Misbah98,Heimburg00,Kubica02,Bannerjee02}
45 > approaches~\cite{Marder84,Carlson87,Goldstein88,McCullough90,Lubensky93,Misbah98,Heimburg00,Kubica02,Bannerjee02}
46   (and some heroic
47   simulations~\cite{Ayton02,Jiang04,Brannigan04a,deVries05,deJoannis06})
48   undertaken to try to explain this phase, but to date, none have looked
# Line 114 | Line 119 | The potential energy of the system,
119   freedom along the z-axis.
120  
121   The potential energy of the system,
122 < \begin{eqnarray}
123 < V = \sum_i & & \left( \sum_{j>i} \frac{|\mu|^2}{4\pi \epsilon_0 r_{ij}^3} \left[
122 > \begin{equation}
123 > \begin{split}
124 > V = \sum_i  &\left( \sum_{j>i} \frac{|\mu|^2}{4\pi \epsilon_0 r_{ij}^3} \left[
125   {\mathbf{\hat u}_i} \cdot {\mathbf{\hat u}_j} -
126   3({\mathbf{\hat u}_i} \cdot {\mathbf{\hat
127 < r}_{ij}})({\mathbf{\hat u}_j} \cdot {\mathbf{\hat r}_{ij}})\right]
128 < \right. \nonumber \\
123 < & & \left. + \sum_{j \in NN_i}^6 \frac{k_r}{2}\left(
127 > r}_{ij}})({\mathbf{\hat u}_j} \cdot {\mathbf{\hat r}_{ij}})\right] \right. \\
128 >  & \left. + \sum_{j \in NN_i}^6 \frac{k_r}{2}\left(
129   r_{ij}-\sigma \right)^2 \right)
130 + \end{split}
131   \label{mceq:pot}
132 < \end{eqnarray}
132 > \end{equation}
133  
134   In this potential, $\mathbf{\hat u}_i$ is the unit vector pointing
135   along dipole $i$ and $\mathbf{\hat r}_{ij}$ is the unit vector
# Line 173 | Line 179 | The principal method for observing the orientational o
179  
180   \subsection{Dipolar Ordering and Coexistence Temperatures}
181   The principal method for observing the orientational ordering
182 < transition in dipolar systems is the $P_2$ order parameter (defined as
183 < $1.5 \times \lambda_{max}$, where $\lambda_{max}$ is the largest
184 < eigenvalue of the matrix,
182 > transition in dipolar or liquid crystalline systems is the $P_2$ order
183 > parameter (defined as $1.5 \times \lambda_{max}$, where
184 > $\lambda_{max}$ is the largest eigenvalue of the matrix,
185   \begin{equation}
186   {\mathsf{S}} = \frac{1}{N} \sum_i \left(
187   \begin{array}{ccc}
# Line 333 | Line 339 | can be written,
339   large mechanical surface tensions ($\gamma$), so a much simpler form
340   can be written,
341   \begin{equation}
342 < \langle | h(q) |^2 \rangle_{NVT} = \frac{k_B T}{\gamma q^2},
342 > \langle | h(q) |^2 \rangle_{NVT} = \frac{k_B T}{\gamma q^2}.
343   \label{mceq:fit2}
344   \end{equation}
345  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines