ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/xDissertation/md.tex
(Generate patch)

Comparing trunk/xDissertation/md.tex (file contents):
Revision 3362 by xsun, Fri Mar 7 01:53:18 2008 UTC vs.
Revision 3370 by xsun, Fri Mar 14 21:38:07 2008 UTC

# Line 140 | Line 140 | $\sigma$ and $\epsilon$ parameters,
140   Pechukas.\cite{Berne72} The potential is constructed in the familiar
141   form of the Lennard-Jones function using orientation-dependent
142   $\sigma$ and $\epsilon$ parameters,
143 < \begin{equation}
144 < \begin{split}
143 > \begin{multline}
144   V_{ij}({\mathbf{\hat u}_i}, {\mathbf{\hat u}_j}, {\mathbf{\hat
145 < r}_{ij}}) = & 4\epsilon ({\mathbf{\hat u}_i}, {\mathbf{\hat u}_j},
145 > r}_{ij}}) = 4\epsilon ({\mathbf{\hat u}_i}, {\mathbf{\hat u}_j},
146   {\mathbf{\hat r}_{ij}})\left[ \left(\frac{\sigma_0}{r_{ij}-\sigma({\mathbf{\hat u}_i},
147 < {\mathbf{\hat u}_j}, {\mathbf{\hat r}_{ij}})+\sigma_0}\right)^{12} \right.\\
148 < &\left. -\left(\frac{\sigma_0}{r_{ij}-\sigma({\mathbf{\hat u}_i},
147 > {\mathbf{\hat u}_j}, {\mathbf{\hat r}_{ij}})+\sigma_0}\right)^{12}
148 > \right. \\
149 > \left. - \left(\frac{\sigma_0}{r_{ij}-\sigma({\mathbf{\hat u}_i},
150   {\mathbf{\hat u}_j}, {\mathbf{\hat
151   r}_{ij}})+\sigma_0}\right)^6\right]
152 \end{split}
152   \label{mdeq:gb}
153 < \end{equation}
153 > \end{multline}
154  
155   The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
156   \hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
# Line 172 | Line 171 | calculate the range function,
171   where $l$ and $d$ describe the length and width of each uniaxial
172   ellipsoid.  These shape anisotropy parameters can then be used to
173   calculate the range function,
174 < \begin{equation}
175 < \begin{split}
176 < & \sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij}) =
178 < \sigma_{0} \times  \\
179 < & \left[ 1- \left\{ \frac{ \chi \alpha^2 ({\bf \hat{u}}_i \cdot {\bf
174 > \begin{multline}
175 > \sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij}) = \\
176 > \sigma_0 \left[ 1 - \left\{ \frac{ \chi \alpha^2 ({\bf \hat{u}}_i \cdot {\bf
177   \hat{r}}_{ij} ) + \chi \alpha^{-2} ({\bf \hat{u}}_j \cdot {\bf
178   \hat{r}}_{ij} ) - 2 \chi^2 ({\bf \hat{u}}_i \cdot {\bf
179   \hat{r}}_{ij} )({\bf \hat{u}}_j \cdot {\bf
180   \hat{r}}_{ij} ) ({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j)}{1 - \chi^2
181   \left({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j\right)^2} \right\}
182 < \right]^{-1/2}
183 < \end{split}
187 < \end{equation}
182 > \right]^{-1/2}
183 > \end{multline}
184  
185   Gay-Berne ellipsoids also have an energy scaling parameter,
186   $\epsilon^s$, which describes the well depth for two identical
# Line 211 | Line 207 | The form of the strength function is somewhat complica
207   \left[1-\chi^{2}({\bf \hat{u}}_{i}.{\bf
208   \hat{u}}_{j})^{2}\right]^{-1/2}
209   \end{eqnarray*}
210 < \begin{equation*}
211 < \begin{split}
212 < & \epsilon_{2}({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij})
213 < = 1 - \\
218 < & \left\{ \frac{ \chi' \alpha'^2 ({\bf \hat{u}}_i \cdot {\bf
210 > \begin{multline*}
211 > \epsilon_{2}({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij})
212 > =  \\
213 > 1 - \left\{ \frac{ \chi' \alpha'^2 ({\bf \hat{u}}_i \cdot {\bf
214   \hat{r}}_{ij} ) + \chi' \alpha'^{-2} ({\bf \hat{u}}_j \cdot {\bf
215   \hat{r}}_{ij} ) - 2 \chi'^2 ({\bf \hat{u}}_i \cdot {\bf
216   \hat{r}}_{ij} )({\bf \hat{u}}_j \cdot {\bf
217   \hat{r}}_{ij} ) ({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j)}{1 - \chi'^2
218   \left({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j\right)^2} \right\},
219 < \end{split}
225 < \end{equation*}
219 > \end{multline*}
220   although many of the quantities and derivatives are identical with
221   those obtained for the range parameter. Ref. \citen{Luckhurst90}
222   has a particularly good explanation of the choice of the Gay-Berne
# Line 702 | Line 696 | D = \lim_{t \rightarrow \infty} \frac{1}{6 t} \langle
696   We have computed translational diffusion constants for lipid molecules
697   from the mean-square displacement,
698   \begin{equation}
699 < D = \lim_{t \rightarrow \infty} \frac{1}{6 t} \langle {|\left({\bf r}_{i}(t) - {\bf r}_{i}(0) \right)|}^2 \rangle,
699 > D = \lim_{t \rightarrow \infty} \frac{1}{6 t} \langle {|\left({\bf
700 > r}_{i}(t) - {\bf r}_{i}(0) \right)|}^2 \rangle,
701 > \label{mdeq:msdisplacement}
702   \end{equation}
703   of the lipid bodies. Translational diffusion constants for the
704   different head-to-tail size ratios (all at 300 K) are shown in table

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines