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Preface

OPENMD is an open source molecular dynamics engine which is capable of efficiently simulating liquids, proteins,
nanoparticles, interfaces, and other complex systems using atom types with orientational degrees of freedom (e.g.
“sticky” atoms, point multipoles, and coarse-grained assemblies). It is a test-bed for new molecular simulation method-
ology, but is also efficient and easy to use. Liquids, proteins, zeolites, lipids, inorganic nanomaterials, transition metals
(bulk, flat interfaces, and nanoparticles) and a wide array of other systems have all been simulated using this code.
OPENMD works on parallel computers using the Message Passing Interface (MPI), and comes with a number of tra-
jectory analysis and utility programs that are easy to use and modify. An OpenMD simulation is specified using a very
simple meta-data language that is easy to learn.
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Chapter 1

Introduction

There are a number of excellent molecular dynamics packages available to the chemical physics community.[1–10]
All of these packages are stable, polished programs which solve many problems of interest. Most are now capable of
performing molecular dynamics simulations on parallel computers. Some have source code which is freely available
to the entire scientific community. Few, however, are capable of efficiently integrating the equations of motion for
atom types with orientational degrees of freedom (e.g. point multipoles, and “sticky” atoms). And only one of the
programs referenced can handle transition metal force fields like the Embedded Atom Method (EAM). The direction
our research program has taken us now involves the use of atoms with orientational degrees of freedom as well as
transition metals. Since these simulation methods may be of some use to other researchers, we have decided to release
our program (and all related source code) to the scientific community.

This document communicates the algorithmic details of our program, OPENMD. We have structured this docu-
ment to first discuss the underlying concepts in this simulation package (Chapter 2). The empirical energy functions
implemented are discussed in Chapter 3. Section 4 describes the various Molecular Dynamics algorithms OPENMD
implements in the integration of Hamilton’s equations of motion. Program design considerations for parallel comput-
ing are presented in Sec. 13. Concluding remarks are presented in Sec. 14.
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Chapter 2

Concepts & Files

A simulation in OPENMD is built using a few fundamental conceptual building blocks, most of which are chemically
intuitive. The basic unit of a simulation is an atom. The parameters describing an atom have been generalized to
make it as flexible as possible; this means that in addition to translational degrees of freedom, atoms may also have
orientational degrees of freedom.

The fundamental (static) properties of atoms are defined by the forceField chosen for the simulation. The
atomic properties specified by a forceField might include (but are not limited to) charge, σ and ε values for
Lennard-Jones interactions, the strength of the dipole moment (µ), the mass, and the moments of inertia. Other more
complicated properties of atoms might also be specified by the forceField.

Atoms can be grouped together in many ways. A rigidBody contains atoms that exert no forces on one another
and which move as a single rigid unit. A cutoffGroup may contain atoms which function together as a (rigid or
non-rigid) unit for potential energy calculations,

Vab = s(rab)
∑
i∈a

∑
j∈b

Vij(rij) (2.1)

Here, a and b are two cutoffGroups containing multiple atoms (a = {i} and b = {j}). s(rab) is a generalized
switching function which insures that the atoms in the two cutoffGroups are treated identically as the two groups
enter or leave an interaction region.

Atoms may also be grouped in more traditional ways into bonds, bends, torsions, and inversions.
These groupings allow the correct choice of interaction parameters for short-range interactions to be chosen from the
definitions in the forceField.

All of these groups of atoms are brought together in the molecule, which is the fundamental structure for
setting up and OPENMD simulation. Molecules contain lists of atoms followed by listings of the other atomic
groupings (bonds, bends, torsions, rigidBodies, and cutoffGroups) which relate the atoms to one
another. Since a rigidBody is a collection of atoms that are propagated in fixed relationships to one another,
OPENMD uses an internal structure called a StuntDouble to store information about those objects that can change
position independently during a simulation. That is, an atom that is part of a rigid body is not itself a StuntDouble.
In this case, the rigid body is the StuntDouble. However, an atom that is free to move independently is its own
StuntDouble.

Simulations often involve heterogeneous collections of molecules. To specify a mixture of molecule types,
OPENMD uses components. Even simulations containing only one type of molecule must specify a single component.

Starting a simulation requires two types of information: meta-data, which describes the types of objects present in
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the simulation, and configuration information, which describes the initial state of these objects. An OPENMD file is a
single combined file format that describes both of these kinds of data. An OPENMD file contains one <MetaData>
block and at least one <Snapshot> block.

The language for the <MetaData> block is a C-based syntax that is parsed at the beginning of the simula-
tion. Configuration information is specified for all integrableObjects in a <Snapshot> block. Both the
<MetaData> and <Snapshot> formats are described in the following sections.

<OpenMD>

<MetaData>

// see section 2.3 for details on the formatting

// of information contained inside the <MetaData> tags

</MetaData>

<Snapshot> // An instantaneous configuration

<FrameData>

// FrameData contains information on the time

// stamp, the size of the simulation box, and

// the current state of extended system

// ensemble variables.

</FrameData>

<StuntDoubles>

// StuntDouble information comprises the

// positions, velocities, orientations, and

// angular velocities of anything that is

// capable of independent motion during

// the simulation.

</StuntDoubles>

</Snapshot>

<Snapshot> // Multiple <Snapshot> sections can be

</Snapshot> // present in a well-formed OpenMD file

<Snapshot> // Further information on <Snapshot> blocks

</Snapshot> // can be found in section 2.4.

</OpenMD>

Example 2.1: The basic structure of an OPENMD file contains HTML-like tags to define simulation meta-data
and subsequent instantaneous configuration information. A well-formed OPENMD file must con-
tain one <MetaData> block and at least one <Snapshot> block. Each <Snapshot> is further
divided into <FrameData> and <StuntDoubles> sections.

2.1 OpenMD Files and <MetaData> blocks

OPENMD uses HTML-like delimiters to separate <MetaData> and <Snapshot> blocks. A C-based syntax is
used to parse the <MetaData> blocks at run time. These blocks allow the user to completely describe the system
they wish to simulate, as well as tailor OPENMD’s behavior during the simulation. OPENMD files are typically
denoted with the extension .omd. An overview of an OPENMD file is shown in Example 2.1 and example file is
shown in Example 2.2.

4



<OpenMD>

<MetaData>

molecule{

name = "Ar";

atom[0]{

type="Ar";

position( 0.0, 0.0, 0.0 );

}

}

component{

type = "Ar";

nMol = 3;

}

forceField = "LJ";

ensemble = "NVE"; // specify the simulation ensemble

dt = 1.0; // the time step for integration

runTime = 1e3; // the total simulation run time

sampleTime = 100; // trajectory file frequency

statusTime = 50; // statistics file frequency

</MetaData>

<Snapshot>

<FrameData>

Time: 0

Hmat: {{ 28.569, 0, 0 }, { 0, 28.569, 0 }, { 0, 0, 28.569 }}

Thermostat: 0 , 0

Barostat: {{ 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }}

</FrameData>

<StuntDoubles>

0 pv 17.5 13.3 12.8 1.181e-03 -1.630e-03 -1.369e-03

1 pv -12.8 -14.9 -8.4 -4.440e-04 -2.048e-03 1.130e-03

2 pv -10.0 -15.2 -6.5 2.239e-03 -6.310e-03 1.810e-03

</StuntDoubles>

</Snapshot>

</OpenMD>

Example 2.2: An example showing a complete OpenMD file.

In the <MetaData> block, it is necessary to provide a complete description of the molecule before it is actually
placed in the simulation. OPENMD’s meta-data syntax allows for the use of include files to specify all atoms in a
molecular prototype, as well as any bonds, bends, torsions, or other structural groupings of atoms. Include files allow
the user to describe a molecular prototype once, then simply include it into each simulation containing that molecule.
Returning to the example in Scheme 2.2, the include file’s contents would be Scheme 2.3, and the new OPENMD file
would become Scheme 2.4.
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molecule{

name = "Ar";

atom[0]{

type="Ar";

position( 0.0, 0.0, 0.0 );

}

}

Example 2.3: An example molecule definition in an include file.

<OpenMD>

<MetaData>

#include "argon.inc"

component{

type = "Ar";

nMol = 3;

}

forceField = "LJ";

ensemble = "NVE";

dt = 1.0;

runTime = 1e3;

sampleTime = 100;

statusTime = 50;

</MetaData>

</MetaData>

<Snapshot>

<FrameData>

Time: 0

Hmat: {{ 28.569, 0, 0 }, { 0, 28.569, 0 }, { 0, 0, 28.569 }}

Thermostat: 0 , 0

Barostat: {{ 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }}

</FrameData>

<StuntDoubles>

0 pv 17.5 13.3 12.8 1.181e-03 -1.630e-03 -1.369e-03

1 pv -12.8 -14.9 -8.4 -4.440e-04 -2.048e-03 1.130e-03

2 pv -10.0 -15.2 -6.5 2.239e-03 -6.310e-03 1.810e-03

</StuntDoubles>

</Snapshot>

</OpenMD>

Example 2.4: Revised OpenMD input file example.
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2.2 Atoms, Molecules, and other ways of grouping atoms

As mentioned above, the fundamental unit for an OPENMD simulation is the atom. Atoms can be collected into
secondary structures such as rigidBodies, cutoffGroups, or molecules. The molecule is a way for
OPENMD to keep track of the atoms in a simulation in logical manner. Molecular units store the identities of all the
atoms and rigid bodies associated with themselves, and they are responsible for the evaluation of their own internal
interactions (i.e. bonds, bends, torsions, and inversions). Scheme 2.3 shows how one creates a molecule in an included
meta-data file. The positions of the atoms given in the declaration are relative to the origin of the molecule, and the
origin is used when creating a system containing the molecule.

One of the features that sets OPENMD apart from most of the current molecular simulation packages is the ability
to handle rigid body dynamics. Rigid bodies are non-spherical particles or collections of particles (e.g. a phenyl ring)
that have a constant internal potential and move collectively.[11] They are not included in most simulation packages
because of the algorithmic complexity involved in propagating orientational degrees of freedom. Integrators which
propagate orientational motion with an acceptable level of energy conservation for molecular dynamics are relatively
new inventions.

Moving a rigid body involves determination of both the force and torque applied by the surroundings, which
directly affect the translational and rotational motion in turn. In order to accumulate the total force on a rigid body,
the external forces and torques must first be calculated for all the internal particles. The total force on the rigid body is
simply the sum of these external forces. Accumulation of the total torque on the rigid body is more complex than the
force because the torque is applied to the center of mass of the rigid body. The space-fixed torque on rigid body i is

τ i =
∑
a

[
(ria − ri)× fia + τ ia

]
, (2.2)

where τ i and ri are the torque on and position of the center of mass respectively, while fia, ria, and τ ia are the force
on, position of, and torque on the component particles of the rigid body.

The summation of the total torque is done in the body fixed axis of each rigid body. In order to move between
the space fixed and body fixed coordinate axes, parameters describing the orientation must be maintained for each
rigid body. At a minimum, the rotation matrix (A) can be described by the three Euler angles (φ, θ, and ψ), where
the elements of A are composed of trigonometric operations involving φ, θ, and ψ.[11] In order to avoid numerical
instabilities inherent in using the Euler angles, the four parameter “quaternion” scheme is often used. The elements of
A can be expressed as arithmetic operations involving the four quaternions (qw, qx, qy, and qz).[12] Use of quaternions
also leads to performance enhancements, particularly for very small systems.[13]

Rather than use one of the previously stated methods, OPENMD utilizes a relatively new scheme that propagates
the entire nine parameter rotation matrix. Further discussion on this choice can be found in Sec. 4.1. An example
definition of a rigid body can be seen in Scheme 2.5.
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molecule{

name = "TIP3P";

atom[0]{

type = "O_TIP3P";

position( 0.0, 0.0, -0.06556 );

}

atom[1]{

type = "H_TIP3P";

position( 0.0, 0.75695, 0.52032 );

}

atom[2]{

type = "H_TIP3P";

position( 0.0, -0.75695, 0.52032 );

}

rigidBody[0]{

members(0, 1, 2);

}

cutoffGroup{

members(0, 1, 2);

}

}

Example 2.5: A sample definition of a molecule containing a rigid body and a cutoff group

2.3 Creating a <MetaData> block

The actual creation of a <MetaData> block requires several key components. The first part of the file needs to
be the declaration of all of the molecule prototypes used in the simulation. This is typically done through included
prototype files. Only the molecules actually present in the simulation need to be declared; however, OPENMD allows
for the declaration of more molecules than are needed. This gives the user the ability to build up a library of commonly
used molecules into a single include file.

Once all prototypes are declared, the ordering of the rest of the block is less stringent. The molecular composition
of the simulation is specified with component statements. Each different type of molecule present in the simulation
is considered a separate component (an example is shown in Sch. 2.4). The component blocks tell OPENMD the
number of molecules that will be in the simulation, and the order in which the components blocks are declared sets the
ordering of the real atoms in the <Snapshot> block as well as in the output files. The remainder of the script then
sets the various simulation parameters for the system of interest.

The required set of parameters that must be present in all simulations is given in Table 2.1. Since the user can use
OPENMD to perform energy minimizations as well as molecular dynamics simulations, either a minimizer block
or the ensemble keyword must be present. The ensemble keyword is responsible for selecting the integration
method used for the calculation of the equations of motion. An in depth discussion of the various methods available
in OPENMD can be found in Sec. 4. The minimizer block selects which minimization method to use, and more
details on the choices of minimizer parameters can be found in Sec. 9. The forceField statement is important for
the selection of which forces will be used in the course of the simulation. OPENMD supports several force fields, and
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allows the user to create their own using a range of pre-defined empirical energy functions. The format of force field
files is outlined Chapter 3. The force fields are interchangeable between simulations, with the only requirement being
that all atoms needed by the simulation are defined within the selected force field.

For molecular dynamics simulations, the time step between force evaluations is set with the dt parameter, and
runTime will set the time length of the simulation. Note, that runTime is an absolute time, meaning if the simula-
tion is started at t = 10.0 ns with a runTime of 25.0 ns, the simulation will only run for an additional 15.0 ns.

For energy minimizations, it is not necessary to specify dt or runTime.
To set the initial positions and velocities of all the integrable objects in the simulation, OPENMD will use the last

good <Snapshot> block that was found in the startup file that it was called with. If the useInitalTime flag
is set to true, the time stamp from this snapshot will also set the initial time stamp for the simulation. Additional
parameters are summarized in Table 2.2.

It is important to note the fundamental units in all files which are read and written by OPENMD. Energies are
in kcal mol−1, distances are in Å, times are in fs, translational velocities are in Å fs

−1
, and masses are in amu.

Orientational degrees of freedom are described using quaternions (unitless, but q2w + q2x + q2y + q2z = 1), body-fixed

angular momenta (amu Å
2
radians fs−1), and body-fixed moments of inertia (amu Å

2
).

Table 2.1: Meta-data Keywords: Required Parameters

keyword units use remarks
forceField string Sets the base name for the force field

file
OpenMD appends a .frc to the end of this to look
for a force field file.

component Defines the molecular components of
the system

Every <MetaData> block must have a compo-
nent statement.

minimizer block Sets parameters for the minimizer Either ensemble or minimizer must be speci-
fied.

ensemble string Sets the ensemble. Possible ensembles are NVE, NVT, NPTi, NPAT,
NPTf, NPTxyz, LD and LangevinHull. Either
ensemble or minimizer must be specified.

dt fs Sets the time step. Selection of dt should be small enough to sample
the fastest motion of the simulation. (dt is required
for molecular dynamics simulations)

runTime fs Sets the time at which the simulation
should end.

This is an absolute time, and will end the simu-
lation when the current time meets or exceeds the
runTime. (runTime is required for molecular
dynamics simulations)

Table 2.2: Meta-data Keywords: Optional Parameters

keyword units use remarks
forceFieldVariant string Sets the name of the variant of the

force field.
EAM has three variants: u3, u6, and VC.

forceFieldFileName string Overrides the default force field file
name

Each force field has a default file name, and this pa-
rameter can override the default file name for the
chosen force field.

usePeriodicBoundaryConditions

logical Turns periodic boundary conditions
on/off.

Default is true.

orthoBoxTolerance double decides how orthogonal the periodic box must be
before we can use cheaper box calculations

cutoffRadius Å Manually sets the cutoff radius the default value is set by the cutoffPolicy
skinThickness Å thickness of the skin for the Verlet

neighbor lists
defaults to 1 Å

switchingRadius Å Manually sets the inner radius for the
switching function.

Defaults to 85 % of the cutoffRadius.

switchingFunctionType

string cubic or fifth order polynomial Default is cubic.
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Table 2.2: Meta-data Keywords: Optional Parameters

keyword units use remarks
useInitialTime logical Sets whether the initial time is taken

from the last <Snapshot> in the
startup file.

Useful when recovering a simulation from a crashed
processor. Default is false.

useInitialExtendedSystemState

logical keep the extended system variables? Should the extended variables (the thermostat and
barostat) be kept from the<Snapshot> block?

sampleTime fs Sets the frequency at which the .dump
file is written.

The default is equal to the runTime.

resetTime fs Sets the frequency at which the ex-
tended system variables are reset to
zero

The default is to never reset these variables.

statusTime fs Sets the frequency at which the .stat
file is written.

The default is equal to the sampleTime.

finalConfig string Sets the name of the final output file. Useful when stringing simulations together. De-
faults to the root name of the initial meta-data file
but with an .eor extension.

compressDumpFile logical should the .dump file be compressed on the fly?
statFileFormat string columns to print in the .stat file

where each column is separated by a
pipe (|) symbol.

(The default is the first eight of these columns in
order.)

Allowed column names are: TIME, TOTAL ENERGY, POTENTIAL ENERGY, KI-
NETIC ENERGY, TEMPERATURE, PRESSURE, VOLUME, CONSERVED QUANTITY,
HULLVOLUME, GYRVOLUME, TRANSLATIONAL KINETIC, ROTATIONAL KINETIC,
LONG RANGE POTENTIAL, SHORT RANGE POTENTIAL, VANDER-
WAALS POTENTIAL, ELECTROSTATIC POTENTIAL, METALLIC POTENTIAL, HY-
DROGEN BONDING POTENTIAL, RECIPROCAL POTENTIAL, SURFACE POTENTIAL,
BOND POTENTIAL, BEND POTENTIAL, DIHEDRAL POTENTIAL, INVER-
SION POTENTIAL, RAW POTENTIAL, RESTRAINT POTENTIAL, PRESSURE TENSOR,
SYSTEM DIPOLE, SYSTEM QUADRUPOLE, HEATFLUX, ELECTRONIC TEMPERATURE,
COM, COM VELOCITY, ANGULAR MOMENTUM, POTENTIAL SELECTION

printPressureTensor logical sets whether OPENMD will print out
the pressure tensor

can be useful for calculations of the bulk modulus

electrostaticSummationMethod

string shifted force, shifted potential, hard,
switched, taylor shifted, or reac-
tion field

default is shifted force.

electrostaticScreeningMethod

string undamped or damped default is damped
dielectric unitless Sets the dielectric constant for reaction

field.
If electrostaticSummationMethod is set
to reaction field, then dielectric must
be set.

dampingAlpha Å−1 governs strength of electrostatic damp-
ing

defaults to 0.2 Å−1.

tempSet logical resample velocities from a Maxwell-
Boltzmann distribution set to
targetTemp

default is false.

thermalTime fs how often to perform a tempSet default is never
targetTemp K sets the target temperature no default value
tauThermostat fs time constant for Nosé-Hoover ther-

mostat
times from 100-10,000 fs are reasonable

targetPressure atm sets the target pressure no default value
surfaceTension sets the target surface tension in the x-y

plane
no default value

tauBarostat fs time constant for the Nosé-Hoover-
Andersen barostat

times from 1000 to 100,000 fs are reasonable

seed integer Sets the seed value for the random
number generator.

The seed needs to be at least 9 digits long. The de-
fault is to take the seed from the CPU clock.
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2.4 <Snapshot> Blocks

The standard format for storage of a system’s coordinates is the <Snapshot> block , the exact details of which
can be seen in Scheme 2.6. As all bonding and molecular information is stored in the <MetaData> blocks, the
<Snapshot> blocks contain only the coordinates of the objects which move independently during the simulation.
It is important to note that not all atoms are capable of independent motion. Atoms which are part of rigid bodies are
not “integrable objects” in the equations of motion; the rigid bodies themselves are the integrable objects. Therefore,
the coordinate file contains coordinates of all the integrableObjects in the system. For systems without rigid
bodies, this is simply the coordinates of all the atoms.

It is important to note that although the simulation propagates the complete rotation matrix, directional entities are
written out using quaternions to save space in the output files.

<Snapshot>

<FrameData>

Time: 0

Hmat: {{ Hxx, Hyx, Hzx }, { Hxy, Hyy, Hzy }, { Hxz, Hyz, Hzz }}

Thermostat: 0 , 0

Barostat: {{ 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }}

</FrameData>

<StuntDoubles>

0 pv x y z vx vy vz

1 pv x y z vx vy vz

2 pvqj x y z vx vy vz qw qx qy qz jx jy jz

3 pvqj x y z vx vy vz qw qx qy qz jx jy jz

</StuntDoubles>

</Snapshot>

Example 2.6: An example of the format of the <Snapshot> block. There is an initial sub-block called
<FrameData> which contains the time stamp, the three column vectors of H, and optional extra
information for the extended sytem ensembles. The lines in the <StuntDoubles> sub-block
provide information about the instantaneous configuration of each integrable object. For each inte-
grable object, the global index is followed by a short string describing what additional information
is present on the line. Atoms with only position and velocity information use the pv string which
must then be followed by the position and velocity vectors for that atom. Directional atoms and
Rigid Bodies typically use the pvqj string which is followed by position, velocity, quaternions,
and lastly, body fixed angular momentum for that integrable object.

There are three OPENMD files that are written using the combined format. They are: the initial startup file
(.omd), the simulation trajectory file (.dump), and the final coordinates or “end-of-run” for the simulation (.eor).
The initial startup file is necessary for OPENMD to start the simulation with the proper coordinates, and this file
must be generated by the user before the simulation run. The trajectory (or “dump”) file is updated during simulation
and is used to store snapshots of the coordinates at regular intervals. The first frame is a duplication of the initial
configuration (the last good <Snapshot> in the startup file), and each subsequent frame is appended to the dump
file at an interval specified in the meta-data file with the sampleTime flag. The final coordinate file is the “end-
of-run” file. The .eor file stores the final configuration of the system for a given simulation. The file is updated at
the same time as the .dump file, but it only contains the most recent frame. In this way, an .eor file may be used
to initialize a second simulation should it be necessary to recover from a crash or power outage. The coordinate files
generated by OPENMD (both .dump and .eor) all contain the same<MetaData> block as the startup file, so they
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may be used to start up a new simulation if desired.

2.5 Generation of Initial Coordinates

As was stated in Sec. 2.4, a meaningful <Snapshot> block is necessary for specifying for the starting coordinates
for a simulation. Since each simulation is different, system creation is left to the end user; however, we have included
a few sample programs which make some specialized structures. The <Snapshot> block must index the integrable
objects in the correct order. The ordering of the integrable objects relies on the ordering of molecules within the
<MetaData> block. OPENMD expects the order to comply with the following guidelines:

1. All of the molecules of the first declared component are given before proceeding to the molecules of the second
component, and so on for all subsequently declared components.

2. The ordering of the atoms for each molecule follows the order declared in the molecule’s declaration within the
model file.

3. Only atoms which are not members of a rigidBody are included.

4. Rigid Body coordinates for a molecule are listed immediately after the the other atoms in a molecule. Some
molecules may be entirely rigid, in which case, only the rigid body coordinates are given.

An example is given in the OPENMD file in Scheme 2.7.

12



<OpenMD>

<MetaData>

molecule{

name = "I2";

atom[0]{ type = "I"; }

atom[1]{ type = "I"; }

bond{ members( 0, 1); }

}

molecule{

name = "HCl"

atom[0]{ type = "H";}

atom[1]{ type = "Cl";}

bond{ members( 0, 1); }

}

component{

type = "HCl";

nMol = 4;

}

component{

type = "I2";

nMol = 1;

}

</MetaData>

<Snapshot>

<FrameData>

Time: 0

Hmat: {{ 10.0, 0.0, 0.0 }, { 0.0, 10.0, 0.0 }, { 0.0, 0.0, 10.0 }}

</FrameData>

<StuntDoubles>

0 pv x y z vx vy vz // H from first HCl molecule

1 pv x y z vx vy vz // Cl from first HCl molecule

2 pv x y z vx vy vz // H from second HCl molecule

3 pv x y z vx vy vz // Cl from second HCl molecule

4 pv x y z vx vy vz // H from third HCl molecule

5 pv x y z vx vy vz // Cl from third HCl molecule

6 pv x y z vx vy vz // H from fourth HCl molecule

7 pv x y z vx vy vz // Cl from fourth HCl molecule

8 pv x y z vx vy vz // First I from I2 molecule

9 pv x y z vx vy vz // Second I from I2 molecule

</StuntDoubles>

</Snapshot>

</OpenMD>

Example 2.7: Example declaration of the I2 molecule and the HCl molecule in <MetaData> and <Snapshot>
blocks. Note that even though I2 is declared before HCl, the <Snapshot> block follows the order
in which the components were included.

2.6 The Statistics File

The last output file generated by OPENMD is the statistics file. This file records such statistical quantities as the
instantaneous temperature (in K), volume (in Å

3
), pressure (in atm), etc. It is written out with the frequency specified
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in the meta-data file with the statusTime keyword. The file allows the user to observe the system variables as
a function of simulation time while the simulation is in progress. One useful function the statistics file serves is
to monitor the conserved quantity of a given simulation ensemble, allowing the user to gauge the stability of the
integrator. The statistics file is denoted with the .stat file extension.
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Chapter 3

Force Fields

Like many molecular simulation packages, OPENMD splits the potential energy into the short-ranged (bonded) portion
and a long-range (non-bonded) potential,

V = Vshort−range + Vlong−range. (3.1)

The short-ranged portion includes the bonds, bends, torsions, and inversions which have been defined in the meta-data
file for the molecules. The functional forms and parameters for these interactions are defined by the force field which
is selected in the MetaData section.

3.1 Separation into Internal and Cross interactions

The classical potential energy function for a system composed of N molecules is traditionally written

V =

N∑
I=1

V IInternal +

N−1∑
I=1

∑
J>I

V IJCross, (3.2)

where V IInternal contains all of the terms internal to molecule I (e.g. bonding, bending, torsional, and inversion terms)
and V IJCross contains all intermolecular interactions between molecules I and J . For large molecules, the internal
potential may also include some non-bonded terms like electrostatic or van der Waals interactions.

The types of atoms being simulated, as well as the specific functional forms and parameters of the intra-molecular
functions and the long-range potentials are defined by the force field. In the following sections we discuss the stucture
of an OpenMD force field file and the specification of blocks that may be present within these files.

3.2 Force Field Files

Force field files have a number of “Blocks” to delineate different types of information. The blocks contain AtomType
data, which provide properties belonging to a single AtomType, as well as interaction information which provides
information about bonded or non-bonded interactions that cannot be deduced from AtomType information alone. A
simple example of a forceField file is shown in scheme 3.1.
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begin Options

Name = "alkane"

end Options

begin BaseAtomTypes

//name mass

C 12.0107

end BaseAtomTypes

begin AtomTypes

//name base mass

CH4 C 16.05

CH3 C 15.04

CH2 C 14.03

end AtomTypes

begin LennardJonesAtomTypes

//name epsilon sigma

CH4 0.2941 3.73

CH3 0.1947 3.75

CH2 0.09140 3.95

end LennardJonesAtomTypes

begin BondTypes

//AT1 AT2 Type r0 k

CH3 CH3 Harmonic 1.526 260

CH3 CH2 Harmonic 1.526 260

CH2 CH2 Harmonic 1.526 260

end BondTypes

begin BendTypes

//AT1 AT2 AT3 Type theta0 k

CH3 CH2 CH3 Harmonic 114.0 124.19

CH3 CH2 CH2 Harmonic 114.0 124.19

CH2 CH2 CH2 Harmonic 114.0 124.19

end BendTypes

begin TorsionTypes

//AT1 AT2 AT3 AT4 Type

CH3 CH2 CH2 CH3 Trappe 0.0 0.70544 -0.13549 1.5723

CH3 CH2 CH2 CH2 Trappe 0.0 0.70544 -0.13549 1.5723

CH2 CH2 CH2 CH2 Trappe 0.0 0.70544 -0.13549 1.5723

end TorsionTypes

Example 3.1: An example showing a complete OpenMD force field for straight-chain united-atom alkanes.

3.3 The Options block

The Options block defines properties governing how the force field interactions are carried out. This block is delineated
with the text tags begin Options and end Options. Most options don’t need to be set as they come with fairly
sensible default values, but the various keywords and their possible values are given in Scheme 3.2.
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begin Options

Name "alkane" // any string

vdWtype "Lennard-Jones"

DistanceMixingRule "arithmetic" // can also be "geometric" or "cubic"

DistanceType "sigma" // can also be "Rmin"

EnergyMixingRule "geometric" // can also be "arithmetic" or "hhg"

EnergyUnitScaling 1.0

MetallicEnergyUnitScaling 1.0

DistanceUnitScaling 1.0

AngleUnitScaling 1.0

TorsionAngleConvention "180_is_trans" // can also be "0_is_trans"

vdW-12-scale 0.0

vdW-13-scale 0.0

vdW-14-scale 0.0

electrostatic-12-scale 0.0

electrostatic-13-scale 0.0

electrostatic-14-scale 0.0

GayBerneMu 2.0

GayBerneNu 1.0

EAMMixingMethod "Johnson" // can also be "Daw"

end Options

Example 3.2: A force field Options block showing default values for many force field options. Most of these
options do not need to be specified if the default values are working.

3.4 The BaseAtomTypes block

An AtomType the primary data structure that OpenMD uses to store static data about an atom. Things that belong to
AtomType are universal properties (i.e. does this atom have a fixed charge? What is its mass?) Dynamic properties
of an atom are not intended to be properties of an atom type. A BaseAtomType can be used to build extended sets of
related atom types that all fall back to one particular type. For example, one might want a series of atomTypes that
inherit from more basic types:

ALA− CA→ CT→ CSP3→ C

where for each step to the right, the atomType falls back to more primitive data. That is, the mass could be a property of
the C type, while Lennard-Jones parameters could be properties of the CSP3 type. CT could have charge information
and its own set of Lennard-Jones parameter that override the CSP3 parameters. And the ALA-CA type might have
specific torsion or charge information that override the lower level types. A BaseAtomType contains only information
a primitive name and the mass of this atom type. BaseAtomTypes can also be useful in creating files that can be easily
viewed in visualization programs. The Dump2XYZ utility has the ability to print out the names of the base atom types
for displaying simulations in Jmol or VMD.
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begin BaseAtomTypes

//Name mass (amu)

H 1.0079

O 15.9994

Si 28.0855

Al 26.981538

Mg 24.3050

Ca 40.078

Fe 55.845

Li 6.941

Na 22.98977

K 39.0983

Cs 132.90545

Ca 40.078

Ba 137.327

Cl 35.453

end BaseAtomTypes

Example 3.3: A simple example of a BaseAtomTypes block.

3.5 The AtomTypes block

AtomTypes inherit most properties from BaseAtomTypes, but can override their lower-level properties as well. Scheme
3.4 shows an example where multiple types of oxygen atoms can inherit mass from the oxygen base type.
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begin AtomTypes

//Name baseatomtype

h* H

ho H

o* O

oh O

ob O

obos O

obts O

obss O

ohs O

st Si

ao Al

at Al

mgo Mg

mgh Mg

cao Ca

cah Ca

feo Fe

lio Li

end AtomTypes

Example 3.4: A simple example of an AtomTypes block which shows how multiple types can inherit from the
same base type.

3.6 The DirectionalAtomTypes block

DirectionalAtoms have orientational degrees of freedom as well as translation, so moving these atoms requires infor-
mation about the moments of inertias in the same way that translational motion requires mass. For DirectionalAtoms,
OpenMD treats the mass distribution with higher priority than electrostatic distributions; the moment of inertia tensor,
←→
I , should be diagonalized to obtain body-fixed axes, and the three diagonal moments should correspond to rotational

motion around each of these body-fixed axes. Charge distributions may then result in dipole vectors that are oriented
along a linear combination of the body-axes, and in quadrupole tensors that are not necessarily diagonal in the body
frame.

begin DirectionalAtomTypes

//Name I_xx I_yy I_zz (All moments in (amu*Angˆ2)

SSD 1.7696 0.6145 1.1550

GBC6H6 88.781 88.781 177.561

GBCH3OH 4.056 20.258 20.999

GBH2O 1.777 0.581 1.196

CO2 43.06 43.06 0.0 // single-site model for CO2

end DirectionalAtomTypes

Example 3.5: A simple example of a DirectionalAtomTypes block.

For a DirectionalAtom that represents a linear object, it is appropriate for one of the moments of inertia to be zero.
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In this case, OpenMD identifies that DirectionalAtom as having only 5 degrees of freedom (three translations and two
rotations), and will alter calculation of temperatures to reflect this.

3.7 AtomType properties

3.7.1 The LennardJonesAtomTypes block

One of the most basic interatomic interactions implemented in OPENMD is the Lennard-Jones potential, which mimics
the van der Waals interaction at long distances and uses an empirical repulsion at short distances. The Lennard-Jones
potential is given by:

VLJ(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6]
, (3.3)

where rij is the distance between particles i and j, σij scales the length of the interaction, and εij scales the well depth
of the potential.

Interactions between dissimilar particles requires the generation of cross term parameters for σ and ε. These
parameters are usually determined using the Lorentz-Berthelot mixing rules:[12]

σij =
1

2
[σii + σjj ], (3.4)

and
εij =

√
εiiεjj . (3.5)

The values of σii and εii are properties of atom type i, and must be specified in a section of the force field file
called the LennardJonesAtomTypes block (see listing 3.6). Separate Lennard-Jones interactions which are not
determined by the mixing rules can also be specified in the NonbondedInteractionTypes block (see section
3.10.1).

begin LennardJonesAtomTypes

//Name epsilon sigma

O_TIP4P 0.1550 3.15365

O_TIP4P-Ew 0.16275 3.16435

O_TIP5P 0.16 3.12

O_TIP5P-E 0.178 3.097

O_SPCE 0.15532 3.16549

O_SPC 0.15532 3.16549

CH4 0.279 3.73

CH3 0.185 3.75

CH2 0.0866 3.95

CH 0.0189 4.68

end LennardJonesAtomTypes

Example 3.6: A simple example of a LennardJonesAtomTypee block. Units for ε are kcal / mol and for σ are Å .

3.7.2 The ChargeAtomTypes block

In molecular simulations, proper accumulation of the electrostatic interactions is essential and is one of the most
computationally-demanding tasks. Most common molecular mechanics force fields represent atomic sites with full or
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partial charges protected by Lennard-Jones (short range) interactions. Partial charge values, qi are empirical represen-
tations of the distribution of electronic charge in a molecule. This means that nearly every pair interaction involves a
calculation of charge-charge forces. Coupled with relatively long-ranged r−1 decay, the monopole interactions quickly
become the most expensive part of molecular simulations. The interactions between point charges can be handled via a
number of different algorithms, but Coulomb’s law is the fundamental physical principle governing these interactions,

Vcharge(rij) =
∑
ij

qiqje
2

4πε0rij
, (3.6)

where q represents the charge on particle i or j, and e is the charge of an electron in Coulombs. ε0 is the permittivity
of free space.

begin ChargeAtomTypes

// Name charge

O_TIP3P -0.834

O_SPCE -0.8476

H_TIP3P 0.417

H_TIP4P 0.520

H_SPCE 0.4238

EP_TIP4P -1.040

Na+ 1.0

Cl- -1.0

end ChargeAtomTypes

Example 3.7: A simple example of a ChargeAtomTypes block. Units for charge are in multiples of electron
charge.

3.7.3 The MultipoleAtomTypes block

For complex charge distributions that are centered on single sites, it is convenient to write the total electrostatic
potential in terms of multipole moments,

Uab(r) = M̂aM̂b
1

r
. (3.7)

where the multipole operator on site a,

M̂a = Ca −Daα
∂

∂rα
+Qaαβ

∂2

∂rα∂rβ
+ . . . (3.8)

Here, the point charge, dipole, and quadrupole for site a are given by Ca, Daα, and Qaαβ , respectively. These are the
primitive multipoles. If the site is representing a distribution of charges, these can be expressed as,

Ca =
∑
k in a

qk, (3.9)

Daα =
∑
k in a

qkrkα, (3.10)

Qaαβ =
1

2

∑
k in a

qkrkαrkβ . (3.11)
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Note that the definition of the primitive quadrupole here differs from the standard traceless form, and contains an
additional Taylor-series based factor of 1/2.

The details of the multipolar interactions will be given later, but many readers are familiar with the dipole-dipole
potential:

Vdipole(rij ,Ωi,Ωj) =
|Di||Dj |
4πε0r3ij

[
ûi · ûj − 3(ûi · r̂ij)(ûj · r̂ij)

]
. (3.12)

Here rij is the vector starting at atom i pointing towards j, and Ωi and Ωj are the orientational degrees of freedom for
atoms i and j respectively. The magnitude of the dipole moment of atom i is |Di|, ûi is the standard unit orientation
vector of Ωi, and r̂ij is the unit vector pointing along rij (r̂ij = rij/|rij |).

begin MultipoleAtomTypes

// Euler angles are given in zxz convention in units of degrees.

//

// point dipoles:

// name d phi theta psi dipole_moment

DIP d 0.0 0.0 0.0 1.91 // dipole points along z-body axis

//

// point quadrupoles:

// name q phi theta psi Qxx Qyy Qzz

CO2 q 0.0 0.0 0.0 0.0 0.0 -0.430592 //quadrupole tensor has zz element

//

// Atoms with both dipole and quadrupole moments:

// name dq phi theta psi dipole_moment Qxx Qyy Qzz

SSD dq 0.0 0.0 0.0 2.35 -1.682 1.762 -0.08

end MultipoleAtomTypes

Example 3.8: A simple example of a MultipoleAtomTypes block. Dipoles are given in units of Debyes, and
Quadrupole moments are given in units of Debye Å (or 10−26 esu cm2)

Specifying a MultipoleAtomType requires declaring how the electrostatic frame for the site is rotated relative to
the body-fixed axes for that atom. The Euler angles (φ, θ, ψ) for this rotation must be given, and then the dipole,
quadrupole, or all of these moments are specified in the electrostatic frame. In OpenMD, the Euler angles are spec-
ified in the zxz convention and are entered in units of degrees. Dipole moments are entered in units of Debye, and
Quadrupole moments in units of Debye Å.

3.7.4 The GayBerneAtomTypes block

The Gay-Berne potential has been widely used in the liquid crystal community to describe anisotropic phase behav-
ior. [14–18] The form of the Gay-Berne potential implemented in OpenMD was generalized by Cleaver et al. and is
appropriate for dissimilar uniaxial ellipsoids.[18] The potential is constructed in the familiar form of the Lennard-Jones
function using orientation-dependent σ and ε parameters,

Vij(ûi, ûj , r̂ij) = 4ε(ûi, ûj , r̂ij)

[(
σ0

rij − σ(ûi, ûj , r̂ij) + σ0

)12

−
(

σ0
rij − σ(ûi, ûj , r̂ij) + σ0

)6
]

The range (σ(ûi, ûj , r̂ij)), and strength (ε(ûi, ûj , r̂ij)) parameters are dependent on the relative orientations of
the two ellipsoids (ûi, ûj) as well as the direction of the inter-ellipsoid separation (̂rij). The shape and attractiveness
of each ellipsoid is governed by a relatively small set of parameters:
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• d: range parameter for the side-by-side (S) and cross (X) configurations

• l: range parameter for the end-to-end (E) configuration

• εX : well-depth parameter for the cross (X) configuration

• εS : well-depth parameter for the side-by-side (S) configuration

• εE : well depth parameter for the end-to-end (E) configuration

• dw: The “softness” of the potential

Additionally, there are two universal paramters to govern the overall importance of the purely orientational (ν) and
the mixed orientational / translational (µ) parts of strength of the interactions. These parameters have default or
“canonical” values, but may be changed as a force field option:

• ν: purely orientational part : defaults to 1

• µ: mixed orientational / translational part : defaults to 2

Further details of the potential are given elsewhere,[17, 19, 20] and an excellent overview of the computational methods
that can be used to efficiently compute forces and torques for this potential can be found in Ref. 19

begin GayBerneAtomTypes

//Name d l eps_X eps_S eps_E dw

GBlinear 2.8104 9.993 0.774729 0.774729 0.116839 1.0

GBC6H6 4.65 2.03 0.540 0.540 1.9818 0.6

GBCH3OH 2.55 3.18 0.542 0.542 0.55826 1.0

end GayBerneAtomTypes

Example 3.9: A simple example of a GayBerneAtomTypes block. Distances (d and l) are given in Å and energies
(εX , εS , εE) are in units of kcal/mol. dw is unitless.

3.7.5 The StickyAtomTypes block

One of the solvents that can be simulated by OPENMD is the extended Soft Sticky Dipole (SSD/E) water model.[21]
The original SSD was developed by Ichiye et al.[22] as a modified form of the hard-sphere water model proposed
by Bratko, Blum, and Luzar.[23, 24] It consists of a single point dipole with a Lennard-Jones core and a sticky
potential that directs the particles to assume the proper hydrogen bond orientation in the first solvation shell. Thus, the
interaction between two SSD water molecules i and j is given by the potential

Vij = V LJij (rij) + V dpij (rij ,Ωi,Ωj) + V spij (rij ,Ωi,Ωj), (3.13)

where the rij is the position vector between molecules i and j with magnitude equal to the distance rij , and Ωi and Ωj

represent the orientations of the respective molecules. The Lennard-Jones and dipole parts of the potential are given
by equations 3.3 and 3.12 respectively. The sticky part is described by the following,

uspij (rij ,Ωi,Ωj) =
ν0
2

[s(rij)w(rij ,Ωi,Ωj) + s′(rij)w
′(rij ,Ωi,Ωj)] , (3.14)
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i

jθij

θji

rij

Figure 3.1: Coordinates for the interaction between two SSD/E water molecules. θij is the angle that rij makes with the ẑ
vector in the body-fixed frame for molecule i. The ẑ vector bisects the HOH angle in each water molecule.

where ν0 is a strength parameter for the sticky potential, and s and s′ are cubic switching functions which turn off
the sticky interaction beyond the first solvation shell. The w function can be thought of as an attractive potential with
tetrahedral geometry:

w(rij ,Ωi,Ωj) = sin θij sin 2θij cos 2φij , (3.15)

while the w′ function counters the normal aligned and anti-aligned structures favored by point dipoles:

w′(rij ,Ωi,Ωj) = (cos θij − 0.6)2(cos θij + 0.8)2 − w0, (3.16)

It should be noted that w is proportional to the sum of the Y 2
3 and Y −23 spherical harmonics (a linear combination

which enhances the tetrahedral geometry for hydrogen bonded structures), while w′ is a purely empirical function.
A more detailed description of the functional parts and variables in this potential can be found in the original SSD
articles.[22, 25–27]

Since SSD/E is a single-point dipolar model, the force calculations are simplified significantly relative to the stan-
dard charged multi-point models. In the original Monte Carlo simulations using this model, Ichiye et al. reported that
using SSD decreased computer time by a factor of 6-7 compared to other models.[22] What is most impressive is that
these savings did not come at the expense of accurate depiction of the liquid state properties. Indeed, SSD/E main-
tains reasonable agreement with the Head-Gordon diffraction data for the structural features of liquid water.[22, 28]
Additionally, the dynamical properties exhibited by SSD/E agree with experiment better than those of more computa-
tionally expensive models (like TIP3P and SPC/E).[26] The combination of speed and accurate depiction of solvent
properties makes SSD/E a very attractive model for the simulation of large scale biochemical simulations.
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Recent constant pressure simulations revealed issues in the original SSD model that led to lower than expected
densities at all target pressures,[21, 27] so variants on the sticky potential can be specified by using one of a number of
substitute atom types (see listing 3.10). A table of the parameter values and the drawbacks and benefits of the different
density corrected SSD models can be found in reference 21.

begin StickyAtomTypes

//name w0 v0 (kcal/mol) v0p rl (Ang) ru rlp rup

SSD_E 0.07715 3.90 3.90 2.40 3.80 2.75 3.35

SSD_RF 0.07715 3.90 3.90 2.40 3.80 2.75 3.35

SSD 0.07715 3.7284 3.7284 2.75 3.35 2.75 4.0

SSD1 0.07715 3.6613 3.6613 2.75 3.35 2.75 4.0

end StickyAtomTypes

Example 3.10: A simple example of a StickyAtomTypes block. Distances (rl, ru, r′l and r′u) are given in Å and
energies (v0, v′0) are in units of kcal/mol. w0 is unitless.

3.8 Metallic Atom Types

OPENMD implements a number of related potentials that describe bonding in transition metals. These potentials have
an attractive interaction which models “Embedding” a positively charged pseudo-atom core in the electron density due
to the free valance “sea” of electrons created by the surrounding atoms in the system. A pairwise part of the potential
(which is primarily repulsive) describes the interaction of the positively charged metal core ions with one another.
These potentials have the form:

V =
∑
i

Fi [ρi] +
∑
i

∑
j 6=i

φij(rij) (3.17)

where Fi is an embedding functional that approximates the energy required to embed a positively-charged core ion i
into a linear superposition of spherically averaged atomic electron densities given by ρi,

ρi =
∑
j 6=i

fj(rij), (3.18)

Since the density at site i (ρi) must be computed before the embedding functional can be evaluated, EAM and the
related transition metal potentials require two loops through the atom pairs to compute the inter-atomic forces.

The pairwise portion of the potential, φij , is usually a repulsive interaction between atoms i and j.

3.8.1 The EAMAtomTypes block

The Embedded Atom Method (EAM) is one of the most widely-used potentials for transition metals. [29–41] It has
been widely adopted in the materials science community and a good review of EAM and other formulations of metallic
potentials was given by Voter.[42]

In the original formulation of EAM[34], the pair potential, φij was an entirely repulsive term; however later refine-
ments to EAM allowed for more general forms for φ.[43] The effective cutoff distance, rcut is the distance at which the
values of f(r) and φ(r) drop to zero for all atoms present in the simulation. In practice, this distance is fairly small,
limiting the summations in the EAM equation to the few dozen atoms surrounding atom i for both the density ρ and
pairwise φ interactions.
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In computing forces for alloys, OpenMD uses mixing rules outlined by Johnson [36] to compute the heterogenous
pair potential,

φab(r) =
1

2

(
fb(r)

fa(r)
φaa(r) +

fa(r)

fb(r)
φbb(r)

)
. (3.19)

No mixing rule is needed for the densities, since the density at site i is simply the linear sum of density contributions
of all the other atoms. The EAM force field illustrates an additional feature of OPENMD. Foiles, Baskes and Daw
fit EAM potentials for Cu, Ag, Au, Ni, Pd, Pt and alloys of these metals.[35] These fits are included in OPENMD as
the u3 variant of the EAM force field. Voter and Chen reparamaterized a set of EAM functions which do a better job
of predicting melting points.[44] These functions are included in OPENMD as the VC variant of the EAM force field.
An additional set of functions (the “Universal 6” functions) are included in OPENMD as the u6 variant of EAM. For
example, to specify the Voter-Chen variant of the EAM force field, the user would add the forceFieldVariant
= "VC"; line to the meta-data file.

The potential files used by the EAM force field are in the standard funcfl format, which is the format utilized by
a number of other codes (e.g. ParaDyn [8], DYNAMO 86). It should be noted that the energy units in these files are in
eV, not kcal mol−1 as in the rest of the OPENMD force field files.

begin EAMAtomTypes

Au funcfl Au.u3.funcfl

Ag funcfl Ag.u3.funcfl

Cu funcfl Cu.u3.funcfl

Ni funcfl Ni.u3.funcfl

Pd funcfl Pd.u3.funcfl

Pt funcfl Pt.u3.funcfl

end EAMAtomTypes

Example 3.11: A simple example of a EAMAtomTypes block. Here the only data provided is the name of a
DYNAMO86 funcfl file which contains the raw data for spline interpolations for the density,
functional, and pair potential.

OPENMD also implements parameterized versions of the density, embedding functional, and pair potentials that
were developed by Zhou et al.[38–41] specifically for use in alloys and intermetallic compounds. This integrated
EAM potential database has been reparameterized a number of times,[38–40] and has also been re-fit for a charge
transfer EAM including Oxygen atoms.[41] In general, the keywords to specify a particular parameterization are Zhou
[38, 39], Zhou2004 [40], Zhou2005 and Zhou2005Oxygen [41]. Databases of these parameterized functions are
included in OPENMD as the Zhou2001, Zhou2004, and Zhou2005 variants of the EAM force field. To specify the
Zhou2004 variant of the EAM force field, the user would add the forceFieldVariant = "Zhou2004"; line
to the meta-data file.
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begin EAMAtomTypes

Cu Zhou FCC 2.556162 1.554485 22.150141 7.669911 4.090619 0.327584 0.468735 ...

Ag Zhou2004 FCC 2.891814 1.106232 14.6041 14.604144 9.13201 4.870405 0.277758 ...

Al Zhou2005 FCC 2.86392 1.20378 17.51747 19.90041 6.61317 3.52702 0.31487 0.36555 ...

O Zhou2005Oxygen 3.64857 1.39478 5.44072 2.11725 0.34900 0.57438 0.08007 0.37457 ...

end EAMAtomTypes

Example 3.12: A more complicated example of a EAMAtomTypes block (each line is truncated).

Readers interested in modifying these parameters should consult the EAM.Zhou*.frc files in the OpenMD
forceFields directory.

3.8.2 The SuttonChenAtomTypes block

The Sutton-Chen (SC) [31] potential has been used to study a wide range of phenomena in metals. Although it has the
same basic form as the EAM potential, the Sutton-Chen model requires a simpler set of parameters,

Utot =
∑
i

1

2

∑
j 6=i

εijV
pair
ij (rij)− ciεii

√
ρi

 , (3.20)

where V pairij and ρi are given by

V pairij (r) =

(
αij
rij

)nij
ρi =

∑
j 6=i

(
αij
rij

)mij
(3.21)

V pairij is a repulsive pairwise potential that accounts for interactions of the pseudo-atom cores. The
√
ρi term in

Eq. (3.20) is an attractive many-body potential that models the interactions between the valence electrons and the
cores of the pseudo-atoms. εij , εii, ci and αij are parameters used to tune the potential for different transition metals.

The SC potential form has also been parameterized by Qi et al.[32] These parameters were obtained via empirical
and ab initio calculations to match structural features of the FCC crystal. Interested readers are encouraged to consult
reference 32 for further details.
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begin SCAtomTypes

// Name epsilon(eV) c m n alpha(angstroms)

Ni 0.0073767 84.745 5.0 10.0 3.5157

Cu 0.0057921 84.843 5.0 10.0 3.6030

Rh 0.0024612 305.499 5.0 13.0 3.7984

Pd 0.0032864 148.205 6.0 12.0 3.8813

Ag 0.0039450 96.524 6.0 11.0 4.0691

Ir 0.0037674 224.815 6.0 13.0 3.8344

Pt 0.0097894 71.336 7.0 11.0 3.9163

Au 0.0078052 53.581 8.0 11.0 4.0651

Au2 0.0078052 53.581 8.0 11.0 4.0651

end SCAtomTypes

Example 3.13: A simple example of a SCAtomTypes block. Distances (α) are given in Å and energies (ε) are
(by convention) given in units of eV. These units must be specified in the Options block using
the keyword MetallicEnergyUnitScaling. Without this Options keyword, the default
units for ε are kcal/mol. The other parameters, m, n, and c are unitless.

3.9 Short Range Interactions

The internal structure of a molecule is usually specified in terms of a set of “bonded” terms in the potential energy
function for molecule I ,

V IInternal =
∑
rij∈I

Vbond(rij) +
∑
θijk∈I

Vbend(θijk) +
∑

φijkl∈I

Vtorsion(φijkl) +
∑

ωijkl∈I
Vinversion(ωijkl)

+
∑
i∈I

∑
(j>i+4)∈I

[
Vdispersion(rij) + Velectrostatic(rij ,Ωi,Ωj)

]
.

Here Vbond, Vbend, Vtorsion, and Vinversion represent the bond, bend, torsion, and inversion potentials for all topologically-
connected sets of atoms within the molecule. Bonds are the primary way of specifying how the atoms are connected
together to form the molecule (i.e. they define the molecular topology). The other short-range interactions may be
specified explicitly in the molecule definition, or they may be deduced from bonding information. For example, bends
can be implicitly deduced from two bonds which share an atom. Torsions can be deduced from two bends that share
a bond. Inversion potentials are utilized primarily to enforce planarity around sp2-hybridized sites, and these are
specified with central atoms and satellites (or an atom with bonds to exactly three satellites). Non-bonded interactions
are usually excluded for atom pairs that are involved in the same bond, bend, or torsion, but all other atom pairs are
included in the standard non-bonded interactions.

Bond lengths, angles, and torsions (dihedrals) are “natural” coordinates to treat molecular motion, as it is usually
in these coordinates that most chemists understand the behavior of molecules. The bond lengths and angles are often
considered “hard” degrees of freedom. That is, we can’t deform them very much without a significant energetic
penalty. On the other hand, dihedral angles or torsions are “soft” and typically undergo significant deformation under
normal conditions.
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3.9.1 The BondTypes block

Bonds are the primary way to specify how the atoms are connected together to form the molecule. In general, bonds
exert strong restoring forces to keep the molecule compact. The bond energy functions are relatively simple functions
of the distance between two atomic sites,

b = |~rij | =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2. (3.22)

All BondTypes must specify two AtomType names (i and j) that describe when that bond should be applied, as well as
an equilibrium bond length, b0ij , in units of Å. The most common forms for bonding potentials are Harmonic bonds,

Vbond(b) =
kij
2

(
b− b0ij

)2
(3.23)

and Morse bonds,

Vbond(b) = Dij

[
1− e−βij(b−b

0
ij)
]2

(3.24)

i

j

rij

Figure 3.2: The coordinate describing a a bond between atoms i and j is |rij |, the length of the ~rij vector.

OpenMD can also simulate some less common types of bond potentials, including Fixed bonds (which are
constrained to be at a specified bond length),

Vbond(b) = 0. (3.25)

Cubic bonds include terms to model anharmonicity,

Vbond(b) = K3(b− b0ij)3 +K2(b− b0ij)2 +K1(b− b0ij) +K0, (3.26)

and Quartic bonds, include another term in the Taylor expansion around b0ij ,

Vbond(b) = K4(b− b0ij)4 +K3(b− b0ij)3 +K2(b− b0ij)2 +K1(b− b0ij) +K0, (3.27)

can also be simulated. Note that the factor of 1/2 that is included in the Harmonic bond type force constant is not
present in either the Cubic or Quartic bond types.

Polynomial bonds which can have any number of terms,

Vbond(b) =
∑
n

Kn(b− b0ij)n. (3.28)
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can also be specified by giving a sequence of integer (n) and force constant (Kn) pairs.

The order of terms in the BondTypes block is:

• AtomType 1

• AtomType 2

• BondType (one of Harmonic, Morse, Fixed, Cubic, Quartic, or Polynomial)

• b0ij , the equilibrium bond length in Å

• any other parameters required by the BondType

begin BondTypes

//Atom1 Atom2 Harmonic b0 k (kcal/mol/Aˆ2)

CH2 CH2 Harmonic 1.526 260

//Atom1 Atom2 Morse b0 D beta (Aˆ-1)

CN NC Morse 1.157437 212.95 2.5802

//Atom1 Atom2 Fixed b0

CT HC Fixed 1.09

//Atom1 Atom2 Cubic b0 K3 K2 K1 K0

//Atom1 Atom2 Quartic b0 K4 K3 K2 K1 K0

//Atom1 Atom2 Polynomial b0 n Kn [m Km]

end BondTypes

Example 3.14: A simple example of a BondTypes block. Distances (b0) are given in Å and force constants are
given in units so that when multiplied by the correct power of distance they return energies in
kcal/mol. For example k for a Harmonic bond is in units of kcal/mol/Å2.

There are advantages and disadvantages of all of the different types of bonds, but specific simulation tasks may
call for specific behaviors.

3.9.2 The BendTypes block

The equilibrium geometries and energy functions for bending motions in a molecule are strongly dependent on the
bonding environment of the central atomic site. For example, different types of hybridized carbon centers require
different bending angles and force constants to describe the local geometry.

The bending potential energy functions used in most force fields are often simple functions of the angle between
two bonds,

θijk = cos−1
(
~rji · ~rjk
|~rji| |~rjk|

)
(3.29)

Here atom j is the central atom that is bonded to two partners i and k.

All BendTypes must specify three AtomType names (i, j and k) that describe when that bend potential should
be applied, as well as an equilibrium bending angle, θ0ijk, in units of degrees. The most common forms for bending
potentials are Harmonic bends,

Vbend(θijk) =
kijk

2
(θijk − θ0ijk)2, (3.30)
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rji

k

rjk

θijk

Figure 3.3: The coordinate describing a bend between atoms i, j, and k is the angle θijk = cos−1 (r̂ji · r̂jk) where r̂ji is
the unit vector between atoms j and i.

where kijk is the force constant which determines the strength of the harmonic bend. UreyBradley bends utilize
an additional 1-3 bond-type interaction in addition to the harmonic bending potential:

Vbend(~ri, ~rj , ~rk) =
kijk

2
(θijk − θ0ijk)2 +

kub
2

(rik − s0)2. (3.31)

A Cosine bend is a variant on the harmonic bend which utilizes the cosine of the angle instead of the angle itself,

Vbend(θijk) =
kijk

2
(cos θijk − cos θ0ijk)2. (3.32)

OpenMD can also simulate some less common types of bend potentials, including Cubic bends, which include
terms to model anharmonicity,

Vbend(θijk) = K3(θijk − θ0ijk)3 +K2(θijk − θ0ijk)2 +K1(θijk − θ0ijk) +K0, (3.33)

and Quartic bends, which include another term in the Taylor expansion around θ0ijk,

Vbend(θijk) = K4(θijk − θ0ijk)4 +K3(θijk − θ0ijk)3 +K2(θijk − θ0ijk)2 +K1(θijk − θ0ijk) +K0, (3.34)

can also be simulated. Note that the factor of 1/2 that is included in the Harmonic bend type force constant is not
present in either the Cubic or Quartic bend types.

Polynomial bends which can have any number of terms,

Vbend(θijk) =
∑
n

Kn(θijk − θ0ijk)n. (3.35)

can also be specified by giving a sequence of integer (n) and force constant (Kn) pairs.
The order of terms in the BendTypes block is:

• AtomType 1

• AtomType 2 (this is the central atom)

• AtomType 3

• BendType (one of Harmonic, UreyBradley, Cosine, Cubic, Quartic, or Polynomial)

• θ0ijk, the equilibrium bending angle in degrees.
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• any other parameters required by the BendType

begin BendTypes

//Atom1 Atom2 Atom3 Harmonic theta0(deg) Ktheta(kcal/mol/radiansˆ2)

CT CT CT Harmonic 109.5 80.000000

CH2 CH CH2 Harmonic 112.0 117.68

CH3 CH2 SH Harmonic 96.0 67.220

//UreyBradley

//Atom1 Atom2 Atom3 UreyBradley theta0 Ktheta s0 Kub

//Cosine

//Atom1 Atom2 Atom3 Cosine theta0 Ktheta(kcal/mol)

//Cubic

//Atom1 Atom2 Atom3 Cubic theta0 K3 K2 K1 K0

//Quartic

//Atom1 Atom2 Atom3 Quartic theta0 K4 K3 K2 K1 K0

//Polynomial

//Atom1 Atom2 Atom3 Polynomial theta0 n Kn [m Km]

end BendTypes

Example 3.15: A simple example of a BendTypes block. By convention, equilibrium angles (θ0) are given in
degrees but force constants are given in units so that when multiplied by the correct power of
angle (in radians) they return energies in kcal/mol. For example k for a Harmonic bend is in units
of kcal/mol/radians2.

Note that the parameters for a particular bend type are the same for any bending triplet of the same atomic types
(in the same or reversed order). Changing the AtomType in the Atom2 position will change the matched bend types
in the force field.

3.9.3 The TorsionTypes block

The torsion potential for rotation of groups around a central bond can often be represented with various cosine func-
tions. For two tetrahedral (sp3) carbons connected by a single bond, the torsion potential might be

Vtorsion =
v

2
[1 + cos(3φ)]

where v is the barrier for going from staggered → eclipsed conformations, while for sp2 carbons connected by a
double bond, the potential might be

Vtorsion =
w

2
[1− cos(2φ)]

where w is the barrier for going from cis→ trans conformations.
A general torsion potentials can be represented as a cosine series of the form:

Vtorsion(φijkl) = c1[1 + cosφijkl] + c2[1− cos(2φijkl)] + c3[1 + cos(3φijkl)], (3.36)

where the angle φijkl is defined
cosφijkl = (r̂ij × r̂jk) · (r̂jk × r̂kl). (3.37)

Here, r̂αβ are the set of unit bond vectors between atoms i, j, k, and l. Note that some force fields define the zero of the
φijkl angle when atoms i and l are in the trans configuration, while most define the zero angle for when i and l are in the
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fully eclipsed orientation. The behavior of the torsion parser can be altered with the TorsionAngleConvention
keyword in the Options block. The default behavior is "180 is trans" while the opposite behavior can be invoked
by setting this keyword to "0 is trans".

l

i

rij
rjk

ɸijkl

rkl
j k

Figure 3.4: The coordinate describing a torsion between atoms i, j, k, and l is the dihedral angle φijkl which measures the
relative rotation of the two terminal atoms around the axis defined by the middle bond.

For computational efficiency, OpenMD recasts torsion potential in the method of CHARMM,[1] in which the angle
series is converted to a power series of the form:

Vtorsion(φijkl) = k3 cos3 φijkl + k2 cos2 φijkl + k1 cosφijkl + k0, (3.38)

where:

k0 = c1 + 2c2 + c3,

k1 = c1 − 3c3,

k2 = −2c2,

k3 = 4c3.

By recasting the potential as a power series, repeated trigonometric evaluations are avoided during the calculation of
the potential energy.

Using this framework, OpenMD implements a variety of different potential energy functions for torsions:

• Cubic:
Vtorsion(φ) = k3 cos3 φ+ k2 cos2 φ+ k1 cosφ+ k0,

• Quartic:
Vtorsion(φ) = k4 cos4 φ+ k3 cos3 φ+ k2 cos2 φ+ k1 cosφ+ k0,

• Polynomial:
Vtorsion(φ) =

∑
n

kn cosn φ,
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• Charmm:
Vtorsion(φ) =

∑
n

Kn (1 + cos(nφ− δn)) ,

• Opls:

Vtorsion(φ) =
1

2
(v1(1 + cosφ)) + v2(1− cos 2φ) + v3(1 + cos 3φ),

• Trappe:[45]
Vtorsion(φ) = c0 + c1(1 + cosφ) + c2(1− cos 2φ) + c3(1 + cos 3φ),

• Harmonic:
Vtorsion(φ) =

d0
2

(
φ− φ0

)
.

Most torsion types don’t require specific angle information in the parameters since they are typically expressed
in cosine polynomials. Charmm and Harmonic torsions are a bit different. Charmm torsion types require a set of
phase angles, δn that are expressed in degrees, and associated periodicity numbers, n. Harmonic torsions have an
equilibrium torsion angle, φ0 that is measured in degrees, while d0 has units of kcal/mol/degrees2. All other torsion
parameters are measured in units of kcal/mol.

begin TorsionTypes

//Cubic

//Atom1 Atom2 Atom3 Atom4 Cubic k3 k2 k1 k0

CH2 CH2 CH2 CH2 Cubic 5.9602 -0.2568 -3.802 2.1586

CH2 CH CH CH2 Cubic 3.3254 -0.4215 -1.686 1.1661

//Trappe

//Atom1 Atom2 Atom3 Atom4 Trappe c0 c1 c2 c3

CH3 CH2 CH2 SH Trappe 0.10507 -0.10342 0.03668 0.60874

//Charmm

//Atom1 Atom2 Atom3 Atom4 Charmm Kchi n delta [Kchi n delta]

CT CT CT C Charmm 0.156 3 0.00

OH CT CT OH Charmm 0.144 3 0.00 1.175 2 0

HC CT CM CM Charmm 1.150 1 0.00 0.38 3 180

//Quartic

//Atom1 Atom2 Atom3 Atom4 Quartic k4 k3 k2 k1 k0

//Polynomial

//Atom1 Atom2 Atom3 Atom4 Polynomial n Kn [m Km]

S CH2 CH2 C Polynomial 0 2.218 1 2.905 2 -3.136 3 -0.7313

4 6.272 5 -7.528

end TorsionTypes

Example 3.16: A simple example of a TorsionTypes block. Energy constants are given in kcal / mol, and when
required by the form, δ angles are given in degrees.

Note that the parameters for a particular torsion type are the same for any torsional quartet of the same atomic
types (in the same or reversed order).

3.9.4 The InversionTypes block

Inversion potentials are often added to force fields to enforce planarity around sp2-hybridized carbons or to correct
vibrational frequencies for umbrella-like vibrational modes for central atoms bonded to exactly three satellite groups.
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In OpenMD’s version of an inversion, the central atom is entered first in each line in the InversionTypes
block. Note that this is quite different than how other codes treat Improper torsional potentials to mimic inversion
behavior. In some other widely-used simulation packages, the central atom is treated as atom 3 in a standard torsion
form:

• OpenMD: I - (J - K - L) (e.g. I is sp2 hybridized carbon)

• AMBER: I - J - K - L (e.g. K is sp2 hybridized carbon)

The inversion angle itself is defined as:

cosωi−jkl = (r̂il × r̂ij) · (r̂il × r̂ik) (3.39)

Here, r̂αβ are the set of unit bond vectors between the central atoms i, and the satellite atoms j, k, and l. Note that
other definitions of inversion angles are possible, so users are encouraged to be particularly careful when converting
other force field files for use with OpenMD.

There are many common ways to create planarity or umbrella behavior in a potential energy function, and OpenMD
implements a number of the more common functions:

• ImproperCosine:

Vtorsion(ω) =
∑
n

Kn

2
(1 + cos(nω − δn)) ,

• AmberImproper:
Vtorsion(ω) =

v

2
(1− cos (2 (ω − ω0)) ,

• Harmonic:
Vtorsion(ω) =

d

2
(ω − ω0) .

begin InversionTypes

//Harmonic

//Atom1 Atom2 Atom3 Atom4 Harmonic d(kcal/mol/degˆ2) omega0

RCHar3 X X X Harmonic 1.21876e-2 180.0

//AmberImproper

//Atom1 Atom2 Atom3 Atom4 AmberImproper v(kcal/mol)

C CT N O AmberImproper 10.500000

CA CA CA CT AmberImproper 1.100000

//ImproperCosine

//Atom1 Atom2 Atom3 Atom4 ImproperCosine Kn n delta_n [Kn n delta_n]

end InversionTypes

Example 3.17: A simple example of a InversionTypes block. Angles (δn and ω0) angles are given in degrees,
while energy parameters (v,Kn) are given in kcal / mol. The Harmonic Inversion type has a force
constant that must be given in kcal/mol/degrees2.
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3.10 Long Range Interactions

Calculating the long-range (non-bonded) potential involves a sum over all pairs of atoms (except for those atoms
which are involved in a bond, bend, or torsion with each other). Many of these interactions can be inferred from the
AtomTypes,

3.10.1 The NonBondedInteractions block

The user might want like to specify explicit or special interactions that override the default non-bonded interactions
that are inferred from the AtomTypes. To do this, OpenMD implements a NonBondedInteractions block to allow the
user to specify the following (pair-wise) non-bonded interactions:

• LennardJones:

VNB(r) = 4εij

((σij
r

)12
−
(σij
r

)6)
,

• ShiftedMorse:
VNB(r) = Dij

(
e−2βij(r−r

0) − 2e−βij(r−r
0)
)
,

• RepulsiveMorse:
VNB(r) = Dij

(
e−2βij(r−r

0)
)
,

• RepulsivePower:
VNB(r) = εij

(σij
r

)nij
.

• Mie:

VNB(r) =

(
n

n−m

)( n
m

)m/(n−m)

εij

[(σij
r

)n
−
(σij
r

)m]
.

• Buckingham Traditional:

VNB(r) = A exp(−Br)− C

r6
.

• Buckingham Modified:

VNB(r) = A exp(−Br)− C

r6
+ 4ε

((σ
r

)3
0−

(σ
r

)6)
.

• EAMZhou (pair potential only):

VNB(r) =
A exp [−α(r/re − 1)]

1 + (r/re − κ)20
− B exp [−β(r/re − 1)]

1 + (r/re − λ)20
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begin NonBondedInteractions

//Lennard-Jones

//Atom1 Atom2 LennardJones sigma epsilon

Au CH3 LennardJones 3.54 0.2146

Au CH2 LennardJones 3.54 0.1749

Au CH LennardJones 3.54 0.1749

Au S LennardJones 2.40 8.465

//Shifted Morse

//Atom1 Atom2 ShiftedMorse r0 D0 beta0

Au O_SPCE ShiftedMorse 3.70 0.0424 0.769

//Repulsive Morse

//Atom1 Atom2 RepulsiveMorse r0 D0 beta0

Au H_SPCE RepulsiveMorse -1.00 0.00850 0.769

//Repulsive Power

//Atom1 Atom2 RepulsivePower sigma epsilon n

Au ON RepulsivePower 3.47005 0.186208 11

Au NO RepulsivePower 3.53955 0.168629 11

//Mie potential

//Atom1 Atom2 Mie sigma epsilon n m

Ar Au Mie 3.41 0.234 12 3

//Buckingham Traditional A (kcal/mol) B(A-1) C(kcal/mol/Aˆ6)

Si O Buckingham Traditional 415176.39808 4.87318 3079.46096

//Buckingham Modified A (kcal/mol) B(A-1) C(kcal/mol/Aˆ6) sigma epsilon

Si O Buckingham Modified 415179.721807 4.87318 3079.48551137 1.779239 0.02423780013

//Types re alpha beta A (eV) B (eV) kappa lambda

Al Ni EAMZhou 2.71579 8.00443 4.75970 0.44254 0.68349 0.63279 0.81777

// note that EAM force fields usually have the MetallicEnergyUnitScaling

// option set to 23.0605423 for energy units of A and B.

end NonBondedInteractions

Example 3.18: A simple example of a NonBondedInteractions block. Distances (σ, r0) are given in Å, while
energies (ε,D0) are in kcal/mol. The Morse potentials have an additional parameter β0 which is
in units of Å−1.

3.11 Electrostatics

Because nearly all force fields involve electrostatic interactions in one form or another, OpenMD implements a number
of different electrostatic summation methods. These methods are extended from the damped and cutoff-neutralized
Coulombic sum originally proposed by Wolf, et al.[46] One of these, the damped shifted force method, shows a
remarkable ability to reproduce the energetic and dynamic characteristics exhibited by simulations employing lattice
summation techniques. The basic idea is to construct well-behaved real-space summation methods using two tricks:
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1. shifting through the use of image charges, and

2. damping the electrostatic interaction.

Starting with the original observation that the effective range of the electrostatic interaction in condensed phases
is considerably less than r−1, either the cutoff sphere neutralization or the distance-dependent damping technique
could be used as a foundation for a new pairwise summation method. Wolf et al. made the observation that charge
neutralization within the cutoff sphere plays a significant role in energy convergence; therefore we will begin our
analysis with the various shifted forms that maintain this charge neutralization. We can evaluate the methods of Wolf
et al. and Zahn et al. by considering the standard shifted potential,

VSP(r) =

v(r)− vc r 6 Rc

0 r > Rc

, (3.40)

and shifted force,

VSF(r) =

v(r)− vc −
(
dv(r)
dr

)
r=Rc

(r −Rc ) r 6 Rc

0 r > Rc

, (3.41)

functions where v(r) is the unshifted form of the potential, and vc is v(Rc). The Shifted Force (SF) form ensures that
both the potential and the forces goes to zero at the cutoff radius, while the Shifted Potential (SP) form only ensures
the potential is smooth at the cutoff radius (Rc).[12]

The forces associated with the shifted potential are simply the forces of the unshifted potential itself (when inside
the cutoff sphere),

FSP = −
(
dv(r)

dr

)
, (3.42)

and are zero outside. Inside the cutoff sphere, the forces associated with the shifted force form can be written,

FSF = −
(
dv(r)

dr

)
+

(
dv(r)

dr

)
r=Rc

. (3.43)

If the potential, v(r), is taken to be the normal Coulomb potential,

v(r) =
qiqj
r
, (3.44)

then the Shifted Potential (SP) forms will give Wolf et al.’s undamped prescription:

VSP(r) = qiqj

(
1

r
− 1

Rc

)
r 6 Rc, (3.45)

with associated forces,

FSP(r) = qiqj

(
1

r2

)
r 6 Rc . (3.46)

These forces are identical to the forces of the standard Coulomb interaction, and cutting these off at Rc was addressed
by Wolf et al. as undesirable. They pointed out that the effect of the image charges is neglected in the forces when
this form is used,[46] thereby eliminating any benefit from the method in molecular dynamics. Additionally, there is a
discontinuity in the forces at the cutoff radius which results in energy drift during MD simulations.
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The shifted force (SF) form using the normal Coulomb potential will give,

VSF(r) = qiqj

[
1

r
− 1

Rc
+

(
1

R2
c

)
(r −Rc)

]
r 6 Rc. (3.47)

with associated forces,

FSF(r) = qiqj

(
1

r2
− 1

R2
c

)
r 6 Rc. (3.48)

This formulation has the benefits that there are no discontinuities at the cutoff radius, while the neutralizing image
charges are present in both the energy and force expressions. It would be simple to add the self-neutralizing term back
when computing the total energy of the system, thereby maintaining the agreement with the Madelung energies. A side
effect of this treatment is the alteration in the shape of the potential that comes from the derivative term. Thus, a degree
of clarity about agreement with the empirical potential is lost in order to gain functionality in dynamics simulations.

Wolf et al. originally discussed the energetics of the shifted Coulomb potential (Eq. 3.45) and found that it
was insufficient for accurate determination of the energy with reasonable cutoff distances. The calculated Madelung
energies fluctuated around the expected value as the cutoff radius was increased, but the oscillations converged toward
the correct value.[46] A damping function was incorporated to accelerate the convergence; and though alternative
forms for the damping function could be used,[47, 48] the complimentary error function was chosen to mirror the
effective screening used in the Ewald summation. Incorporating this error function damping into the simple Coulomb
potential,

v(r) =
erfc (αr)

r
, (3.49)

the shifted potential (eq. (3.45)) becomes

VDSP(r) = qiqj

(
erfc (αr)

r
− erfc (αRc)

Rc

)
r 6 Rc, (3.50)

with associated forces,

FDSP(r) = qiqj

(
erfc (αr)

r2
+

2α

π1/2

exp
(
−α2r2

)
r

)
r 6 Rc. (3.51)

Again, this damped shifted potential suffers from a force-discontinuity at the cutoff radius, and the image charges play
no role in the forces. To remedy these concerns, one may derive a SF variant by including the derivative term in eq.
(3.41),

VDSF(r) = qiqj

[
erfc (αr)

r
− erfc (αRc)

Rc

+

(
erfc (αRc)

R2
c

+
2α

π1/2

exp
(
−α2R2

c

)
Rc

)
(r −Rc)

]
r 6 Rc

(3.52)

The derivative of the above potential will lead to the following forces,

FDSF(r) = qiqj

[(
erfc (αr)

r2
+

2α

π1/2

exp
(
−α2r2

)
r

)

−

(
erfc (αRc)

R2
c

+
2α

π1/2

exp
(
−α2R2

c

)
Rc

)]
r 6 Rc.

(3.53)
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If the damping parameter (α) is set to zero, the undamped case, eqs. (3.45 through 3.48) are correctly recovered from
eqs. (3.50 through 3.53).

It has been shown that the Damped Shifted Force method obtains nearly identical behavior to the smooth particle
mesh Ewald (SPME) method on a number of commonly simulated systems.[49] For this reason, the default elec-
trostatic summation method utilized by OPENMD is the DSF (Eq. 3.52) with a damping parameter (α) that is set
algorithmically from the cutoff radius.

3.12 Switching Functions

Calculating the the long-range interactions for N atoms involves N(N − 1)/2 evaluations of atomic distances if it is
done in a brute force manner. To reduce the number of distance evaluations between pairs of atoms, OPENMD allows
the use of hard or switched cutoffs with Verlet neighbor lists.[12] Neutral groups which contain charges can exhibit
pathological forces unless the cutoff is applied to the neutral groups evenly instead of to the individual atoms.[50]
OPENMD allows users to specify cutoff groups which may contain an arbitrary number of atoms in the molecule.
Atoms in a cutoff group are treated as a single unit for the evaluation of the switching function:

Vlong−range =
∑
a

∑
b>a

s(rab)
∑
i∈a

∑
j∈b

Vij(rij), (3.54)

where rab is the distance between the centers of mass of the two cutoff groups (a and b).
The sums over a and b are over the cutoff groups that are present in the simulation. Atoms which are not explicitly

defined as members of a cutoffGroup are treated as a group consisting of only one atom. The switching function,
s(r) is the standard cubic switching function,

S(r) =


1 if r ≤ rsw,
(rcut+2r−3rsw)(rcut−r)2

(rcut−rsw)3
if rsw < r ≤ rcut,

0 if r > rcut.

(3.55)

Here, rsw is the switchingRadius, or the distance beyond which interactions are reduced, and rcut is the cutoffRadius,
or the distance at which interactions are truncated.

Users of OPENMD do not need to specify the cutoffRadius or switchingRadius. If the cutoffRadius
was not explicitly set, OpenMD will attempt to guess an appropriate choice. If the system contains electrostatic atoms,
the default cutoff radius is 12 Å. In systems without electrostatic (charge or multipolar) atoms, the atom types present
in the simulation will be polled for suggested cutoff values (e.g. 2.5max({σ}) for Lennard-Jones atoms. The largest
suggested value that was found will be used.

By default, OpenMD uses shifted force potentials to force the potential energy and forces to smoothly approach
zero at the cutoff radius. If the user would like to use another cutoff method they may do so by setting the cutoffMethod
parameter to:

• HARD

• SWITCHED

• SHIFTED FORCE (default):

• TAYLOR SHIFTED

• SHIFTED POTENTIAL
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The switchingRadius is set to a default value of 95% of the cutoffRadius. In the special case of a
simulation containing only Lennard-Jones atoms, the default switching radius takes the same value as the cutoff radius,
and OPENMD will use a shifted potential to remove discontinuities in the potential at the cutoff. Both radii may be
specified in the meta-data file.

3.13 Periodic Boundary Conditions

Periodic boundary conditions are widely used to simulate bulk properties with a relatively small number of particles.
In this method the simulation box is replicated throughout space to form an infinite lattice. During the simulation,
when a particle moves in the primary cell, its image in other cells move in exactly the same direction with exactly the
same orientation. Thus, as a particle leaves the primary cell, one of its images will enter through the opposite face.
If the simulation box is large enough to avoid “feeling” the symmetries of the periodic lattice, surface effects can be
ignored. The available periodic cells in OPENMD are cubic, orthorhombic and parallelepiped. OPENMD use a 3× 3

matrix, H, to describe the shape and size of the simulation box. H is defined:

H = (hx,hy,hz), (3.56)

where hα is the column vector of the α axis of the box. During the course of the simulation both the size and shape of
the box can be changed to allow volume fluctuations when constraining the pressure.

A real space vector, r can be transformed in to a box space vector, s, and back through the following transforma-
tions:

s = H−1r, (3.57)

r = Hs. (3.58)

The vector s is now a vector expressed as the number of box lengths in the hx, hy , and hz directions. To find the
minimum image of a vector r, OPENMD first converts it to its corresponding vector in box space, and then casts each
element to lie in the range [−0.5, 0.5]:

s′i = si − round(si), (3.59)

where si is the ith element of s, and round(si) is given by

round(x) =

bx+ 0.5c if x ≥ 0,

dx− 0.5e if x < 0.
(3.60)

Here bxc is the floor operator, and gives the largest integer value that is not greater than x, and dxe is the ceiling
operator, and gives the smallest integer that is not less than x.

Finally, the minimum image coordinates r′ are obtained by transforming back to real space,

r′ = H−1s′. (3.61)

In this way, particles are allowed to diffuse freely in r, but their minimum images, or r′, are used to compute the
inter-atomic forces.
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Chapter 4

Mechanics

4.1 Integrating the Equations of Motion: the DLM method

The default method for integrating the equations of motion in OPENMD is a velocity-Verlet version of the symplectic
splitting method proposed by Dullweber, Leimkuhler and McLachlan (DLM).[51] When there are no directional atoms
or rigid bodies present in the simulation, this integrator becomes the standard velocity-Verlet integrator which is known
to sample the microcanonical (NVE) ensemble.[52]

Previous integration methods for orientational motion have problems that are avoided in the DLM method. Direct
propagation of the Euler angles has a known 1/ sin θ divergence in the equations of motion for φ and ψ,[12] leading
to numerical instabilities any time one of the directional atoms or rigid bodies has an orientation near θ = 0 or θ = π.
Quaternion-based integration methods work well for propagating orientational motion; however, energy conservation
concerns arise when using the microcanonical (NVE) ensemble. An earlier implementation of OPENMD utilized
quaternions for propagation of rotational motion; however, a detailed investigation showed that they resulted in a
steady drift in the total energy, something that has been observed by Laird et al.[53]

The key difference in the integration method proposed by Dullweber et al. is that the entire 3 × 3 rotation matrix
is propagated from one time step to the next. In the past, this would not have been feasible, since the rotation matrix
for a single body has nine elements compared with the more memory-efficient methods (using three Euler angles
or 4 quaternions). Computer memory has become much less costly in recent years, and this can be translated into
substantial benefits in energy conservation.

The basic equations of motion being integrated are derived from the Hamiltonian for conservative systems con-
taining rigid bodies,

H =
∑
i

(
1

2
miv

T
i · vi +

1

2
jTi ·
←→
I −1i · ji

)
+ V ({r} , {A}) , (4.1)

where ri and vi are the cartesian position vector and velocity of the center of mass of particle i, and ji,
←→
I i are the

body-fixed angular momentum and moment of inertia tensor respectively, and the superscript T denotes the transpose
of the vector. Ai is the 3× 3 rotation matrix describing the instantaneous orientation of the particle. V is the potential
energy function which may depend on both the positions {r} and orientations {A} of all particles. The equations of
motion for the particle centers of mass are derived from Hamilton’s equations and are quite simple,

ṙ = v, (4.2)

v̇ =
f

m
, (4.3)
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where f is the instantaneous force on the center of mass of the particle,

f = − ∂

∂r
V ({r(t)} , {A(t)}). (4.4)

The equations of motion for the orientational degrees of freedom are

Ȧ = A · skew
(←→

I −1 · j
)
, (4.5)

j̇ = j×
(←→

I −1 · j
)
− rot

(
AT · ∂V

∂A

)
. (4.6)

In these equations of motion, the skew matrix of a vector v = (v1, v2, v3) is defined:

skew (v) :=

 0 v3 −v2
−v3 0 v1

v2 −v1 0

 . (4.7)

The rot notation refers to the mapping of the 3 × 3 rotation matrix to a vector of orientations by first computing the
skew-symmetric part

(
A− AT

)
and then associating this with a length 3 vector by inverting the skew function above:

rot (A) := skew−1
(
A− AT

)
. (4.8)

Written this way, the rot operation creates a set of conjugate angle coordinates to the body-fixed angular momenta
represented by j. This equation of motion for angular momenta is equivalent to the more familiar body-fixed forms,

j̇x = τ bx(t)−
(←→

I −1yy −
←→
I −1zz

)
jyjz, (4.9)

j̇y = τ by(t)−
(←→

I −1zz −
←→
I −1xx

)
jzjx, (4.10)

j̇z = τ bz (t)−
(←→

I −1xx −
←→
I −1yy

)
jxjy, (4.11)

which utilize the body-fixed torques, τ b. Torques are most easily derived in the space-fixed frame,

τ b(t) = A(t) · τs(t), (4.12)

where the torques are either derived from the forces on the constituent atoms of the rigid body, or for directional atoms,
directly from derivatives of the potential energy,

τs(t) = −û(t)×
(
∂

∂û
V ({r(t)} , {A(t)})

)
. (4.13)

Here û is a unit vector pointing along the principal axis of the particle in the space-fixed frame.

The DLM method uses a Trotter factorization of the orientational propagator. This has three effects:

1. the integrator is area-preserving in phase space (i.e. it is symplectic),

2. the integrator is time-reversible, making it suitable for Hybrid Monte Carlo applications, and

3. the error for a single time step is of order O
(
h4
)

for timesteps of length h.

The integration of the equations of motion is carried out in a velocity-Verlet style 2-part algorithm, where h = δt:
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moveA:

v (t+ h/2)← v(t) +
h

2
(f(t)/m) ,

r(t+ h)← r(t) + hv (t+ h/2) ,

j (t+ h/2)← j(t) +
h

2
τ b(t),

A(t+ h)← rotate
(
hj(t+ h/2) ·

←→
I −1

)
.

In this context, the rotate function is the reversible product of the three body-fixed rotations,

rotate(a) = Gx(ax/2) · Gy(ay/2) · Gz(az) · Gy(ay/2) · Gx(ax/2), (4.14)

where each rotational propagator, Gα(θ), rotates both the rotation matrix (A) and the body-fixed angular momentum
(j) by an angle θ around body-fixed axis α,

Gα(θ) =

{
A(t) ← A(0) · Rα(θ)T ,

j(t) ← Rα(θ) · j(0).
(4.15)

Rα is a quadratic approximation to the single-axis rotation matrix. For example, in the small-angle limit, the rotation
matrix around the body-fixed x-axis can be approximated as

Rx(θ) ≈


1 0 0

0 1−θ2/4
1+θ2/4 − θ

1+θ2/4

0 θ
1+θ2/4

1−θ2/4
1+θ2/4

 . (4.16)

All other rotations follow in a straightforward manner.

After the first part of the propagation, the forces and body-fixed torques are calculated at the new positions and
orientations

doForces:

f(t+ h)← −
(
∂V

∂r

)
r(t+h)

,

τs(t+ h)← u(t+ h)× ∂V

∂u
,

τ b(t+ h)← A(t+ h) · τs(t+ h).

OPENMD automatically updates u when the rotation matrix A is calculated in moveA. Once the forces and torques
have been obtained at the new time step, the velocities can be advanced to the same time value.

moveB:

v (t+ h)← v (t+ h/2) +
h

2
(f(t+ h)/m) ,

j (t+ h)← j (t+ h/2) +
h

2
τ b(t+ h).

The matrix rotations used in the DLM method end up being more costly computationally than the simpler arithmetic
quaternion propagation. With the same time step, a 1024-molecule water simulation incurs an average 12% increase
in computation time using the DLM method in place of quaternions. This cost is more than justified when comparing
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the energy conservation achieved by the two methods. Figure 4.1 provides a comparative analysis of the DLM method
versus the traditional quaternion scheme.

In Fig. 4.1, δE1 is a measure of the linear energy drift in units of kcal mol−1 per particle over a nanosecond of
simulation time, and δE0 is the standard deviation of the energy fluctuations in units of kcal mol−1 per particle. In the
top plot, it is apparent that the energy drift is reduced by a significant amount (2 to 3 orders of magnitude improvement
at all tested time steps) by chosing the DLM method over the simple non-symplectic quaternion integration method. In
addition to this improvement in energy drift, the fluctuations in the total energy are also dampened by 1 to 2 orders of
magnitude by utilizing the DLM method.

Although the DLM method is more computationally expensive than the traditional quaternion scheme for prop-
agating a single time step, consideration of the computational cost for a long simulation with a particular level of
energy conservation is in order. A plot of energy drift versus computational cost was generated (Fig. 4.2). This figure
provides an estimate of the CPU time required under the two integration schemes for 1 nanosecond of simulation time
for the model 1024-molecule system. By chosing a desired energy drift value it is possible to determine the CPU time
required for both methods. If a δE1 of 1 × 10−3kcal mol−1 per particle is desired, a nanosecond of simulation time
will require 19 hours of CPU time with the DLM integrator, while the quaternion scheme will require 154 hours of
CPU time. This demonstrates the computational advantage of the integration scheme utilized in OPENMD.

There is only one specific keyword relevant to the default integrator, and that is the time step for integrating the
equations of motion.

variable Meta-data keyword units default value
h dt = 2.0; fs none

4.2 Extended Systems for other Ensembles

OPENMD implements a number of extended system integrators for sampling from other ensembles relevant to chem-
ical physics. The integrator can be selected with the ensemble keyword in the meta-data file:

Integrator Ensemble Meta-data instruction
NVE microcanonical ensemble = NVE;

NVT canonical ensemble = NVT;

NPTi isobaric-isothermal ensemble = NPTi;

(with isotropic volume changes)
NPTf isobaric-isothermal ensemble = NPTf;

(with changes to box shape)
NPTxyz approximate isobaric-isothermal ensemble = NPTxyz;

(with separate barostats on each box dimension)
NγT constant lateral surface tension ensemble = NgammaT;

(must specify a surfaceTension)
NPγT constant normal pressure and lateral surface tension ensemble = NPrT;

(must specify a targetPressure and surfaceTension)
LD Langevin Dynamics ensemble = LD;

(approximates the effects of an implicit solvent)
LangevinHull Non-periodic Langevin Dynamics ensemble = LangevinHull;

(Langevin Dynamics for molecules on convex hull;
Newtonian for interior molecules)
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Figure 4.1: Analysis of the energy conservation of the DLM and quaternion integration methods. δE1 is the linear drift in
energy over time and δE0 is the standard deviation of energy fluctuations around this drift. All simulations were
of a 1024-molecule simulation of SSD water at 298 K starting from the same initial configuration. Note that the
DLM method provides more than an order of magnitude improvement in both the energy drift and the size of
the energy fluctuations when compared with the quaternion method at any given time step. At time steps larger
than 4 fs, the quaternion scheme resulted in rapidly rising energies which eventually lead to simulation failure.
Using the DLM method, time steps up to 8 fs can be taken before this behavior is evident.
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Figure 4.2: Energy drift as a function of required simulation run time. δE1 is the linear drift in energy over time. Simu-
lations were performed on a single 2.5 GHz Pentium 4 processor. Simulation time comparisons can be made
by tracing horizontally from one curve to the other. For example, a simulation that takes 24 hours using the
DLM method will take roughly 210 hours using the simple quaternion method if the same degree of energy
conservation is desired.
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These integrators allow the user to set target values for some thermodynamic variables, they conserve others ex-
actly, and allow some conjugate property to float. For example, the NgammaT integrator has target values for pressure
(P ), temperature (T ) and lateral surface tension (γ). It conserves particle number (N ) and the z-box dimension (Hzz),
while allowing the energy (E), and other box dimensions (Hxx, Hyy) to change.

Table 4.1: Integrators implemented in OpenMD with their floating, target, and conserved Thermodynamic Quantities.

Integrator Floating Variables Target Variables Conserved Quantity
NPA E, T, Hzz Pn̂ N, Axy
NPAT E, Hzz Pn̂, T N, Axy

NPTf E,
↔
H P, T N, G

NPTsz E, Hzz , Axy P, T N

NPTxyz E,
↔
H P, T N

NPrT E,
↔
H Pn̂, γ, T N

NgammaT E, Hxx, Hyy P, T, γ N,Hzz
NVT E, P T N, V

NVE P, T - N,
↔
H, E

LD E T N, V
LHull E, V P, T N

The relatively well-known Nosé-Hoover thermostat[54] is implemented in OPENMD’s NVT integrator. This
method couples an extra degree of freedom (the thermostat) to the kinetic energy of the system and it has been shown
to sample the canonical distribution in the system degrees of freedom while conserving a quantity that is, to within a
constant, the Helmholtz free energy.[55]

NPT algorithms attempt to maintain constant pressure in the system by coupling the volume of the system to a
barostat. OPENMD contains three different constant pressure algorithms. The first two, NPTi and NPTf have been
shown to conserve a quantity that is, to within a constant, the Gibbs free energy.[55] The Melchionna modification
to the Hoover barostat is implemented in both NPTi and NPTf. NPTi allows only isotropic changes in the simulation
box, while box shape variations are allowed in NPTf. The NPTxyz integrator has not been shown to sample from the
isobaric-isothermal ensemble. It is useful, however, in that it maintains orthogonality for the axes of the simulation
box while attempting to equalize pressure along the three perpendicular directions in the box.

Each of the extended system integrators requires additional keywords to set target values for the thermodynamic
state variables that are being held constant. Keywords are also required to set the characteristic decay times for the
dynamics of the extended variables.

variable Meta-data instruction units default value
Ttarget targetTemperature = 300; K none
Ptarget targetPressure = 1; atm none
γ surfaceTension = 0.015; Newtons / meter none
η viscosity = 0.0089; Poise none
τT tauThermostat = 1e3; fs none
τB tauBarostat = 5e3; fs none

resetTime = 200; fs none
useInitialExtendedSystemState = true; logical true

Two additional keywords can be used to either clear the extended system variables periodically (resetTime), or
to maintain the state of the extended system variables between simulations (useInitialExtendedSystemState).
More details on these variables and their use in the integrators follows below.
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4.3 Nosé-Hoover Thermostatting

The Nosé-Hoover equations of motion are given by[54]

ṙ = v, (4.17)

v̇ =
f

m
− χv, (4.18)

Ȧ = A · skew
(←→

I −1 · j
)
, (4.19)

j̇ = j×
(←→

I −1 · j
)
− rot

(
AT · ∂V

∂A

)
− χj. (4.20)

χ is an “extra” variable included in the extended system, and it is propagated using the first order equation of
motion

χ̇ =
1

τ2T

(
T

Ttarget
− 1

)
. (4.21)

The instantaneous temperature T is proportional to the total kinetic energy (both translational and orientational)
and is given by

T =
2K

fkB
(4.22)

Here, f is the total number of degrees of freedom in the system,

f = 3N + 2Nlinear + 3Nnon−linear −Nconstraints, (4.23)

and K is the total kinetic energy,

K =

N∑
i=1

1

2
miv

T
i · vi +

Nlinear+Nnon−linear∑
i=1

1

2
jTi ·
←→
I −1i · ji. (4.24)

Nlinear is the number of linear rotors (i.e. with two non-zero moments of inertia), and Nnon−linear is the number of
non-linear rotors (i.e. with three non-zero moments of inertia).

In eq.(4.21), τT is the time constant for relaxation of the temperature to the target value. To set values for τT or
Ttarget in a simulation, one would use the tauThermostat and targetTemperature keywords in the meta-
data file. The units for tauThermostat are fs, and the units for the targetTemperature are degrees K. The
integration of the equations of motion is carried out in a velocity-Verlet style 2 part algorithm:

moveA:

T (t)← {v(t)} , {j(t)} ,

v (t+ h/2)← v(t) +
h

2

(
f(t)

m
− v(t)χ(t)

)
,

r(t+ h)← r(t) + hv (t+ h/2) ,

j (t+ h/2)← j(t) +
h

2

(
τ b(t)− j(t)χ(t)

)
,

A(t+ h)← rotate
(
h ∗ j(t+ h/2)

←→
I −1

)
,

χ (t+ h/2)← χ(t) +
h

2τ2T

(
T (t)

Ttarget
− 1

)
.

Here rotate(h ∗ j
←→
I −1) is the same symplectic Trotter factorization of the three rotation operations that was
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discussed in the section on the DLM integrator. Note that this operation modifies both the rotation matrix A and the
angular momentum j. moveA propagates velocities by a half time step, and positional degrees of freedom by a full
time step. The new positions (and orientations) are then used to calculate a new set of forces and torques in exactly
the same way they are calculated in the doForces portion of the DLM integrator.

Once the forces and torques have been obtained at the new time step, the temperature, velocities, and the extended
system variable can be advanced to the same time value.

moveB:

T (t+ h)← {v(t+ h)} , {j(t+ h)} ,

χ (t+ h)← χ (t+ h/2) +
h

2τ2T

(
T (t+ h)

Ttarget
− 1

)
,

v (t+ h)← v (t+ h/2) +
h

2

(
f(t+ h)

m
− v(t+ h)χ(th)

)
,

j (t+ h)← j (t+ h/2) +
h

2

(
τ b(t+ h)− j(t+ h)χ(t+ h)

)
.

Since v(t+ h) and j(t+ h) are required to calculate T (t+ h) as well as χ(t+ h), they indirectly depend on their
own values at time t+ h. moveB is therefore done in an iterative fashion until χ(t+ h) becomes self-consistent. The
relative tolerance for the self-consistency check defaults to a value of 10−6, but OPENMD will terminate the iteration
after 4 loops even if the consistency check has not been satisfied.

The Nosé-Hoover algorithm is known to conserve a Hamiltonian for the extended system that is, to within a
constant, identical to the Helmholtz free energy,[55]

HNVT = V +K + fkBTtarget

(
τ2Tχ

2(t)

2
+

∫ t

0

χ(t′)dt′
)
. (4.25)

Poor choices of h or τT can result in non-conservation of HNVT, so the conserved quantity is maintained in the last
column of the .stat file to allow checks on the quality of the integration.

Bond constraints are applied at the end of both the moveA and moveB portions of the algorithm. Details on the
constraint algorithms are given in section 4.9.1.

4.4 Constant-pressure integration with isotropic box deformations (NPTi)

To carry out isobaric-isothermal ensemble calculations, OPENMD implements the Melchionna modifications to the
Nosé-Hoover-Andersen equations of motion.[55] The equations of motion are the same as NVT with the following
exceptions:

ṙ = v + η (r−R0) , (4.26)

v̇ =
f

m
− (η + χ)v, (4.27)

η̇ =
1

τ2BfkBTtarget
V (P − Ptarget) , (4.28)

V̇ = 3Vη. (4.29)

χ and η are the “extra” degrees of freedom in the extended system. χ is a thermostat, and it has the same function
as it does in the Nosé-Hoover NVT integrator. η is a barostat which controls changes to the volume of the simulation
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box. R0 is the location of the center of mass for the entire system, and V is the volume of the simulation box. At any
time, the volume can be calculated from the determinant of the matrix which describes the box shape:

V = det(H). (4.30)

The NPTi integrator requires an instantaneous pressure. This quantity is calculated via the pressure tensor,

←→
P (t) =

1

V(t)

(
N∑
i=1

mivi(t)⊗ vi(t)

)
+
←→
W (t). (4.31)

The kinetic contribution to the pressure tensor utilizes the outer product of the velocities, denoted by the ⊗ symbol.
The stress tensor is calculated from another outer product of the inter-atomic separation vectors (rij = rj − ri) with
the forces between the same two atoms,

←→
W (t) =

∑
i

∑
j>i

rij(t)⊗ fij(t). (4.32)

In systems containing cutoff groups, the stress tensor is computed between the centers-of-mass of the cutoff groups:

←→
W (t) =

∑
a

∑
b

rab(t)⊗ fab(t). (4.33)

where rab is the distance between the centers of mass, and

fab = s(rab)
∑
i∈a

∑
j∈b

fij + s′(rab)
rab
|rab|

∑
i∈a

∑
j∈b

Vij(rij). (4.34)

The instantaneous pressure is then simply obtained from the trace of the pressure tensor,

P (t) =
1

3
Tr
(←→
P (t)

)
. (4.35)

In eq.(4.29), τB is the time constant for relaxation of the pressure to the target value. To set values for τB or
Ptarget in a simulation, one would use the tauBarostat and targetPressure keywords in the meta-data file.
The units for tauBarostat are fs, and the units for the targetPressure are atmospheres. Like in the NVT
integrator, the integration of the equations of motion is carried out in a velocity-Verlet style two part algorithm with
only the following differences:

moveA:

P (t)← {r(t)} , {v(t)} ,

v (t+ h/2)← v(t) +
h

2

(
f(t)

m
− v(t) (χ(t) + η(t))

)
,

η(t+ h/2)← η(t) +
hV(t)

2NkBT (t)τ2B
(P (t)− Ptarget) ,

r(t+ h)← r(t) + h {v (t+ h/2) + η(t+ h/2) [r(t+ h)−R0]} ,

H(t+ h)← e−hη(t+h/2)H(t).

The propagation of positions to time t + h depends on the positions at the same time. OPENMD carries out this
step iteratively (with a limit of 5 passes through the iterative loop). Also, the simulation box H is scaled uniformly for
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one full time step by an exponential factor that depends on the value of η at time t+h/2. Reshaping the box uniformly
also scales the volume of the box by

V(t+ h)← e−3hη(t+h/2) × V(t). (4.36)

The doForces step for the NPTi integrator is exactly the same as in both the DLM and NVT integrators. Once
the forces and torques have been obtained at the new time step, the velocities can be advanced to the same time value.

moveB:

P (t+ h)← {r(t+ h)} , {v(t+ h)} ,

η(t+ h)← η(t+ h/2) +
hV(t+ h)

2NkBT (t+ h)τ2B
(P (t+ h)− Ptarget) ,

v (t+ h)← v (t+ h/2) +
h

2

(
f(t+ h)

m
− v(t+ h)(χ(t+ h) + η(t+ h))

)
,

j (t+ h)← j (t+ h/2) +
h

2

(
τ b(t+ h)− j(t+ h)χ(t+ h)

)
.

Once again, since v(t+ h) and j(t+ h) are required to calculate T (t+ h), P (t+ h), χ(t+ h), and η(t+ h), they
indirectly depend on their own values at time t+h. moveB is therefore done in an iterative fashion until χ(t+h) and
η(t+ h) become self-consistent. The relative tolerance for the self-consistency check defaults to a value of 10−6, but
OPENMD will terminate the iteration after 4 loops even if the consistency check has not been satisfied.

The Melchionna modification of the Nosé-Hoover-Andersen algorithm is known to conserve a Hamiltonian for the
extended system that is, to within a constant, identical to the Gibbs free energy,

HNPTi = V +K + fkBTtarget

(
τ2Tχ

2(t)

2
+

∫ t

0

χ(t′)dt′
)

+ PtargetV(t). (4.37)

Poor choices of δt, τT , or τB can result in non-conservation of HNPTi, so the conserved quantity is maintained in the
last column of the .stat file to allow checks on the quality of the integration. It is also known that this algorithm
samples the equilibrium distribution for the enthalpy (including contributions for the thermostat and barostat),

HNPTi = V +K +
fkBTtarget

2

(
χ2τ2T + η2τ2B

)
+ PtargetV(t). (4.38)

Bond constraints are applied at the end of both the moveA and moveB portions of the algorithm. Details on the
constraint algorithms are given in section 4.9.1.

4.5 Constant-pressure integration with a flexible box (NPTf)

There is a relatively simple generalization of the Nosé-Hoover-Andersen method to include changes in the simulation
box shape as well as in the volume of the box. This method utilizes the full 3 × 3 pressure tensor and introduces a
tensor of extended variables (←→η ) to control changes to the box shape. The equations of motion for this method differ
from those of NPTi as follows:

ṙ = v +←→η · (r−R0) , (4.39)

v̇ =
f

m
− (←→η + χ · 1)v, (4.40)

←̇→η =
1

τ2BfkBTtarget
V
(←→
P − Ptarget1

)
, (4.41)

Ḣ = ←→η · H. (4.42)
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Here, 1 is the unit matrix and
←→
P is the pressure tensor. Again, the volume, V = detH.

The propagation of the equations of motion is nearly identical to the NPTi integration:

moveA:

←→
P (t)← {r(t)} , {v(t)} ,

v (t+ h/2)← v(t) +
h

2

(
f(t)

m
− (χ(t)1 +←→η (t)) · v(t)

)
,

←→η (t+ h/2)←←→η (t) +
hV(t)

2NkBT (t)τ2B

(←→
P (t)− Ptarget1

)
,

r(t+ h)← r(t) + h {v (t+ h/2) +←→η (t+ h/2) · [r(t+ h)−R0]} ,

H(t+ h)← H(t) · e−h
←→η (t+h/2).

OPENMD uses a power series expansion truncated at second order for the exponential operation which scales the
simulation box.

The moveB portion of the algorithm is largely unchanged from the NPTi integrator:

moveB:

←→
P (t+ h)← {r(t+ h)} , {v(t+ h)} , {f(t+ h)} ,

←→η (t+ h)←←→η (t+ h/2) +
hV(t+ h)

2NkBT (t+ h)τ2B

(←→
P (t+ h)− Ptarget1

)
,

v (t+ h)← v (t+ h/2) +
h

2

(
f(t+ h)

m
− (χ(t+ h)1 +←→η (t+ h))

)
· v(t+ h),

The iterative schemes for both moveA and moveB are identical to those described for the NPTi integrator.

The NPTf integrator is known to conserve the following Hamiltonian:

HNPTf = V +K + fkBTtarget

(
τ2Tχ

2(t)

2
+

∫ t

0

χ(t′)dt′
)

+ PtargetV(t) +
fkBTtarget

2
Tr [←→η (t)]

2
τ2B . (4.43)

This integrator must be used with care, particularly in liquid simulations. Liquids have very small restoring forces
in the off-diagonal directions, and the simulation box can very quickly form elongated and sheared geometries which
become smaller than the cutoff radius. The NPTf integrator finds most use in simulating crystals or liquid crystals
which assume non-orthorhombic geometries.

4.6 Constant pressure in 3 axes (NPTxyz)

There is one additional extended system integrator which is somewhat simpler than the NPTf method described above.
In this case, the three axes have independent barostats which each attempt to preserve the target pressure along the box
walls perpendicular to that particular axis. The lengths of the box axes are allowed to fluctuate independently, but the
angle between the box axes does not change. The equations of motion are identical to those described above, but only
the diagonal elements of←→η are computed. The off-diagonal elements are set to zero (even when the pressure tensor
has non-zero off-diagonal elements).

It should be noted that the NPTxyz integrator is not known to preserve any Hamiltonian of interest to the chemical
physics community. The integrator is extremely useful, however, in generating initial conditions for other integration
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methods. It is suitable for use with liquid simulations, or in cases where there is orientational anisotropy in the system
(i.e. in lipid bilayer simulations).

4.7 Langevin Dynamics (LD)

OPENMD implements a Langevin integrator in order to perform molecular dynamics simulations in implicit solvent
environments. This can result in substantial performance gains when the detailed dynamics of the solvent is not
important. Since OPENMD also handles rigid bodies of arbitrary composition and shape, the Langevin integrator is
by necessity somewhat more complex than in other simulation packages.

Consider the Langevin equations of motion in generalized coordinates

MV̇(t) = Fs(t) + Ff (t) + Fr(t) (4.44)

where M is a 6 × 6 diagonal mass matrix (which includes the mass of the rigid body as well as the moments of
inertia in the body-fixed frame) and V is a generalized velocity, V = {v, ω}. The right side of Eq. 4.44 consists of
three generalized forces: a system force (Fs), a frictional or dissipative force (Ff ) and a stochastic force (Fr). While
the evolution of the system in Newtonian mechanics is typically done in the lab frame, it is convenient to handle the
dynamics of rigid bodies in body-fixed frames. Thus the friction and random forces on each substructure are calculated
in a body-fixed frame and may converted back to the lab frame using that substructure’s rotation matrix (Q):

Ff,r =

(
ff,r

τf,r

)
=

(
QT f bf,r
QT τ bf,r

)
(4.45)

The body-fixed friction force, F b
f , is proportional to the (body-fixed) velocity at the center of resistance v b

R and the
angular velocity ω

F b
f (t) =

(
f bf (t)

τ bf (t)

)
= −

(
ΞttR ΞrtR
ΞtrR ΞrrR

)(
v b
R(t)

ω(t)

)
, (4.46)

while the random force, Fr, is a Gaussian stochastic variable with zero mean and variance,〈
Fr(t)(Fr(t

′))T
〉

=
〈
F b
r (t)(F b

r (t′))T
〉

= 2kBTΞRδ(t− t′). (4.47)

ΞR is the 6× 6 resistance tensor at the center of resistance.
For atoms and ellipsoids, there are good approximations for this tensor that are based on Stokes’ law. For arbitrary

rigid bodies, the resistance tensor must be pre-computed before Langevin dynamics can be used. The OPENMD
distribution contains a utitilty program called Hydro that performs this computation.

Once this tensor is known for a given integrableObject, obtaining a stochastic vector that has the properties
in Eq. (4.47) can be done efficiently by carrying out a one-time Cholesky decomposition to obtain the square root
matrix of the resistance tensor,

ΞR = SST , (4.48)

where S is a lower triangular matrix.[56] A vector with the statistics required for the random force can then be obtained
by multiplying S onto a random 6-vector Z which has elements chosen from a Gaussian distribution, such that:

〈Zi〉 = 0, 〈Zi · Zj〉 =
2kBT

δt
δij , (4.49)

where δt is the timestep in use during the simulation. The random force, F b
r = SZ, can be shown to have the correct
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properties required by Eq. (4.47).
The equation of motion for the translational velocity of the center of mass (v) can be written as

mv̇(t) = fs(t) + ff (t) + fr(t) (4.50)

Since the frictional and random forces are applied at the center of resistance, which generally does not coincide with
the center of mass, extra torques are exerted at the center of mass. Thus, the net body-fixed torque at the center of
mass, τ b(t), is given by

τ b ← τ bs + τ bf + τ br + rMR ×
(
f bf + f br

)
(4.51)

where rMR is the vector from the center of mass to the center of resistance. Instead of integrating the angular velocity
in lab-fixed frame, we consider the equation of motion for the angular momentum (j) in the body-fixed frame

∂

∂t
j(t) = τ b(t) (4.52)

By embedding the friction and random forces into the the total force and torque, OPENMD integrates the Langevin
equations of motion for a rigid body of arbitrary shape in a velocity-Verlet style 2-part algorithm, where h = δt:

move A:

v (t+ h/2)← v(t) +
h

2
(f(t)/m) ,

r(t+ h)← r(t) + hv (t+ h/2) ,

j (t+ h/2)← j(t) +
h

2
τ b(t),

Q(t+ h)← rotate
(
hj(t+ h/2) ·

←→
I −1

)
.

In this context,
←→
I is the diagonal moment of inertia tensor, and the rotate function is the reversible product of the

three body-fixed rotations,

rotate(a) = Gx(ax/2) · Gy(ay/2) · Gz(az) · Gy(ay/2) · Gx(ax/2), (4.53)

where each rotational propagator, Gα(θ), rotates both the rotation matrix (Q) and the body-fixed angular momentum
(j) by an angle θ around body-fixed axis α,

Gα(θ) =

{
Q(t) ← Q(0) · Rα(θ)T ,

j(t) ← Rα(θ) · j(0).
(4.54)

Rα is a quadratic approximation to the single-axis rotation matrix. For example, in the small-angle limit, the rotation
matrix around the body-fixed x-axis can be approximated as

Rx(θ) ≈


1 0 0

0 1−θ2/4
1+θ2/4 − θ

1+θ2/4

0 θ
1+θ2/4

1−θ2/4
1+θ2/4

 . (4.55)

All other rotations follow in a straightforward manner. After the first part of the propagation, the forces and body-fixed
torques are calculated at the new positions and orientations. The system forces and torques are derivatives of the total
potential energy function (U ) with respect to the rigid body positions (r) and the columns of the transposed rotation
matrix QT = (ux,uy,uz):
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Forces:

fs(t+ h)← −
(
∂U

∂r

)
r(t+h)

τs(t+ h)← u(t+ h)× ∂U

∂u

vbR(t+ h)← Q(t+ h) · (v(t+ h) + ω(t+ h)× rMR)

f bR,f (t+ h)← −ΞttR · vbR(t+ h)− ΞrtR · ω(t+ h)

τ bR,f (t+ h)← −ΞtrR · vbR(t+ h)− ΞrrR · ω(t+ h)

Z ← GaussianNormal(2kBT/h, 6)

FbR,r(t+ h)← S · Z

f(t+ h)← fs(t+ h) + QT (t+ h) ·
(
f bR,f + f bR,r

)
τ(t+ h)← τs(t+ h) + QT (t+ h) ·

(
τ bR,f + τ bR,r

)
+ rMR × (ff (t+ h) + fr(t+ h))

τ b(t+ h)← Q(t+ h) · τ(t+ h)

Frictional (and random) forces and torques must be computed at the center of resistance, so there are additional steps
required to find the body-fixed velocity (v b

R) at this location. Mapping the frictional and random forces at the center
of resistance back to the center of mass also introduces an additional term in the torque one obtains at the center of
mass.

Once the forces and torques have been obtained at the new time step, the velocities can be advanced to the same
time value.

move B:

v (t+ h)← v (t+ h/2) +
h

2
(f(t+ h)/m) ,

j (t+ h)← j (t+ h/2) +
h

2
τ b(t+ h).

The viscosity of the implicit solvent must be specified using the viscosity keyword in the meta-data file if
the Langevin integrator is selected. For simple particles (spheres and ellipsoids), no further parameters are necessary.
Since there are no analytic solutions for the resistance tensors for composite rigid bodies, the approximate tensors for
these objects must also be specified in order to use Langevin dynamics. The meta-data file must therefore point to
another file which contains the information about the hydrodynamic properties of all complex rigid bodies being used
during the simulation. The HydroPropFile keyword is used to specify the name of this file. A HydroPropFile

should be precalculated using the Hydro program that is included in the OPENMD distribution.

Table 4.2: Meta-data Keywords: Required parameters for the Langevin integrator

keyword units use
viscosity poise Sets the value of viscosity of the implicit solvent
targetTemp K Sets the target temperature of the system. This parameter must be specified to

use Langevin dynamics.
HydroPropFile string Specifies the name of the resistance tensor (usually a .diff file) which is

precalculated by Hydro. This keyword is not necessary if the simulation
contains only simple bodies (spheres and ellipsoids).

beadSize Å Sets the diameter of the beads to use when the RoughShell model is used
to approximate the resistance tensor.
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4.8 Constant Pressure without periodic boundary conditions (The Langev-
inHull)

The Langevin Hull[57] uses an external bath at a fixed constant pressure (P ) and temperature (T ) with an effective
solvent viscosity (η). This bath interacts only with the objects on the exterior hull of the system. Defining the hull
of the atoms in a simulation is done in a manner similar to the approach of Kohanoff, Caro and Finnis.[58] That is,
any instantaneous configuration of the atoms in the system is considered as a point cloud in three dimensional space.
Delaunay triangulation is used to find all facets between coplanar neighbors.[59, 60] In highly symmetric point clouds,
facets can contain many atoms, but in all but the most symmetric of cases, the facets are simple triangles in 3-space
which contain exactly three atoms.

The convex hull is the set of facets that have no concave corners at an atomic site.[61, 62] This eliminates all
facets on the interior of the point cloud, leaving only those exposed to the bath. Sites on the convex hull are dynamic;
as molecules re-enter the cluster, all interactions between atoms on that molecule and the external bath are removed.
Since the edge is determined dynamically as the simulation progresses, no a priori geometry is defined. The pressure
and temperature bath interacts only with the atoms on the edge and not with atoms interior to the simulation.

Atomic sites in the interior of the simulation move under standard Newtonian dynamics,

miv̇i(t) = −∇iU, (4.56)

where mi is the mass of site i, vi(t) is the instantaneous velocity of site i at time t, and U is the total potential energy.
For atoms on the exterior of the cluster (i.e. those that occupy one of the vertices of the convex hull), the equation of
motion is modified with an external force, Fext

i :

miv̇i(t) = −∇iU + Fext
i . (4.57)

The external bath interacts indirectly with the atomic sites through the intermediary of the hull facets. Since each
vertex (or atom) provides one corner of a triangular facet, the force on the facets are divided equally to each vertex.
However, each vertex can participate in multiple facets, so the resultant force is a sum over all facets f containing
vertex i:

Fext
i =

∑
facets f

containing i

1

3
Fext
f (4.58)

The external pressure bath applies a force to the facets of the convex hull in direct proportion to the area of the
facet, while the thermal coupling depends on the solvent temperature, viscosity and the size and shape of each facet.
The thermal interactions are expressed as a standard Langevin description of the forces,

Fext
f = external pressure + drag force + random force

= −n̂fPAf − Ξf (t)vf (t) + Rf (t)
(4.59)

Here, Af and n̂f are the area and (outward-facing) normal vectors for facet f , respectively. vf (t) is the velocity of
the facet centroid,

vf (t) =
1

3

3∑
i=1

vi, (4.60)

and Ξf (t) is an approximate (3× 3) resistance tensor that depends on the geometry and surface area of facet f and the
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viscosity of the bath. The resistance tensor is related to the fluctuations of the random force, R(t), by the fluctuation-
dissipation theorem (see Eq. 4.47).

Once the resistance tensor is known for a given facet, a stochastic vector that has the properties in Eq. (4.47) can
be calculated efficiently by carrying out a Cholesky decomposition to obtain the square root matrix of the resistance
tensor (see Eq. 4.48).

Our treatment of the resistance tensor for the Langevin Hull facets is approximate. Ξf for a rigid triangular plate
would normally be treated as a 6 × 6 tensor that includes translational and rotational drag as well as translational-
rotational coupling. The computation of resistance tensors for rigid bodies has been detailed elsewhere,[63–66] but
the standard approach involving bead approximations would be prohibitively expensive if it were recomputed at each
step in a molecular dynamics simulation.

Instead, we are utilizing an approximate resistance tensor obtained by first constructing the Oseen tensor for the
interaction of the centroid of the facet (f ) with each of the subfacets ` = 1, 2, 3,

T`f =
A`

8πηR`f

(
I +

R`fR
T
`f

R2
`f

)
(4.61)

Here, A` is the area of subfacet ` which is a triangle containing two of the vertices of the facet along with the centroid.
R`f is the vector between the centroid of facet f and the centroid of sub-facet `, and I is the (3 × 3) identity matrix.
η is the viscosity of the external bath.

The tensors for each of the sub-facets are added together, and the resulting matrix is inverted to give a 3 × 3

resistance tensor for translations of the triangular facet,

Ξf (t) =

[
3∑
i=1

Tif

]−1
. (4.62)

Note that this treatment ignores rotations (and translational-rotational coupling) of the facet. In compact systems, the
facets stay relatively fixed in orientation between configurations, so this appears to be a reasonably good approxima-
tion.

At each molecular dynamics time step, the following process is carried out:

1. The standard inter-atomic forces (∇iU ) are computed.

2. Delaunay triangulation is carried out using the current atomic configuration.

3. The convex hull is computed and facets are identified.

4. For each facet:

a. The force from the pressure bath (−n̂fPAf ) is computed.

b. The resistance tensor (Ξf (t)) is computed using the viscosity (η) of the bath.

c. Facet drag (−Ξf (t)vf (t)) forces are computed.

d. Random forces (Rf (t)) are computed using the resistance tensor and the temperature (T ) of the bath.

5. The facet forces are divided equally among the vertex atoms.

6. Atomic positions and velocities are propagated.

The Delaunay triangulation and computation of the convex hull are done using calls to the qhull library,[67] and
for this reason, if qhull is not detected during the build, the Langevin Hull integrator will not be available. There
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is a minimal penalty for computing the convex hull and resistance tensors at each step in the molecular dynamics
simulation (roughly 0.02 × cost of a single force evaluation).

Table 4.3: Meta-data Keywords: Required parameters for the Langevin Hull integrator

keyword units use
viscosity poise Sets the value of viscosity of the implicit solven .
targetTemp K Sets the target temperature of the system. This parameter

must be specified to use Langevin Hull dynamics.
targetPressure atm Sets the target pressure of the system. This parameter must

be specified to use Langevin Hull dynamics.
usePeriodicBoundaryConditions logical Turns off periodic boundary conditions. This parameter

must be set to false

4.9 Constraint Methods

4.9.1 The RATTLE Method for Bond Constraints

In order to satisfy the constraints of fixed bond lengths within OPENMD, we have implemented the RATTLE al-
gorithm of Andersen.[68] RATTLE is a velocity-Verlet formulation of the SHAKE method[69] for iteratively solv-
ing the Lagrange multipliers which maintain the holonomic constraints. Both methods are covered in depth in the
literature,[12, 50] and a detailed description of this method would be redundant.

4.9.2 The Z-Constraint Method

A force auto-correlation method based on the fluctuation-dissipation theorem was developed by Roux and Karplus
to investigate the dynamics of ions inside ion channels.[70] The time-dependent friction coefficient can be calculated
from the deviation of the instantaneous force from its mean value:

ξ(z, t) = 〈δF (z, t)δF (z, 0)〉/kBT, (4.63)

where
δF (z, t) = F (z, t)− 〈F (z, t)〉. (4.64)

If the time-dependent friction decays rapidly, the static friction coefficient can be approximated by

ξstatic(z) =

∫ ∞
0

〈δF (z, t)δF (z, 0)〉dt. (4.65)

This allows the diffusion constant to then be calculated through the Einstein relation:[71]

D(z) =
kBT

ξstatic(z)
=

(kBT )2∫∞
0
〈δF (z, t)δF (z, 0)〉dt

. (4.66)

The Z-Constraint method, which fixes the z coordinates of a few “tagged” molecules with respect to the center of
the mass of the system is a technique that was proposed to obtain the forces required for the force auto-correlation
calculation.[71] However, simply resetting the coordinate will move the center of the mass of the whole system. To
avoid this problem, we have developed a new method that is utilized in OPENMD. Instead of resetting the coordinates,
we reset the forces of z-constrained molecules and subtract the total constraint forces from the rest of the system after
the force calculation at each time step.
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After the force calculation, the total force on molecule α is:

Gα =
∑
i

Fαi, (4.67)

where Fαi is the force in the z direction on atom i in z-constrained molecule α. The forces on the atoms in the
z-constrained molecule are then adjusted to remove the total force on molecule α:

Fαi = Fαi −
mαiGα∑
imαi

. (4.68)

Here, mαi is the mass of atom i in the z-constrained molecule. After the forces have been adjusted, the velocities must
also be modified to subtract out molecule α’s center-of-mass velocity in the z direction.

vαi = vαi −
∑
imαivαi∑
imαi

, (4.69)

where vαi is the velocity of atom i in the z direction. Lastly, all of the accumulated constraint forces must be subtracted
from the rest of the unconstrained system to keep the system center of mass of the entire system from drifting.

Fβi = Fβi −
mβi

∑
αGα∑

β

∑
imβi

, (4.70)

where β denotes all unconstrained molecules in the system. Similarly, the velocities of the unconstrained molecules
must also be scaled:

vβi = vβi +
∑
α

∑
imαivαi∑
imαi

. (4.71)

This method will pin down the centers-of-mass of all of the z-constrained molecules, and will also keep the entire
system fixed at the original system center-of-mass location.

At the very beginning of the simulation, the molecules may not be at their desired positions. To steer a z-
constrained molecule to its specified position, a simple harmonic potential is used:

U(t) =
1

2
kHarmonic(z(t)− zcons)

2, (4.72)

where kHarmonic is an harmonic force constant, z(t) is the current z coordinate of the center of mass of the constrained
molecule, and zcons is the desired constraint position. The harmonic force operating on the z-constrained molecule at
time t can be calculated by

FzHarmonic(t) = −∂U(t)

∂z(t)
= −kHarmonic(z(t)− zcons). (4.73)

The user may also specify the use of a constant velocity method (steered molecular dynamics) to move the
molecules to their desired initial positions. Based on concepts from atomic force microscopy, SMD has been used
to study many processes which occur via rare events on the time scale of a few hundreds of picoseconds. For exam-
ple,SMD has been used to observe the dissociation of Streptavidin-biotin Complex.[72]

To use of the z-constraint method in an OPENMD simulation, the molecules must be specified using the nZconstraints
keyword in the meta-data file. The other parameters for modifying the behavior of the z-constraint method are listed
in table 4.4.
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Table 4.4: Meta-data Keywords: Z-Constraint Parameters

keyword units use remarks
zconsTime fs Sets the frequency at which the .fz

file is written
zconsForcePolicy string The strategy for subtracting the z-

constraint force from the uncon-
strained molecules

Possible strategies are BYMASS and BYNUMBER.
The default strategy is BYMASS

zconsGap Å Sets the distance between two adjacent
constraint positions

Used mainly to move molecules through a simula-
tion to estimate potentials of mean force.

zconsFixtime fs Sets the length of time the z-constraint
molecule is held fixed

zconsFixtime must be set if zconsGap is set

zconsUsingSMD logical Flag for using Steered Molecular Dy-
namics to move the molecules to the
correct constrained positions

Harmonic Forces are used by default
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Chapter 5

Restraints

Restraints are external potential energy functions that are added to a system to keep particular molecules or collections
of particles close to a reference structure. A Molecular restraint is a collective force applied to all atoms in a molecule,
while an Object restraint is a simple harmonic spring connecting the position of a StuntDouble (or its orientation) close
to a fixed reference geometry.

Restraints require the specification of a reference geometry in the Restraint file parameter. These files are
standard OpenMD md or eor files which must have the same component specification and StuntDouble indices as the
simulation itself.

Restraint potentials in OpenMD are harmonic,

Vtrans =
ktrans

2
(i− r)

2 (5.1)

where ktrans is a spring constant for translational motion, i is the instantaneous position of the object, and r is the
position of the same object in the reference structure. Alternatively, one might restrain the orientations of an object,

Vswing =
kswing

2
(θ − θ0)

2 (5.2)

where kswing is the force constant for swing motion of the long axis of a molecule, θ is the instantaneous swing angle
relative to the reference structure, and θ0 is an optional angle that the user can specify that is also measured relative to
the orientation of the reference structure.
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restraint{

restraintType = "object";

objectSelection = "select SPCE_RB_0";

displacementSpringConstant = 4.3;

twistSpringConstant = 750;

swingXSpringConstant = 700;

swingYSpringConstant = 700;

print = "false";

}

useRestraints = "true";

Restraint_file = "idealStructure.in";

Example 5.1: Sample keywords defining object restraints (here the object is the first rigid body associated with
SPCE molecules

When the restraint is added to an entire molecule, the forces and torques must be applied atom-by-atom. Transla-
tional restraints are simple to apply, but torques for angular restraints require some care.

Defining the rotation angles for an instantaneous geometry of a molecule relative to a reference structure is a diffi-
cult problem because there are multiple combinations of three-angle rotations can lead to the same structure. To tackle
this problem, OpenMD combines two methods, singular value decomposition (SVD) and twist-swing decomposition.

The core of the difficulty is in identifying the rotation matrix (A) that relates the instantaneous geometry to the
reference structure. Because molecules generally are not rigid, the internal dynamics makes this computationally
demanding. Fortunately a method that is widely used for protein alignment provides a reasonable characterization of
this rotation matrix.

The molecule is represented as a N × 3 matrix of coordinates. The difference between the instantaneous and
reference conformations is encoded in the transformation between two of these matrices. The transformation consists
of a “best fit” translation vector and rotation matrix such that after translation and rotation, the two configurations will
have the highest degree of overlap with each other. I.e., the translation vector and rotation matrix minimize the root
mean-square distance (RMSD) between the two structures,

RMSD =

√
1

N

∑
n

(in − rn)
2
, (5.3)

where {in} and {rn} are the sets of coordinates for the instantaneous and reference structures, and N is the total
number of atoms in the molecule. A singular value decomposition (SVD) is carried out in order to minimize the
RMSD. This operation provides the best-fitting translation vector ~v and rotation matrix A that align the instantaneous
and reference structures.

Twist-swing decomposition, a technique that has been widely used in computer animation of articulated figures,
is then employed to calculate the relative rotational angles between the instantaneous and reference structures. This
decomposition regards the motion as a “twist” about one axis followed by a “swing” about another axis, where the
second axis is perpendicular to the first.[73, 74] This model of rotation provides a convenient way to define a unique
relative rotational angle. A simple example helps clarify: Suppose a cylinder moves from original position O to
end position E (Figure 5.1). Although there are many paths that can accomplish this movement, the simplest path
is to rotate the reference configuration by θ (i.e. the swing angle) in the plane O × E (the cross product of the two
orientation vectors). Then the reference structure is rotated by φ (the twist angle) around the central axis.
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O

θ

φ

E

Figure 5.1: The twist-swing decomposition defines relative rotational angles using the simplest path to rotate the reference
configuration. The reference is rotated by a “swing” angle θ in the plane of O × E, then rotated by a “twist”
angle φ around the swing axis.
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This illustrates the basic idea of the twist-swing decomposition, which is a general operation that can be performed
on the best-fitting relative rotation matrix (A) between the instantaneous and reference structures. For objects that are
not cylindrically symmetric, there are two swing angles (one in X and one in Y) in addition to the twist angle.

restraint{

restraintType = "Molecular";

molIndex = 0;

twistSpringConstant = 0.25;

swingXSpringConstant = 0.02;

restrainedSwingXAngle = -90.0;

swingYSpringConstant = 0.02;

print = "true";

}

useRestraints = "true";

Restraint_file = "prism_ref.inc";

Example 5.2: Sample keywords defining a molecular restraint and the associated force constants

To specify a molecular restraint, it is necessary to give an exact index of this molecule in the molIndex parameter.
In the example in schem 5.2, the restrained SwingX angle is -90 degrees offset from the reference structure, so the
molecule will be restrained in a different orientation from the reference geometry.

Table 5.1: Meta-data Keywords: Restraint Parameters

keyword units use remarks
restraintType string What kind of restraint is this? choose either “Object” or “Molecular”
molIndex integer Which molecule to restrain
objectSelection string Selection script for Object restraints
displacementSpringConstant kcal/mol/Å2 ktrans
twistSpringConstant kcal/mol/radian2 ktwist

swingXSpringConstant kcal/mol/radian2 kswingX

swingYSpringConstant kcal/mol/radian2 kswingY

restrainedTwistAngle degrees ω0 (optional) defaults to 0
restrainedSwingXAngle degrees θx0 (optional) defaults to 0
restrainedSwingYAngle degrees θy0 (optional) defaults to 0
print logical whether or not to print restraint value

and energy
defaults to true

The various parameters for a restraint are shown in table 5.1. Because restraints have a large number of
parameters, these must be enclosed in a separate restraint{...} block.
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Chapter 6

Perturbations

OpenMD allows the user to specify two external perturbations that interact with the electrostatic properties of the
atoms.

6.1 Uniform Fields

To apply a uniform (vector) electric field to the system, the user adds the uniformField parameter to the MetaData
section of the .omd file.

uniformField = (a, b, c);

Example 6.1: Specifying a uniform electric field.

The values of a, b, and c are in units of V / Å. The electrostatic potential corresponding to this uniform field is

φ(r) = −ax− by − cz (6.1)

which grows unbounded and is not periodic. For these reasons, care should be taken in using a uniform field with
point charges. The field itself is

E =

 a

b

c

 . (6.2)

The uniform field applies a force on charged atoms, F = CE. For dipolar atoms, the uniform field applies both a
potential, U = −D ·E and a torque, τ = D×E that depends on the instantaneous dipole (D) of that atom.

6.2 Uniform Field Gradients

To apply a uniform electric field gradient to the system, the user adds three parameters to the MetaData section
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uniformGradientStrength = g;

uniformGradientDirection1 = (a1, a2, a3)

uniformGradientDirection2 = (b1, b2, b3);

Example 6.2: Specifying a uniform electric field gradient.

The two direction vectors, a and b are unit vectors, and the value of g is in units of V / Å2. The electrostatic
potential corresponding to this uniform gradient is

φ(r) = −g
2

[(
a1b1 −

cosψ

3

)
x2 + (a1b2 + a2b1)xy + (a1b3 + a3b1)xz (6.3)

+ (a2b1 + a1b2)yx+

(
a2b2 −

cosψ

3

)
y2 + (a2b3 + a3b2)yz (6.4)

+(a3b1 + a1b3)zx+ (a3b2 + a2b3)zy +

(
a3b3 −

cosψ

3

)
z2
]
. (6.5)

(6.6)

where cosψ = a · b. Note that this potential grows unbounded and is not periodic. For these reasons, care should be
taken in using a Uniform Gradient with point charges. The corresponding field for this potential is:

E =
g

2


2
(
a1b1 − cosψ

3

)
x+ (a1b2 + a2b1)y + (a1b3 + a3b1)z

(a2b1 + a1b2)x+ 2
(
a2b2 − cosψ

3

)
y + (a2b3 + a3b2)z

(a3b1 + a1b3)x+ (a3b2 + a2b3)y + 2
(
a3b3 − cosψ

3

)
z

 . (6.7)

The field also grows unbounded and is not periodic. For these reasons, care should be taken in using a Uniform
Gradient with point dipoles.

The corresponding field gradient,

∇E =
g

2


2
(
a1b1 − cosψ

3

)
(a1b2 + a2b1) (a1b3 + a3b1)

(a2b1 + a1b2) 2
(
a2b2 − cosψ

3

)
(a2b3 + a3b2)

(a3b1 + a1b3) (a3b2 + a2b3) 2
(
a3b3 − cosψ

3

)
 (6.8)

is uniform everywhere. The uniform field gradient applies a force on charged atoms, F = C E(r). For dipolar atoms,
the gradient applies a potential, U = −D · E(r), force, F = D · ∇E, and torque, τ = D × E(r). For quadrupolar
atoms, the uniform field gradient exerts a potential, U = −Q : ∇E, and a torque F = 2Q×∇E.

Here, the : indicates a tensor contraction (double dot product) of two matrices, and the × for the quadrupole
indicates a vector (cross) product of two matrices, defined as

[A× B]α =
∑
β

[Aα+1,βBα+2,β − Aα+2,βBα+1,β ] (6.9)

where α+ 1 and α+ 2 are regarded as cyclic permuations of the matrix indices.
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Chapter 7

Thermodynamic Integration

Thermodynamic integration is an established technique that has been used extensively in the calculation of free ener-
gies for condensed phases of materials.[75–79]. This method uses a sequence of simulations during which the system
of interest is converted into a reference system for which the free energy is known analytically (A0). The difference in
potential energy between the reference system and the system of interest (∆V ) is then integrated in order to determine
the free energy difference between the two states:

A = A0 +

∫ 1

0

〈∆V 〉λ dλ. (7.1)

Here, λ is the parameter that governs the transformation between the reference system and the system of interest.
For crystalline phases, an harmonically-restrained (Einstein) crystal is chosen as the reference state, while for liquid
phases, the ideal gas is taken as the reference state.

In an Einstein crystal, the molecules are restrained at their ideal lattice locations and orientations. Using harmonic
restraints, as applied by Bàez and Clancy, the total potential for this reference crystal (VEC) is the sum of all the
harmonic restraints,

VEC =
∑
i

[
Kv

2
(ri − r◦i )2 +

Kθ

2
(θi − θ◦i )2 +

Kω

2
(ωi − ω◦i )2

]
, (7.2)

where Kv, Kθ, and Kω are the spring constants restraining translational motion and deflection of (swing) and rotation
around (twist) the principle axis of the molecule respectively. The values of θ range from 0 to π, while ω ranges from
−π to π.

The partition function for a molecular crystal restrained in this fashion can be evaluated analytically, and the
Helmholtz Free Energy (A) is given by

A

N
=
Em
N
− kT ln

(
kT

hν

)3

− kT ln

[
π

1
2

(
8π2IAkT

h2

) 1
2
(

8π2IBkT

h2

) 1
2
(

8π2ICkT

h2

) 1
2

]

− kT ln

 kT

2(πKωKθ)
1
2

exp

(
− kT

2Kθ

)∫ (
kT
2Kθ

) 1
2

0

exp(t2)dt

 , (7.3)

where 2πν = (Kv/m)1/2, and Em is the minimum potential energy of the ideal crystal.[78]

OPENMD can perform the simulations that aid the user in constructing the thermodynamic path from the molecular
system to one of the reference systems. To do this, the user sets the value of λ (between 0 & 1) in the meta-data file. If
the system of interest is crystalline, OPENMD must be able to find the reference configuration of the system in a file
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called idealCrystal.in in the directory from which the simulation was run. This file is a standard .dump file,
but all information about velocities and angular momenta are discarded when the file is read.

The configuration found in the idealCrystal.in file is used for the reference positions and molecular ori-
entations of the Einstein crystal. To complete the specification of the Einstein crystal, a set of force constants must
also be specified; one for displacments of the molecular centers of mass, and two for displacements from the ideal
orientations of the molecules.

useThermodynamicIntegration = "true";

thermodynamicIntegrationLambda = 0.0;

thermodynamicIntegrationK = 1.0;

restraint{

restraintType = "object";

objectSelection = "select SSD_E";

displacementSpringConstant = 4.3;

twistSpringConstant = 750;

swingXSpringConstant = 700;

swingYSpringConstant = 700;

print = "false";

}

useRestraints = "true";

Restraint_file = "idealCrystal.in";

Example 7.1: Sample keywords defining restraints and their force constants for use in Thermodynamic Integra-
tion to an Einstein Crystal

To construct a thermodynamic integration path, the user would run a sequence of N simulations, each with a
different value of λ between 0 and 1. When useThermodynamicIntegration is set to true in the meta-data
file and restraints are present, two additional energy columns are reported in the .stat file for the simulation. The
first, vRaw, is the unperturbed energy for the configuration, and the second, vHarm, is the energy of the harmonic
(Einstein) system in an identical configuration. The total potential energy of the configuration is a linear combination
of vRaw and vHarm weighted by the value of λ.

From a running average of the difference between vRaw and vHarm, the user can obtain the integrand in Eq. (7.1)
for fixed value of λ.

For liquid thermodynamic integrations, the reference system is the ideal gas (with a potential exactly equal to 0),
so the .stat file contains only the standard columns. The potential energy column contains the potential of the
unperturbed system (and not the λ-weighted potential. This allows the user to use the potential energy directly as the
∆V in the integrand of Eq. (7.1).

useThermodynamicIntegration = "true";

thermodynamicIntegrationLambda = 1.0;

thermodynamicIntegrationK = 1.0;

Example 7.2: Sample keywords for use in Thermodynamic Integration to an Ideal Gas

Meta-data parameters concerning thermodynamic integrations are given in Table 7.1
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Table 7.1: Meta-data Keywords: Thermodynamic Integration Parameters

keyword units use remarks
useThermodynamicIntegration logical perform thermodynamic integration? default is “false”
thermodynamicIntegrationLambda

double transformation parameter Sets how far along the thermodynamic integration
path the simulation will be.

thermodynamicIntegrationK

double power of λ governing shape of integration pathway
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Chapter 8

Reverse Non-Equilibrium Molecular
Dynamics (RNEMD)

There are many ways to compute transport properties from molecular dynamics simulations. Equilibrium Molecular
Dynamics (EMD) simulations can be used by computing relevant time correlation functions and assuming linear
response theory holds. For some transport properties (notably thermal conductivity), EMD approaches are subject to
noise and poor convergence of the relevant correlation functions. Traditional Non-equilibrium Molecular Dynamics
(NEMD) methods impose a gradient (e.g. thermal or momentum) on a simulation. However, the resulting flux is often
difficult to measure. Furthermore, problems arise for NEMD simulations of heterogeneous systems, such as phase-
phase boundaries or interfaces, where the type of gradient to enforce at the boundary between materials is unclear.

Reverse Non-Equilibrium Molecular Dynamics (RNEMD) methods adopt a different approach in that an unphysi-
cal flux is imposed between different regions or “slabs” of the simulation box. The response of the system is to develop
a temperature or momentum gradient between the two regions. Since the amount of the applied flux is known exactly,
and the measurement of gradient is generally less complicated, imposed-flux methods typically take shorter simulation
times to obtain converged results for transport properties.

8.1 Three algorithms for carrying out RNEMD simulations

8.1.1 The swapping algorithm

The original “swapping” approaches by Müller-Plathe et al.[80, 81] can be understood as a sequence of imaginary
elastic collisions between particles in opposite slabs. In each collision, the entire momentum vectors of both particles
may be exchanged to generate a thermal flux. Alternatively, a single component of the momentum vectors may be
exchanged to generate a shear flux. This algorithm turns out to be quite useful in many simulations. However, the
Müller-Plathe swapping approach perturbs the system away from ideal Maxwell-Boltzmann distributions, and this
may leads to undesirable side-effects when the applied flux becomes large.[82] This limits the applicability of the
swapping algorithm, so in OpenMD, we have implemented two additional algorithms for RNEMD in addition to the
original swapping approach.

8.1.2 Non-Isotropic Velocity Scaling (NIVS)

Instead of having momentum exchange between individual particles in each slab, the NIVS algorithm applies velocity
scaling to all of the selected particles in both slabs.[83] A combination of linear momentum, kinetic energy, and flux
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imposed
KE flux

thermal response (temperature gradient)

imposed linear
momentum flux

momentum response           (velocity gradient)

z
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x

Figure 8.1: The (VSS) RNEMD approach imposes unphysical transfer of both linear momentum and kinetic energy between
a “hot” slab and a “cold” slab in the simulation box. The system responds to this imposed flux by generating
both momentum and temperature gradients. The slope of the gradients can then be used to compute transport
properties (e.g. shear viscosity and thermal conductivity).
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constraint equations governs the amount of velocity scaling performed at each step. Interested readers should consult
ref. 83 for further details on the methodology.

NIVS has been shown to be very effective at producing thermal gradients and for computing thermal conductivities,
particularly for heterogeneous interfaces. Although the NIVS algorithm can also be applied to impose a directional
momentum flux, thermal anisotropy was observed in relatively high flux simulations, and the method is not suitable
for imposing a shear flux or for computing shear viscosities.

8.1.3 Velocity Shearing and Scaling (VSS)

The third RNEMD algorithm implemented in OpenMD utilizes a series of simultaneous velocity shearing and scaling
exchanges between the two slabs.[84] This method results in a set of simpler equations to satisfy the conservation
constraints while creating a desired flux between the two slabs.

The VSS approach is versatile in that it may be used to implement both thermal and shear transport either separately
or simultaneously. Perturbations of velocities away from the ideal Maxwell-Boltzmann distributions are minimal, and
thermal anisotropy is kept to a minimum. This ability to generate simultaneous thermal and shear fluxes has been
utilized to map out the shear viscosity of SPC/E water over a wide range of temperatures (90 K) just with a single
simulation. VSS-RNEMD also allows the directional momentum flux to have arbitary directions, which could aid in
the study of anisotropic solid surfaces in contact with liquid environments.

8.2 Using OpenMD to perform a RNEMD simulation

8.2.1 What the user needs to specify

To carry out a RNEMD simulation, a user must specify a number of parameters in the OpenMD (.omd) file. Be-
cause the RNEMD methods have a large number of parameters, these must be enclosed in a separate RNEMD{...}
block. The most important parameters to specify are the useRNEMD, fluxType and flux parameters. Most other
parameters (summarized in table 8.2) have reasonable default values. fluxType sets up the kind of exchange that
will be carried out between the two slabs (either Kinetic Energy (KE) or momentum (Px, Py, Pz, Pvector),
or some combination of these). The flux is specified with the use of three possible parameters: kineticFlux for
kinetic energy exchange, as well as momentumFlux or momentumFluxVector for simulations with directional
exchange.

8.2.2 Processing the results

OpenMD will generate a .rnemd file with the same prefix as the original .omd file. This file contains a running
average of properties of interest computed within a set of bins that divide the simulation cell along the z-axis. The
first column of the .rnemd file is the z coordinate of the center of each bin, while following columns may contain the
average temperature, velocity, or density within each bin. The output format in the .rnemd file can be altered with
the outputFields, outputBins, and outputFileName parameters. A report at the top of the .rnemd file
contains the current exchange totals as well as the average flux applied during the simulation. Using the slope of the
temperature or velocity gradient obtaine from the .rnemd file along with the applied flux, the user can very simply
arrive at estimates of thermal conductivities (λ),

Jz = −λ∂T
∂z

, (8.1)
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and shear viscosities (η),

jz(px) = −η ∂〈vx〉
∂z

. (8.2)

Here, the quantities on the left hand side are the actual flux values (in the header of the .rnemd file), while the slopes
are obtained from linear fits to the gradients observed in the .rnemd file.

More complicated simulations (including interfaces) require a bit more care. Here the second derivative may be
required to compute the interfacial thermal conductance,

G′ = (∇λ · n̂)z0 (8.3)

=
∂

∂z

(
− Jz(

∂T
∂z

))
z0

(8.4)

= Jz

(
∂2T

∂z2

)
z0

/(∂T
∂z

)2

z0

. (8.5)

where z0 is the location of the interface between two materials and n̂ is a unit vector normal to the interface. We
suggest that users interested in interfacial conductance consult reference 85 for other approaches to computing G.
Users interested in friction coefficients at heterogeneous interfaces may also find reference 84 useful.

slipLegth

slipLength is a built in analysis script which can compute the slip-length of a solid-liquid interface under shear. The
script assumes the solid is placed in the middle of the box, with equal amounts of liquid on either side. slipLength
reads in the generated .rnemd file described above, and returns to the command line the computed slip-length in
Angstroms. There are a few parameters required to find a good fit of the velocity profile, these are described in the
following table. Also, in order to avoid effects of the RNEMD exchange bins, the script allows the user to specify the
number of bins to be removed --toDelete from the beginning and end of the simulation box.

Table 8.1: slipLength Command-line Options

option verbose option behavior
-h --help Print help and exit
-i --input use specified OpenMD (.rnemd) file
-o --output specified output file name
-z1 --lowerGibbsZ the location of the lower Gibbs dividing surface
-z2 --upperGibbsZ the location of the upper Gibbs dividing surface
-l --lowerZVal the initial estimate of the lower interface location (default z1)
-u --upperZVal the initial estimate of the upper interface location (default z2)
-w --intWidth the width of the interface in Angstroms
-Vs --solidVel the initial estimate of the velocity of the solid
-Vl --liquidVel the initial estimate of the velocity of the liquid
-m --liquidSlope the initial estimate of the slope of the velocity profile in the liquid
-d --toDelete the number of data points to be deleted from the beginning and end of the

velocity profile (default=0)
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Table 8.2: Meta-data Keywords: Parameters for RNEMD simulations

The following keywords must be enclosed inside a RNEMD{...} block.
keyword units use remarks
useRNEMD logical perform RNEMD? default is “false”
objectSelection string see section 10.2 for selection syntax default is “select all”
outputSelection string see section 10.2 for selection syntax default is “select all”
method string exchange method one of the following: Swap, NIVS,

or VSS (default is VSS)
fluxType string what is being exchanged between

slabs?
one of the following: KE, Px, Py,

Pz, Pvector, KE+Px, KE+Py,

KE+Pvector

kineticFlux kcal mol−1 Å−2 fs−1 specify the kinetic energy flux
momentumFlux amu Å−1 fs−2 specify the momentum flux
momentumFluxVector amu Å−1 fs−2 specify the momentum flux when

Pvector is part of the exchange
Vector3d input

exchangeTime fs how often to perform the exchange default is 100 fs
slabWidth Å width of the two exchange slabs default is Hzz/10.0
slabAcenter Å center of the end slab default is 0
slabBcenter Å center of the middle slab default is Hzz/2
outputFileName string file name for output histograms default is the same prefix as the .omd

file, but with the .rnemd extension
outputBins int number of z-bins in the output his-

togram
default is 20

outputFields string columns to print in the .rnemd file
where each column is separated by a
pipe (|) symbol.

Allowed column names are: Z, TEM-
PERATURE, VELOCITY, DENSITY
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Chapter 9

Energy Minimization

Energy minimization is used to identify local configurations that are stable points on the potential energy surface. There
is a vast literature on energy minimization algorithms have been developed to search for the global energy minimum as
well as to find local structures which are stable fixed points on the surface. We have included two simple minimization
algorithms: steepest descent, (SD) and conjugate gradient (CG) to help users find reasonable local minima from their
initial configurations. Since OPENMD handles atoms and rigid bodies which have orientational coordinates as well as
translational coordinates, there is some subtlety to the choice of parameters for minimization algorithms.

Given a coordinate set xk and a search direction dk, a line search algorithm is performed along dk to produce
xk+1 = xk+ λkdk. In the steepest descent (SD) algorithm,

dk = −∇V (xk). (9.1)

The gradient and the direction of next step are always orthogonal. This may cause oscillatory behavior in narrow
valleys. To overcome this problem, the Fletcher-Reeves variant [86] of the conjugate gradient (CG) algorithm is used
to generate dk+1 via simple recursion:

dk+1 = −∇V (xk+1) + γkdk (9.2)

where

γk =
∇V (xk+1)T∇V (xk+1)

∇V (xk)T∇V (xk)
. (9.3)

The Polak-Ribiere variant [87] of the conjugate gradient (γk) is defined as

γk =
[∇V (xk+1)−∇V (x)]T∇V (xk+1)

∇V (xk)T∇V (xk)
(9.4)

It is widely agreed that the Polak-Ribiere variant gives better convergence than the Fletcher-Reeves variant, so the
conjugate gradient approach implemented in OPENMD is the Polak-Ribiere variant.

The conjugate gradient method assumes that the conformation is close enough to a local minimum that the potential
energy surface is very nearly quadratic. When the initial structure is far from the minimum, the steepest descent method
can be superior to the conjugate gradient method. Hence, the steepest descent method is often used for the first 10-
100 steps of minimization. Another useful feature of minimization methods in OPENMD is that a modified SHAKE

algorithm can be applied during the minimization to constraint the bond lengths if this is required by the force field.
Meta-data parameters concerning the minimizer are given in Table 9.1 Because the minimizer methods have a large
number of parameters, these must be enclosed in a separate minimizer{...} block.
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Table 9.1: Meta-data Keywords: Parameters for minimization runs

The following keywords must be enclosed inside a minimizer{...} block.
keyword units use remarks
useMinimizer logical turns on or off the minimization rou-

tines
default is false

method string selects the minimization method to be
used

either CG (conjugate gradient), SD (steepest de-
scent, the default method), or BFGS (Broyden-
Fletcher-Goldfarb-Shanno)

maxIterations steps Sets the maximum number of itera-
tions for the energy minimization

The default value is 1000

maxStationaryStateIteration steps sets the maximimum number of steps
to take that don’t result in a change of
configuration

The default value is 100

rootEpsilon kcal mol−1 Sets the tolerance for stopping the min-
imziation.

The default value is 10−5

functionEpsilon kcal mol−1 Sets the energy tolerance for stopping
the minimziation.

The default value is 10−5

gradientNormEpsilon kcal mol−1Å−1 Sets the gradient tolerance for stopping
the minimziation.

The default value is 10−5
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Chapter 10

Analysis of Physical Properties

OPENMD includes a few utility programs which compute properties from the dump files that are generated during a
molecular dynamics simulation. These programs are:

Dump2XYZ Converts an OPENMD dump file into a file suitable for viewing in a molecular dynamics viewer like
Jmol or VMD

StaticProps Computes static properties like the pair distribution function, g(r).

SequentialProps Computes a time history of static properties from a dump file.

DynamicProps Computes time correlation functions like the velocity autocorrelation function, 〈v(t) · v(0)〉, or the
mean square displacement 〈|r(t)− r(0)|2〉.

These programs often need to operate on a subset of the data contained within a dump file. For example, if you
want only the oxygen-oxygen pair distribution from a water simulation, or if you want to make a movie including only
the water molecules within a 6 angstrom radius of lipid head groups, you need a way to specify your selection to these
utility programs. OPENMD has a selection syntax which allows you to specify the selection in a compact form in
order to generate only the data you want. For example a common use of the StaticProps command would be:

StaticProps -i tp4.dump --gofr --sele1="select O*" --sele2="select O*"

This command computes the oxygen-oxygen pair distribution function, gOO(r), from a file named tp4.dump. In
order to understand this selection syntax and to make full use of the selection capabilities of the analysis programs, it
is necessary to understand a few of the core concepts that are used to perform simulations.

10.1 Concepts

OPENMD manipulates both traditional atoms as well as some objects that behave like atoms. These objects can
be rigid collections of atoms or atoms which have orientational degrees of freedom. Here is a diagram of the class
heirarchy:

• A StuntDouble is any object that can be manipulated by the integrators and minimizers.

• An Atom is a fundamental point-particle that can be moved around during a simulation.

• A DirectionalAtom is an atom which has orientational as well as translational degrees of freedom.

• A RigidBody is a collection of Atoms or DirectionalAtoms which behaves as a single unit.
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StuntDouble

Atom RigidBody

DirectionalAtom

Figure 10.1:
The class heirarchy of StuntDoubles in OPENMD. The selection syntax allows the user to select any of the
objects that are descended from a StuntDouble.

Every Molecule, Atom and DirectionalAtom in OPENMD have their own names which are specified in the .omd
file. In contrast, other groupings of atoms are denoted by their membership and index inside a particular molecule.
For example, RigidBodies are denoted [MoleculeName] RB [index] (the contents inside the brackets depend on the
specifics of the simulation). The names of rigid bodies are generated automatically. For example, the name of the first
rigid body in a DMPC molecule is DMPC RB 0. Similarly, bonds can be denoted as: [MoleculeName] Bond [index],
bends as [MoleculeName] Bend [index], torsions as [MoleculeName] Torsion [index], and inversions as [Molecule-
Name] Inversion [index]. These selection names will select all of the atoms involved in that group, as well as the
grouping itself.

10.2 Syntax of the Select Command

The most general form of the select command is: select expression

This expression represents an arbitrary set of StuntDoubles (Atoms or RigidBodies) in OPENMD. Expressions
are composed of either name expressions, index expressions, predefined sets, user-defined expressions, comparison
operators, within expressions, or logical combinations of the above expression types. Expressions can be combined
using parentheses and the Boolean operators.

10.2.1 Logical expressions

The logical operators allow complex queries to be constructed out of simpler ones using the standard boolean connec-
tives and, or, not. Parentheses can be used to alter the precedence of the operators.

logical operator equivalent operator
and “&”, “&&”
or “|”, “||”, “,”
not “!”
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10.2.2 Name expressions

type of expression examples translation of examples
expression without “.” select DMPC select all StuntDoubles belonging to all DMPC

molecules
select C* select all atoms which have atom types beginning with

C
select DMPC RB * select all RigidBodies in DMPC molecules (but only

select the rigid bodies, and not the atoms belonging to
them).

expression has one “.” select TIP3P.O TIP3P select the O TIP3P atoms belonging to TIP3P
molecules

select DMPC RB O.PO4 select the PO4 atoms belonging to the first RigidBody
in each DMPC molecule

select DMPC.20 select the twentieth StuntDouble in each DMPC
molecule

expression has two “.”s select DMPC.DMPC RB ?.* select all atoms belonging to all rigid bodies within all
DMPC molecules

10.2.3 Index expressions

examples translation of examples
select 20 select all of the StuntDoubles belonging to Molecule 20
select 20 to 30 select all of the StuntDoubles belonging to molecules which have global

indices between 20 (inclusive) and 30 (exclusive)

10.2.4 Predefined sets
keyword description
all select all StuntDoubles
none select none of the StuntDoubles

10.2.5 User-defined expressions

Users can define arbitrary terms to represent groups of StuntDoubles, and then use the define terms in select commands.
The general form for the define command is: define term expression

Once defined, the user can specify such terms in boolean expressions
define SSDWATER SSD or SSD1 or SSDRF

select SSDWATER

10.2.6 Comparison expressions

StuntDoubles can be selected by using comparision operators on their properties. The general form for the comparison
command is: a property name, followed by a comparision operator and then a number.

property mass, charge, x, y, z, r, wrappedx, wrappedy, wrappedz
comparison operator “>”, “<”, “=”, “>=”, “<=”, “! =”
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For example, the phrase select mass > 16.0 and charge < -2would select StuntDoubles which have
mass greater than 16.0 and charges less than -2.

10.2.7 Within expressions

The “within” keyword allows the user to select all StuntDoubles within the specified distance (in Angstroms) from a se-
lection, including the selected atom itself. The general form for within selection is: select within(distance,

expression)

For example, the phrase select within(2.5, PO4 or NC4) would select all StuntDoubles which are
within 2.5 angstroms of PO4 or NC4 atoms.

10.3 Tools which use the selection command

10.3.1 Dump2XYZ

Dump2XYZ can transform an OPENMD dump file into a xyz file which can be opened by other molecular dynamics
viewers such as Jmol and VMD. The options available for Dump2XYZ are as follows:

Table 10.1: Dump2XYZ Command-line Options

option verbose option behavior
-h --help Print help and exit
-V --version Print version and exit
-i --input=filename input dump file
-o --output=filename output file name
-n --frame=INT print every n frame (default=‘1’)
-w --water skip the the waters (default=off)
-m --periodicBox map to the periodic box (default=off)
-z --zconstraint replace the atom types of zconstraint molecules (default=off)
-r --rigidbody add a pseudo COM atom to rigidbody (default=off)
-t --watertype replace the atom type of water model (default=on)
-b --basetype using base atom type (default=off)
-v --velocities Print velocities in xyz file (default=off)
-f --forces Print forces xyz file (default=off)
-u --vectors Print vectors (dipoles, etc) in xyz file (default=off)
-c --charges Print charges in xyz file (default=off)
-e --efield Print electric field vector in xyz file (default=off)

--repeatX=INT The number of images to repeat in the x direction (default=‘0’)
--repeatY=INT The number of images to repeat in the y direction (default=‘0’)
--repeatZ=INT The number of images to repeat in the z direction (default=‘0’)

-s --selection=selection script By specifying --selection=“selection command” with Dump2XYZ, the
user can select an arbitrary set of StuntDoubles to be converted.

--originsele By specifying --originsele=“selection command” with Dump2XYZ, the
user can re-center the origin of the system around a specific StuntDouble

--refsele In order to rotate the system, --originsele and --refsele must be
given to define the new coordinate set. A StuntDouble which contains a dipole
(the direction of the dipole is always (0, 0, 1) in body frame) is specified by
--originsele. The new x-z plane is defined by the direction of the dipole
and the StuntDouble is specified by --refsele.

10.3.2 StaticProps

StaticProps can compute properties which are averaged over some or all of the configurations that are contained
within a dump file. The most common example of a static property that can be computed is the pair distribution
function between atoms of type A and other atoms of type B, gAB(r). StaticProps can also be used to compute the
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density distributions of other molecules in a reference frame fixed to the body-fixed reference frame of a selected atom
or rigid body.

There are five seperate radial distribution functions availiable in OPENMD. Since every radial distrbution function
invlove the calculation between pairs of bodies, --sele1 and --sele2 must be specified to tell StaticProps which
bodies to include in the calculation.

--gofr Computes the pair distribution function,

gAB(r) =
1

ρB

1

NA
〈
∑
i∈A

∑
j∈B

δ(r − rij)〉

--r theta Computes the angle-dependent pair distribution function. The angle is defined by the intermolecular
vector ~r and z-axis of DirectionalAtom A,

gAB(r, cos θ) =
1

ρB

1

NA
〈
∑
i∈A

∑
j∈B

δ(r − rij)δ(cos θij − cos θ)〉

--r omega Computes the angle-dependent pair distribution function. The angle is defined by the z-axes of the two
DirectionalAtoms A and B.

gAB(r, cosω) =
1

ρB

1

NA
〈
∑
i∈A

∑
j∈B

δ(r − rij)δ(cosωij − cosω)〉

--theta omega Computes the pair distribution in the angular space θ, ω defined by the two angles mentioned
above.

gAB(cos θ, cosω) =
1

ρB

1

NA
〈
∑
i∈A

∑
j∈B
〈δ(cos θij − cos θ)δ(cosωij − cosω)〉

--gxyz Calculates the density distribution of particles of type B in the body frame of particle A. Therefore, --originsele
and --refsele must be given to define A’s internal coordinate set as the reference frame for the calculation.

The vectors (and angles) associated with these angular pair distribution functions are most easily seen in the figure
below:

r

ω

θ
A

B

Figure 10.2:
Any two directional objects (DirectionalAtoms and RigidBodies) have a set of two angles (θ, and ω) between
the z-axes of their body-fixed frames.
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The options available for StaticProps are as follows:

Table 10.2: StaticProps Command-line Options

option verbose option behavior
-h --help Print help and exit
-V --version Print version and exit
-i --input=filename input dump file
-o --output=filename output file name
-n --step=INT process every n frame (default=‘1’)
-b --nbins=INT number of bins (general purpose) (default=‘100’)
-x --nbins x=INT number of bins in x axis (default=‘100’)
-y --nbins y=INT number of bins in y axis (default=‘100’)

--nbins z=INT number of bins in z axis (default=‘100’)
-r --nrbins=INT number of bins for distance (default=‘100’)
-a --nanglebins=INT number of bins for cos(angle) (default= ‘50’)
-c --rcut=DOUBLE cutoff radius (rcut)

--OOcut=DOUBLE Oxygen-Oxygen cutoff radius (angstroms) (default=‘3.5’)
--thetacut=DOUBLE HOO cutoff angle (degrees) (default=‘30’)
--OHcut=DOUBLE Oxygen-Hydrogen cutoff radius (angstroms) (default=‘2.45’)
--dz=DOUBLE slab width (dz)

-l --length=DOUBLE maximum length (Defaults to 1/2 smallest length of first frame)
--zlength=DOUBLE maximum length (Defaults to 1/2 smallest length of first frame)

-z --zoffset=DOUBLE Where to set the zero for the slab density calculation (default=‘0’)
--sele1=selection script select the first StuntDouble set
--sele2=selection script select the second StuntDouble set
--sele3=selection script select the third StuntDouble set
--refsele=selection script select reference (can only be used with --gxyz)
--comsele=selection script select stunt doubles for center-of-mass reference point
--seleoffset=INT global index offset for a second object (used to define a vector between sites

in molecule)
--seleoffset2=INT global index offset for a third object (used to define a vector between sites in

molecule)
--molname=STRING molecule name
--begin=INT begin internal index
--end=INT end internal index
--radius=DOUBLE nanoparticle radius

-v --voxelSize=DOUBLE voxel size (angstroms)
--gaussWidth=DOUBLE Gaussian width (angstroms)
--privilegedAxis=x,y,z Which axis should statistics be accumulated along, default=z

One option from the following group of options is required:
--bo bond order parameter (--rcut must be specified)
--bor bond order parameter as a function of radius (--rcut must be specified)
--bad N(θ) bond angle density within (--rcut must be specified)
--count count of molecules matching selection criteria (and associated statistics)

-g --gofr g(r)

--gofz g(z)

--r theta g(r, cos(θ))

--r omega g(r, cos(ω))

--r z g(r, z)

--theta omega g(cos(θ), cos(ω))

--gxyz g(x, y, z)

--twodgofr 2D g(r) (Slab width --dz must be specified)
-p --p2 P2 order parameter (--sele1 must be specified, --sele2 is optional)

--rp2 Ripple order parameter (--sele1 and --sele2 must be specified)
--scd SCD order parameter(either --sele1, --sele2, --sele3 are specified

or --molname, --begin, --end are specified)
-d --density density plot

--slab density slab density
--p angle p(cos(θ)) (θ is the angle between molecular axis and radial vector from ori-

gin
--hxy Calculates the undulation spectrum, h(x, y), of an interface
--rho r ρ(r)

--angle r θ(r) (spatially resolves the angle between the molecular axis and the radial
vector from the origin)

--hullvol hull volume of nanoparticle
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Table 10.2: StaticProps Command-line Options

option verbose option behavior
--rodlength length of nanorod

-Q --tet param tetrahedrality order parameter (Q)
--tet param z spatially-resolved tetrahedrality order parameterQ(z)

--tet param dens spatially-resolved tetrahedrality order parameter Qk(z)
--tet param xyz volume-resolved tetrahedrality order parameter Q(x, y, z). (voxelSize, rcut,

and gaussWidth must be specified)
--rnemdz slab-resolved RNEMD statistics (temperature, density, velocity)
--rnemdr shell-resolved RNEMD statistics (temperature, density, angular velocity)
--rnemdrt shell and angle-resolved RNEMD statistics (temperature, density, angular ve-

locity)
--nitrile electrostatic potential to frequency map based on the Cho nitrile fits

-m --multipole average multipole moments contained within cutoff spheres as a function of
radius

--cn Coordination Number Distribution
--scn Secondary Coordination Number Distribution
--gcn Generalized Coordination Number
--hbond Hydrogen Bonding statistics using geometric criteria (rcut and thetacut

must be specified)
--potDiff potential energy difference when charge on selection is set to zero
--tet hb hydrogen bond statistics binned by tetrahedrality of donor and acceptor

molecules
-k --kirkwood distance-dependent Kirkwood factor

--kirkwoodQ distance-dependent Kirkwood factor for quadrupoles

10.3.3 SequentialProps

Occasionally, it may be useful to compute a time history of static properties as a simulation progresses. The utility
SequentialProps computes these time histories from configurations stored in a dump file. Currently, only a few
static properties are available in SequentialProps, but these include contact angles, and centers of mass.

For contact angles of droplets on surfaces, two methods are available: In the first method, the droplet is assumed to
form a spherical cap, and the contact angle is estimated from the z-axis location of the droplet’s center of mass (zcm).
This procedure was first described by Hautman and Klein.[88] For each stored configuration, the contact angle, θ, is
found by inverting the expression for the location of the droplet center of mass,

〈zcm〉 = 2−4/3R0

(
1− cosθ
2 + cosθ

)1/3
3 + cosθ

2 + cosθ
, (10.1)

where R0 is the radius of the free droplet before it contacts the surface.

A second method for obtaining the contact angle was described by Ruijter, Blake, and Coninck [89]. This method
uses a cylindrical averaging of the droplet’s density profile. A threshold density is used to estimate the location
of the edge of the droplet. The r and z-dependence of the droplet’s edge is then fit to a circle, and the contact
angle is computed from the intersection of the fit circle with the z-axis location of the solid surface. For each stored
configuration, the density profile in a set of annular shells is computed. The height of the solid surface (zsuface) along
with the best fitting origin (zdroplet) and radius (rdroplet) of the droplet can then be used to compute the contact angle,

θ = 90 +
180

π
sin−1

(
zdroplet − zsurface

rdroplet

)
. (10.2)

In studying surfaces, Calle-Vallejo et al. observed that including the first and second nearest neighbor counts
allowed for a more complete description of an atom’s local environment and its catalytic activity.[90] They introduced
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the generalized coordination number (GCN), to describe this quantity,

CN(i) =

ni∑
j=1

cn(j)

cnmax
(10.3)

The GCN is an extension of nearest-neighbor analysis where the GCN of atom i,CN(i), is calculated from the average
of the coordination numbers, cn(j), of atom i’s nearest neighbors (j).

The options available for SequentialProps are as follows:

Table 10.3: SequentialProps Command-line Options

option verbose option behavior
-h --help Print help and exit
-V --version Print version and exit
-i --input=filename input dump file (mandatory)
-o --output=filename output file name

--sele1=selection script select first stuntdouble set
--sele2=selection script select second stuntdouble set (if sele2 is not set, use script from sele1)

-b --nbins=INT number of bins (general purpose) (default=‘100’)
--nbins z=INT number of bins in z axis (default=‘100’)

-x --centroidX=DOUBLE Location of droplet centroid in x
-y --centroidY=DOUBLE Location of droplet centroid in y
-z --referenceZ=DOUBLE Reference z-height of solid surface
-r --dropletR=DOUBLE Droplet radius in angstroms

--threshDens=DOUBLE Threshold Density in g/cm3

--bufferLength=DOUBLE Buffer length in angstroms
--rcut=DOUBLE cutoff radius (rcut)

One option from the following group of options is required:
-c --com selection center of mass

--ca1 contact angle of selection (using center of mass)
--ca2 contact angle of selection (using density profile)
--gcn Generalized Coordinate Number

10.3.4 DynamicProps

DynamicProps computes time correlation functions from the configurations stored in a dump file. Typical examples
of time correlation functions are the mean square displacement and the velocity autocorrelation functions. Once again,
the selection syntax can be used to specify the StuntDoubles that will be used for the calculation. A general time
correlation function can be thought of as:

CAB(t) = 〈~uA(t) · ~vB(0)〉 (10.4)

where ~uA(t) is a vector property associated with an atom of type A at time t, and ~vB(t′) is a different vector property
associated with an atom of type B at a different time t′. In most autocorrelation functions, the vector properties (~v and
~u) and the types of atoms (A and B) are identical, and the three calculations built in to DynamicProps make these
assumptions. It is possible, however, to make simple modifications to the DynamicProps code to allow the use of
cross time correlation functions (i.e. with different vectors). The ability to use two selection scripts to select different
types of atoms is already present in the code.

The options available for DynamicProps are as follows:

Table 10.4: DynamicProps Command-line Options

option verbose option behavior
-h --help Print help and exit

88



Table 10.4: DynamicProps Command-line Options

option verbose option behavior
-V --version Print version and exit
-i --input=filename input dump file
-o --output=filename output file name

--sele1=selection script select first StuntDouble set
--sele2=selection script select second StuntDouble set (if sele2 is not set, use script from sele1)
--order=INT Lengendre Polynomial Order

-z --nzbins=INT Number of z bins (default=‘100‘)
-m --memory=memory specification Available memory (default=‘2G‘)
-c --rcut=DOUBLE cutoff radius (angstroms)

--OOcut=DOUBLE Oxygen-Oxygen cutoff radius (angstroms) (default=‘3.5’)
--thetacut=DOUBLE HOO cutoff angle (degrees) (default=‘30’)
--OHcut=DOUBLE Oxygen-Hydrogen cutoff radius (angstroms) (default=‘2.45’)

One option from the following group of options is required:
-s --selecorr selection correlation function
-r --rcorr compute mean squared displacement

--rcorrZ mean squared displacement binned by Z
-v --vcorr velocity autocorrelation function

--vcorrZ velocity correlation function along z-axis
--vcorrR velocity correlation function projected radially

-d --dcorr dipole correlation function
-l --lcorr Lengendre correlation function

--lcorrZ Lengendre correlation function binned by z
--cohZ Lengendre correlation function for OH bond vectors binned by z

-M --sdcorr System dipole correlation function
--r rcorr Radial mean squared displacement
--thetacorr Angular mean squared displacement
--drcorr Directional mean squared displacement for particles with unit vectors
--helfandEcorr Helfand moment for thermal conductvity

-p --momentum Helfand momentum for viscosity
--stresscorr Stress tensor correlation function

-b --bondcorr Bond extension correlation function
-f --freqfluccorr Frequency Fluctuation correlation function
-j --jumptime Hydrogen bond jump time correlation function

10.4 Utilities to aide in analysis

10.4.1 omdShrink

omdShrink is a utility script which takes OpenMD .dump files as input and generates an output .dump file with
fewer frames than in the original .dump file. The user passes omdShrink and integer -s and the input .dump file
is split every -s frames.

Table 10.5: omdShrink Command-line Options

option verbose option behavior
-h --help Print help and exit
-m --meta-data use specified OpenMD (.dump) file
-o --output-file specified output file name
-s --split-frame split the (.dump) file every s frames

10.4.2 omdSplit

omdSplit is a utility script which takes OpenMD .dump files and splits them into -s separate files.
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Table 10.6: omdSplit Command-line Options

option verbose option behavior
-h --help Print help and exit
-m --meta-data use specified OpenMD (.dump) file
-s --split-frame split every s frames

10.4.3 hbtetAnalyzer

hbtetAnalyzer is a utility script which analyzes hydrogen-bond by tetrahedrality matrices computed via the
StaticProps module --tet hb. This script computes integrals of user defined regions in the .hbq file, and
reports the individual sums for each of the symmetric regions of the matrix as well as the number of hydrogen-bonds
per square Angstrom between the two specified -qS and -qL.

Table 10.7: hbtetAnalyzer Command-line Options

option verbose option behavior
-h --help Print help and exit
-i --hbq-file use specified OpenMD (.hbq) file
-o --hbqPAS-file use specified output (.hbqPSA) file
-qS --q(liquid) the tetrahedral order parameter value at the solid surface
-qL --q(solid) the tetrahedral order parameter value at the liquid surface
-x --boxl(x) the x-dimension of the simulation box (Angstroms)
-y --boxl(y) the y-dimension of the simulation box (Angstroms)
-z --boxl(z) the z-dimension of the simulation box (Angstroms)
-t --nSnapshots the number of snapshots used to accumulate the (.hbq) file

10.5 stat2- utility scripts

OpenMD contains a set of utility scripts which take (.stat) files as inputs and compute properties about the system.

10.5.1 stat2dielectric

The stat2dielectric utility script computes the static dielectric constant of the system from a corresponding
(.stat) file where the (.omd) file has had the SYSTEM DIPOLE added to the statFileFormat line. A brief
description of the calculations performed by the script is given below, and further information is available from the
help prompt (-h) from stat2dielectric.

This script assumes the fluctuation formula appropriate for conducting boundaries:

εA = 1 +
< M2 > − < M >2

3kB < T >< V > ε0
(10.5)

where εA is the dielectric constant of the system, M is the total dipole moment of the simulation box,< V > is the
average volume of the box, < T > is the average temperature of the box, ε0 is the permittivity of a vacuum, and kB is
Boltzmann’s constant.

This script will also optionally apply a correction factor as follow:

ε =
((Q+ 2)(εA − 1) + 3)

((Q− 2)(εA − 1) + 3)
(10.6)

where Q depends on the method used to compute the electrostatic interaction.
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Table 10.8: stat2dielectric Command-line Options

option verbose option behavior
-h --help Print help and exit
-f --stat-file use specified OpenMD (.stat) file
-o --output-file use specified output (.dielectric) file
-q --Q-value use the specified Q value to correct the dielectric

10.5.2 stat2tension

The stat2tension utility script computes the surface tension of the system from a corresponding (.stat) file
where the (.omd) file has had the PRESSURE TENSOR added to the statFileFormat line. A brief description
of the calculations performed by the script is given below, and further information is available from the help prompt
(-h) from stat2tension.

This script assumes that the interface is normal to the z-axis, i.e., Pn = Pzz , and that the tangential contributions
are averaged over the remaining axes,

Pt(z) = (Pxx + Pyy)/2 (10.7)

The surface tension is defined using the normal and tangential components of the pressure,

γ =

∫ ∞
−∞

(Pn − Pt(z))dz. (10.8)

The tangential pressure is different from the normal pressure only in the vicinity of the interfaces, so the net surface
tension for the system can be simplified:

γ = Lz(Pn− < Pt >) (10.9)

where < Pt > is the statistical average of the tangential pressure.
In practice, many surface tension simulations comprise two regions, with one material in each region. Periodic

boundary conditions then require two interfaces, so

γ = Lz(Pn− < Pt >) (10.10)

Table 10.9: stat2tension Command-line Options

option verbose option behavior
-h --help Print help and exit
-s --stat-file use specified OpenMD (.stat) file
-o --output-file use specified output (.tension) file
-z --box-length dimension of the system box in the normal (z) direction

10.5.3 stat2visco

The stat2visco utility script computes the various correlation functions of the pressure and pressure tensor of
the system from a corresponding (.stat) file where the (.omd) file has had the PRESSURE TENSOR added to
the statFileFormat line. These can be used to compute shear and bulk viscosities. A brief description of the
calculations performed by the script is given below, and further information is available from the help prompt (-h)
from stat2visco.
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Table 10.10: stat2visco Command-line Options

option verbose option behavior
-h --help Print help and exit
-f --stat-file use specified OpenMD (.stat) file
-o --output-file use specified output (.pcorr) file
-g --green-kubo use Green-Kubo formulae (noisy!)
-e --Einstein use Einstein relation (best)
-s --shear compute the shear viscosity (the off-diagonal pressure tensor values must be

present in the .stat file)

The Green-Kubo formulae option will compute:

V ∗ < (P (t)− < P >) ∗ (P (0)− < P >) > /kT, (10.11)

which may be integrated to give a slowly-converging value for the viscosity.
The Einstein relation option will compute:

V ∗ < (

∫ t

0

(P (t′)− < P >)dt′)2 > /2kT, (10.12)

which will grow approximately linearly in time. The long-time slope of this function will be the viscosity.

10.6 recenter

recenter is a utility script which moves all integrable objects in an OpenMD file so that the center of mass is at the
origin.

Table 10.11: recenter Command-line Options

option verbose option behavior
-h --help Print help and exit
-v --version print version and exit
-o --output-file use specified output file name (mandatory)
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Chapter 11

Preparing Input Configurations

OPENMD comes with a few utility programs to aid in setting up initial configuration and meta-data files. Usually,
a user is interested in either importing a structure from some other format (usually XYZ or PDB), or in building an
initial configuration in some perfect crystalline lattice or nanoparticle geometry. The program bundled with OPENMD
that imports coordinate files is atom2omd, which is built if the initial CMake configuration can find the openbabel
libraries. The programs which generate perfect crystals are called SimpleBuilder and RandomBuilder. There
are programs to construct nanoparticles of various sizes and geometries also. These are nanoparticleBuilder,
icosahedralBuilder, and nanorodBuilder.

11.1 atom2omd

atom2omd attempts to construct .omd files from files containing only atomic coordinate information. Reasonable
guesses about bonding are made using the distance between atoms in the coordinate file. Attempts are also made to
identify other terms in the potential energy from the topology of the graph of discovered bonds. This procedure is
not perfect, and the user should check the discovered bonding topology in the <MetaData> block in the file that is
generated.

Typically, the user will run:
atom2omd <input spec> [Options]

Here <input spec> can be used to specify the type of file being used for configuration input. I.e. using
-ipdb specifies that the input file contains coordinate information in the PDB format.

The options available for atom2omd are as follows:

Table 11.1: atom2omd Command-line Options

option behavior
-f # Start import at molecule # specified
-l # End import at molecule # specified
-t All input files describe a single molecule
-e Continue with next object after error, if possible
-z Compress the output with gzip
-H Outputs this help text
-Hxxx (xxx is file format ID e.g. -Hpdb) gives format info
-Hall Outputs details of all formats
-V Outputs version number
The following file formats are recognized:
ent Protein Data Bank format
pdb Protein Data Bank format
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Table 11.1: atom2omd Command-line Options

option behavior
prep Amber Prep format
xyz XYZ cartesian coordinates format
More specific info and options are available using -H<format-type>, e.g. -Hpdb

11.2 simpleBuilder

simpleBuilder creates simple lattice structures. It requires an initial, but skeletal OPENMD file to specify the
components that are to be placed on the lattice. The total number of placed molecules will be shown at the top of the
configuration file that is generated. That number may not match the original meta-data file, so a new meta-data file is
also generated which matches the lattice structure.

The options available for simpleBuilder are as follows:

Table 11.2: simpleBuilder Command-line Options

option verbose option behavior
-h --help Print help and exit
-V --version Print version and exit
-o --output=STRING Output file name

--density=DOUBLE density (g cm−3)
--nx=INT number of unit cells in x
--ny=INT number of unit cells in y
--nz=INT number of unit cells in z

11.3 icosahedralBuilder

icosahedralBuilder creates single-component geometric solids that can be useful in simulating nanostructures.
Like the other builders, it requires an initial, but skeletal OPENMD file to specify the component that is to be placed
on the lattice. The total number of placed molecules will be shown at the top of the configuration file that is generated.
That number may not match the original meta-data file, so a new meta-data file is also generated which matches the
lattice structure.

The options available for icosahedralBuilder are as follows:

Table 11.3: icosahedralBuilder Command-line Options

option verbose option behavior
-h --help Print help and exit
-V --version Print version and exit
-o --output=STRING Output file name
-n --shells=INT Nanoparticle shells
-d --latticeConstant=DOUBLE Lattice spacing in Angstroms for cubic lattice.
-c --columnAtoms=INT Number of atoms along central column (Decahedron only)
-t --twinAtoms=INT Number of atoms along twin boundary (Decahedron only)
-p --truncatedPlanes=INT Number of truncated planes (Curling-stone Decahedron only)
-u --unitCells=INT Number of unit cell (Cuboctrahedron and Truncated Cube only)
One option from the following group of options is required:

--ico Create an Icosahedral cluster
--deca Create a regualar Decahedral cluster
--ino Create an Ino Decahedral cluster
--marks Create a Marks Decahedral cluster
--stone Create a Curling-stone Decahedral cluster
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Table 11.3: icosahedralBuilder Command-line Options

option verbose option behavior
--cuboctahedron Create a regular Cuboctahedron (requires lattice)
--truncatedCube Create a Truncated Cube (requires lattice)

11.4 slabBuilder

slabBuilder generates .omd and .xyz files of cubic material (SC, FCC, or BCC) with a particular cut (hlk)
facing the z-axis of the box with --vacuum=true, and bulk crystals with --vacuum=false. In both cases,
the generated crystal will be commensurate in all three dimensions. slabBuilder requires the user to specify the
latticeConstant in Angstroms for the desired material, and also the number of repeated units of the minimum
cell by three separate integers using the --repeats option.

Be advised that while you are required to pass the elementType at execution, there is no guarantee that the
output .omd file will have the correct forceField selected. However, many metals are covered in the default
MnM.frc file.

Another option of the script, --chargedPlates will generate metal plates at a defined --offSet distance
from the surface. These plates are composed of a default 20x20 kPoints in the xy-plane.

Table 11.4: slabBuilder Command-line Options

option verbose option behavior
-h --help Print help and exit
-l --lattice one of sc, fcc, or bcc
-c --latticeConstant lattice spacing in angstroms
-o --omd-file (.omd) output file name
-x --xyz-file (.xyz) output file name
-f --hkl desired facet to be exposed to the z axis (specify with three separate integers)
-r --repeats how many lattice repeats in each of the 3 perpindicular directions (specify

with three separate integers)
-e --elementType the element composing the lattice (only single element lattices are supported)
-v --vacuum should the output (.omd) file have vacuum in the z-dimension? (true / false)
-q --chargedPlates should the output (.omd) file include metal plates in the vacuum space? (true

/ false)
-k --kPoints number of points to be used in the charged plates (default=400)
-s --offSet the distance the charges plates will be placed from the surface

11.5 Hydro

Hydro generates resistance tensor (.diff) files which are required when using the Langevin integrator using com-
plex rigid bodies. Hydro supports two approximate models: the BeadModel and RoughShell. Additionally,
Hydro can generate resistance tensor files using analytic solutions for simple shapes. To generate a .diff file, a meta-
data file is needed as the input file. Since the resistance tensor depends on these quantities, the viscosity of the
solvent and the temperature (targetTemp) of the system must be defined in meta-data file. If the approximate model
in use is the RoughShell model the beadSize (the diameter of the small beads used to approximate the surface
of the body) must also be specified.

The options available for Hydro are as follows:
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Table 11.5: Hydro Command-line Options

option verbose option behavior
-h --help Print help and exit
-V --version Print version and exit
-i --input=filename input MetaData (md) file
-o --output=STRING Output file name

--model=STRING hydrodynamics model (supports both RoughShell and BeadModel)
-b --beads generate the beads only, hydrodynamic calculations will not be performed

(default=off)

11.6 waterBoxer

waterBoxer builds cubic .omd files of water, in either an FCC or SC lattice. The boxes of water can be generated
with user defined -d densities, as well as being constructed with user defined -x, -y, and -z box dimensions. At
runtime, the user must indicate the number of molecules to build the water lattice from. If the number of molecules
specified is insufficient to construct the lattice with the desired density, the user will be prompted to run the script
again with a larger value for -n molecules.

The options available for waterBoxer follows:

Table 11.6: waterBoxer Command-line Options

option behavior
-h Print help and exit
-m print out a water.inc file (file with all water models)
-r randomize the orientations of the water molecules
-v verbose output (water model defined in .omd file)
-d density in g/cm3 (default 1)
-l 0− FCC lattice, 1− SC lattice
-n number of water molecules to attempt to build lattice with
-o output file name
-w name of the water stuntDouble

11.7 omd-solvator

omd-solvator merges two specified (.omd) files, with the requirement that the two simulation cells have the same
box geometry (specified on the Hmat line). This script treats one of the files as the “solute” and the other file as the
“solvent”, and merges the files by carving out space for the solute by deleting any solvent molecules that overlap
with the solute in the specified cut-off distance (rcut). When using omd-solvator, the number of atoms (more
accurately, the number of stuntDoubles comprising the molecule) in the solute and solvent molecules must be
specified. For example, rigidBodies such as SPC/E water molecules are treated to have 1 atom, and united-atom
hexane would be specified to have 6 atoms.

The script requires an output-file to be specified, which will require editing before it can be used with
OPENMD. Usually this consists of adding back information about the molecule definitions (usually contained in
(.inc) files, as well as the declaration of a forceField. Be careful that only one forceField file is included in
the newly generated output-file, and that the included forceField contains information about all molecules
in the merged systems.

The options available for omd-solvator are:
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Table 11.7: omd-solvator Command-line Options

option verbose option behavior
-h --help Print help and exit
-u --solute use specified OpenMD (.omd) file as the solute
-v --solvent use specified OpenMD (.omd) file as the solvent
-r --rcut specify the cutoff radius for deleting solvent
-o --output-file use specified output (.omd) file
-n --nSoluteAtoms number of atoms in solute molecule, default is 1 atom
-p --nSolventAtoms number of atoms in solvent molecule, default is 1 atom

11.8 omd2omd

omd2omd is a utility script which helps in replicating, rotating, and translating already built OPENMD .omd, .dump,
and .eor files. Using the -x, -y, and -z options, the user is able to indicate an integer number of replicas they would
like the system to be repeated. Likewise, using the -p, -q, and -r options, the system is rotated along the traditional
Euler angles, ψ, θ, and φ. In a similar way, the -t, -u, and -v options allow the user to translate the x, y, and
z coordinates of the systems by any amount. The script also automatically wraps all stuntDoubles back to the
periodic box.

Table 11.8: omd2omd Command-line Options

option verbose option behavior
-h --help Print help and exit
-i --input use specified OpenMD (.omd, .dump, .eor) file
-o --output specified output file name
-x --repeatX make the system repeat in the x dimension
-y --repeatY make the system repeat in the y dimension
-z --repeatZ make the system repeat in the z dimension
-p --rotatePhi rotate all coordinates Euler angle Phi
-q --rotateTheta rotate all coordinates Euler angle Theta
-r --rotatePsi rotate all coordinates Euler angle Psi
-t --translateX translate all x coordinates by some amount
-u --translateY translate all y coordinates by some amount
-v --translateZ translate all z coordinates by some amount

11.9 affineScale

affineScale is a utility script which takes and OPENMD .omd or .eor file and scales both the periodic box
and the coordinates of all stuntDoubles in the system by the same amount. You can either specify a new volume
scaling for isotropic coordinate scaling (-v), or specify one (or more) of the coordinates for non-isotropic scaling (-x,
-y, and/or -z). This script is useful when constructing and equilibrating solid lattices, particularly once the solid has
been equilibrated to some appreciable temperature, and ringing is apparent in the volume component of the .stat
file.

Table 11.9: affineScale Command-line Options

option verbose option behavior
-h --help Print help and exit
-m --meta-data use specified OpenMD (.omd, .eor) file
-o --output-file specified output file name
-x --newX scale the system to a new x dimension
-y --newY scale the system to a new y dimension
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Table 11.9: affineScale Command-line Options

option verbose option behavior
-z --newZ scale the system to a new z dimension
-v --newV scale the system to a new volume
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Chapter 12

Sample Configurations

Included with OPENMD is a directory of sample .omd files. We provide here brief descriptions of the sample config-
urations to help guide further system construction and aid in determining the correct syntax for analysis modules. The
corresponding directories can be found in OpenMD/samples/

12.0.1 Alkane

This directory contains a sample .omd file of bulk butane. Also in this directory is the alkanes.inc file with
molecule stamps for a large number of alkane molecules.

12.0.2 Argon

Several sample argon configurations are available within this directory.

12.0.3 Builders

While this directory does not contain any sample .omd files explicitly, it contains the precursors to generate one
component, bimetallic, and three component samples. The runMe.in file included in this directory contains 15
example scripts to generate corresponding metallic nanoparticles.

12.0.4 Graphene

Simulating graphene can be tricky, since the sheet often spans the boundaries of the simulation box, molecule defi-
nitions in the .inc files must be carefully constructed. In this directory is a sample graphene .omd file, and corre-
sponding .frc and .inc files. Also, a README.md file contains explanations on how to construct smaller or larger
sheets of graphene.

12.0.5 LangevinHull

The LangevinHull is used for carrying out isobaric-isothermal (NPT) simulations in non-periodic environments.
In this directory, sample .omd files include SPC/E water clusters, gold nanospheres, and a solvated gold nanosphere
in liquid water. The ReadMe.txt contains more information about the keywords to include in your .omd files to set
up a Langevin Hull simulation.
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12.0.6 Lipid

This directory contains an example of a 5x5 array of long lipid molecules. The corresponding lipid.inc file defin-
ing the lipids is also present, and smaller or larger lipids can easily be constructed following the presented formalism.

12.0.7 Metals

This directory contains an array of metal .omd samples, gold, silver, copper, nickel, palladium, and platinum surfaces
as well as gold and bimetallic nanospheres and nanorods. While many of these systems are easily constructed using
other OPENMD builder utility scripts, we have created several sample systems as examples.

12.0.8 RNEMD

The sample files in this directory consist of a bulk Argon fluid under a momentum flux (producing a velocity gradient
response), and a gold/water interface with a kinetic energy flux (producing a thermal gradient response). There are
also several files of a solvated gold surface with thiolate ligands decorating the surface, as well as a PackMol script
required to generate the ligand packing.

12.0.9 Water

OPENMD supports a large number of water models, all of which can be found in the Water.frc file within the
forceFields directory. In the samples directory, sample configurations of various water models are present.
These include the SPC, SPC/E, TIP3P, TIP4P, SSD, SSDE, SSDQ, among many others. Also included in this directory
are sample configurations of an exposed basal, prism, pyramidal, and secondary prism facets of a proton ordered ice-Ih
crystal.

12.0.10 Zeolite

A sample zeolite configuration is also given in the OPENMD distribution. The CLAYFF force field is included with
OPENMD, so following a similar construction many permutations of zeolites may be constructed.
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Chapter 13

Parallel Simulation Implementation

Although processor power is continually improving, it is still unreasonable to simulate systems of more than 10,000
atoms on a single processor. To facilitate study of larger system sizes or smaller systems for longer time scales, parallel
methods were developed to allow multiple CPU’s to share the simulation workload. Three general categories of parallel
decomposition methods have been developed: these are the atomic,[91] spatial [92] and force [8] decomposition
methods.

Algorithmically simplest of the three methods is atomic decomposition, where N particles in a simulation are split
among P processors for the duration of the simulation. Computational cost scales as an optimal O(N/P ) for atomic
decomposition. Unfortunately, all processors must communicate positions and forces with all other processors at
every force evaluation, leading the communication costs to scale as an unfavorable O(N), independent of the number
of processors. This communication bottleneck led to the development of spatial and force decomposition methods, in
which communication among processors scales much more favorably. Spatial or domain decomposition divides the
physical spatial domain into 3D boxes in which each processor is responsible for calculation of forces and positions of
particles located in its box. Particles are reassigned to different processors as they move through simulation space. To
calculate forces on a given particle, a processor must simply know the positions of particles within some cutoff radius
located on nearby processors rather than the positions of particles on all processors. Both communication between
processors and computation scale asO(N/P ) in the spatial method. However, spatial decomposition adds algorithmic
complexity to the simulation code and is not very efficient for small N , since the overall communication scales as the
surface to volume ratio O(N/P )2/3 in three dimensions.

The parallelization method used in OPENMD is the force decomposition method.[93] Force decomposition assigns
particles to processors based on a block decomposition of the force matrix. Processors are split into an optimally square
grid forming row and column processor groups. Forces are calculated on particles in a given row by particles located
in that processor’s column assignment. One deviation from the algorithm described by Hendrickson et al. is the use
of column ordering based on the row indexes preventing the need for a transpose operation necessitating a second
communication step when gathering the final force components. Force decomposition is less complex to implement
than the spatial method but still scales computationally as O(N/P ) and scales as O(N/

√
P ) in communication cost.

Plimpton has also found that force decompositions scale more favorably than spatial decompositions for systems up
to 10,000 atoms and favorably compete with spatial methods up to 100,000 atoms.[92]
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Chapter 14

Conclusion

We have presented a new parallel simulation program called OPENMD. This program offers some novel capabilities,
but mostly makes available a library of modern object-oriented code for the scientific community to use freely. Notably,
OPENMD can handle symplectic integration of objects (atoms and rigid bodies) which have orientational degrees of
freedom. It can also work with transition metal force fields and point-dipoles. It is capable of scaling across multiple
processors through the use of force based decomposition. It also implements several advanced integrators allowing the
end user control over temperature and pressure. In addition, it is capable of integrating constrained dynamics through
both the RATTLE algorithm and the z-constraint method.

We encourage other researchers to download and apply this program to their own research problems. By making
the code available, we hope to encourage other researchers to contribute their own code and make it a more powerful
package for everyone in the molecular dynamics community to use. All source code for OPENMD is available for
download at http://openmd.org.
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