OPENMD: Molecular Dynamics in the Open

Shenyu Kuang, Chunlei Li, Charles F. Vardeman II,
Teng Lin, Christopher J. Fennell, Xiuquan Sun,
Kyle Daily, Yang Zheng, Matthew A. Meineke, and J. Daniel Gezelter
Department of Chemistry and Biochemistry
University of Notre Dame
Notre Dame, Indiana 46556

October 13, 2009

Preface

OPENMD is an open source molecular dynamics engine which is capable of efficiently simulating liquids, proteins,
nanoparticles, interfaces, and other complex systems using atom types with orientational degrees of freedom (e.g.
“sticky” atoms, point dipoles, and coarse-grained assemblies). Proteins, zeolites, lipids, transition metals (bulk, flat
interfaces, and nanoparticles) have all been simulated using force fields included with the code. OPENMD works
on parallel computers using the Message Passing Interface (MPI), and comes with a number of analysis and utility
programs that are easy to use and modify. An OpenMD simulation is specified using a very simple meta-data language
that is easy to learn.

Contents

1 Introduction

2 Concepts & Files

2.1 OpenMD Files and <MetaData>blocks
2.2 Atoms, Molecules, and other ways of grouping atoms
2.3 Creatinga <MetaData>block L
24 <Snapshot>Blocks
2.5 Generation of Initial Coordinates L
2.6 TheStatistics File

3 The Empirical Energy Functions

3.1 The Lennard Jones Force Field
3.2 Dipolar Unified-Atom Force Field

3.2.1 DUFFEnergy Functions e

3.2.2 The DUFF Water Models: SSD/Eand SSD/RF
3.3 The WATER Force Field e
3.4 Embedded Atom Method
3.5 The Sutton-Chen Force Field e
3.6 The CLAY force field e e e
3.7 EIeCtrostatiCs v v o i e
3.8 Periodic Boundary Conditions e e e

4 Mechanics

4.1 Integrating the Equations of Motion: the DLM method
4.2 Extended Systems for other Ensembles oL oL
4.3 Nosé-Hoover Thermostatting
4.4 Constant-pressure integration with isotropic box deformations NPTi)
4.5 Constant-pressure integration with a flexible box NPTf)
4.6 Constant pressure in 3 axes (NPTxyz)
4.7 Langevin Dynamics (LD)
4.8 Constraint Methods L

4.8.1 The RATTLE Method for Bond Constraints

4.8.2 TheZ-Constraint Method

5 Restraints

o N b~ W

12
13
14

17
18
19
20
21
23
23
24
25
25
27

29
29
32
35
37
39
40
40
43
43
43

47

6 Thermodynamic Integration
7 Energy Minimization

8 Analysis of Physical Properties

8.1 Concepts e e
8.2 Syntax of the Select Command
8.2.1 Logical eXpressionso e e e e
8.2.2 Name exXpressions . . . v v v v v e e e e e e e e e e e e e e e e e e e
8.2.3 Index eXpressions i it e e e e e e e e e e
8.2.4 Predefinedsets e e
8.2.5 User-defined eXpressions i e e e e e
8.2.6 Comparison eXpressions oo i i e e e e e e e e e e
8.2.7 Within exXpressions o o i e e e e e e e
8.3 Tools which use the selection command L L
83.1 Dump2XYZ
8.3.2 StaticProps
8.3.3 DynamicProps e e e

9 Preparing Input Configurations

9.1 atom2md, xyz2md, and pdb2md L. e e
9.2 SimpleBuilder e e
9.3 Hydro e

10 Parallel Simulation Implementation
11 Conclusion

12 Acknowledgments

49

53

55
55
56
56
57
57
57
57
57
58
58
58
59
61

63
63
64
64

67

69

71

Chapter 1

Introduction

There are a number of excellent molecular dynamics packages available to the chemical physics community.[1, 2, 3,
4,5,6,7,8,9, 10] All of these packages are stable, polished programs which solve many problems of interest. Most
are now capable of performing molecular dynamics simulations on parallel computers. Some have source code which
is freely available to the entire scientific community. Few, however, are capable of efficiently integrating the equations
of motion for atom types with orientational degrees of freedom (e.g. point dipoles, and “sticky” atoms). And only
one of the programs referenced can handle transition metal force fields like the Embedded Atom Method (EAM). The
direction our research program has taken us now involves the use of atoms with orientational degrees of freedom as
well as transition metals. Since these simulation methods may be of some use to other researchers, we have decided
to release our program (and all related source code) to the scientific community.

This document communicates the algorithmic details of our program, OPENMD. We have structured this docu-
ment to first discuss the underlying concepts in this simulation package (Sec. 2). The empirical energy functions
implemented are discussed in Sec. 3. Sec. 4 describes the various Molecular Dynamics algorithms OPENMD imple-
ments in the integration of Hamilton’s equations of motion. Program design considerations for parallel computing are
presented in Sec. 10. Concluding remarks are presented in Sec. 11.

Chapter 2

Concepts & Files

A simulation in OPENMD is built using a few fundamental conceptual building blocks most of which are chemically
intuitive. The basic unit of a simulation is an atom. The parameters describing an at om have been generalized to
make it as flexible as possible; this means that in addition to translational degrees of freedom, At oms may also have
orientational degrees of freedom.

The fundamental (static) properties of atoms are defined by the forceField chosen for the simulation. The
atomic properties specified by a forceField might include (but are not limited to) charge, o and € values for
Lennard-Jones interactions, the strength of the dipole moment (1), the mass, and the moments of inertia. Other more
complicated properties of atoms might also be specified by the forceField.

Atoms can be grouped together in many ways. A rigidBody contains atoms that exert no forces on one another
and which move as a single rigid unit. A cutoffGroup may contain atoms which function together as a (rigid or

non-rigid) unit for potential energy calculations,

Vap = s(rap) Y >, Vis(rij) 2.0

i€a jEb

Here, a and b are two cutoffGroups containing multiple atoms (¢ = {i} and b = {j}). s(rq) is a generalized
switching function which insures that the atoms in the two cut of £Groups are treated identically as the two groups
enter or leave an interaction region.

Atoms may also be grouped in more traditional ways into bonds, bends, and torsions. These groupings
allow the correct choice of interaction parameters for short-range interactions to be chosen from the definitions in the
forceField.

All of these groups of atoms are brought together in the molecule, which is the fundamental structure for
setting up and OPENMD simulation. Molecules contain lists of at oms followed by listings of the other atomic
groupings (bonds, bends, torsions, rigidBodies, and cutoffGroups) which relate the atoms to one
another. Since a rigidBody is a collection of atoms that are propagated in fixed relationships to one another,
OPENMD uses an internal structure called a StuntDouble to store information about those objects that can change
position independently during a simulation. That is, an atom that is part of a rigid body is not itself a StuntDouble.
In this case, the rigid body is the StuntDouble. However, an atom that is free to move independently is its own
StuntDouble.

Simulations often involve heterogeneous collections of molecules. To specify a mixture of molecule types,

OPENMD uses component s. Even simulations containing only one type of molecule must specify a single component.

Starting a simulation requires two types of information: meta-data, which describes the types of objects present in

3

<OpenMD>
<MetaData>
// see section 2.3 for details on the formatting
// of information contained inside the <MetaData> tags

</MetaData>
<Snapshot> // An instantaneous configuration
<FrameData>
// FrameData contains information on the time
// stamp, the size of the simulation box, and
// the current state of extended system
// ensemble variables.
</FrameData>
<StuntDoubles>
// StuntDouble information comprises the
// positions, velocities, orientations, and
// angular velocities of anything that 1is
// capable of independent motion during
// the simulation.
</StuntDoubles>
</Snapshot>
<Snapshot> // Multiple <Snapshot> sections can be
</Snapshot> // present in a well-formed OpenMD file
<Snapshot> // Further information on <Snapshot> blocks
</Snapshot> // can be found in section 2.4.
</OpenMD>

Scheme 2.1: The basic structure of an OPENMD file contains HTML-like tags to define simulation meta-data and sub-
sequent instantaneous configuration information. A well-formed OPENMD file must contain one <MetaData> block
and at least one <Snapshot> block. Each <Snapshot> is further divided into <FrameData> and <StuntDoubles>
sections.

the simulation, and configuration information, which describes the initial state of these objects. An OPENMD file is a
single combined file format that describes both of these kinds of data. An OPENMD file contains one <MetaData>
block and at least one <Snapshot> block.

The language for the <MetaData> block is a C-based syntax that is parsed at the beginning of the simula-
tion. Configuration information is specified for all integrableObjects in a <Snapshot> block. Both the
<MetaData> and <Snapshot > formats are described in the following sections.

2.1 OpenMD Files and <MetaData> blocks

OPENMD uses a HTML-like syntax to separate <MetaData> and <Snapshot> blocks. A C-based syntax is used
to parse the <MetaData> blocks at run time. These blocks allow the user to completely describe the system they
wish to simulate, as well as tailor OPENMD’s behavior during the simulation. OPENMD files are typically denoted
with the extension . md (which can stand for Meta-Data or Molecular Dynamics or Molecule Definition depending on
the user’s mood). An overview of an OPENMD file is shown in Scheme 2.1 and example file is shown in Scheme 2.2.

Within the <MetaData> block it is necessary to provide a complete description of the molecule before it is
actually placed in the simulation. OPENMD’s meta-data syntax was originally developed with this goal in mind,

4

<OpenMD>
<MetaData>
molecule(
name = "Ar";
atom[0] {
type="Ar" ;

position(0.0, O.

component {
type = "Ar";
nMol = 3;

forceField = "LJ";
ensemble = "NVE"; //
dt = 1.0; /7
runTime = le3; //
sampleTime = 100; //
statusTime = 50; //
</MetaData>
<Snapshot>
<FrameData>
Time: O
Hmat: {{ 28.
Thermostat: 0 , O
Barostat: {{ O,
</FrameData>
<StuntDoubles>
0 pv
1 pv
2 pv
</StuntDoubles>
</Snapshot>
</OpenMD>

0, 0.0);

specify the simulation ensemble
the time step for integration
the total simulation run time

trajectory file frequency
statistics file frequency

569, 0, 0}, { 0, 28.569, 0

o, 0}, {0, 0, 01}, {0, 0
17.5 13.3 12.8 1.181e-03

-12.8 -14.9 -8.4 -4.440e-04
-10.0 -15.2 -6.5 2.239e-03

0,

-1.630e-03
-2.048e-03
-6.310e-03

28

.569 }}

.369e-03

1.130e-03

.810e-03

Scheme 2.2: An example showing a complete OpenMD file.

molecule(

name = "Ar";
atom[0] {
type="Ar";

position(0.0, 0.0, 0.0);
}

Scheme 2.3: An example molecule definition in an include file.

and allows for the use of include files to specify all atoms in a molecular prototype, as well as any bonds, bends, or
torsions. Include files allow the user to describe a molecular prototype once, then simply include it into each simulation
containing that molecule. Returning to the example in Scheme 2.2, the include file’s contents would be Scheme 2.3,
and the new OPENMD file would become Scheme 2.4.

2.2 Atoms, Molecules, and other ways of grouping atoms

As mentioned above, the fundamental unit for an OPENMD simulation is the atom. Atoms can be collected into
secondary structures such as rigidBodies, cutoffGroups, or molecules. The molecule is a way for
OPENMD to keep track of the atoms in a simulation in logical manner. Molecular units store the identities of all the
atoms and rigid bodies associated with themselves, and they are responsible for the evaluation of their own internal
interactions (i.e. bonds, bends, and torsions). Scheme 2.3 shows how one creates a molecule in an included meta-data
file. The positions of the atoms given in the declaration are relative to the origin of the molecule, and the origin is used
when creating a system containing the molecule.

One of the features that sets OPENMD apart from most of the current molecular simulation packages is the ability
to handle rigid body dynamics. Rigid bodies are non-spherical particles or collections of particles (e.g. Cgg) that have
a constant internal potential and move collectively.[11] They are not included in most simulation packages because
of the algorithmic complexity involved in propagating orientational degrees of freedom. Integrators which propa-
gate orientational motion with an acceptable level of energy conservation for molecular dynamics are relatively new
inventions.

Moving a rigid body involves determination of both the force and torque applied by the surroundings, which
directly affect the translational and rotational motion in turn. In order to accumulate the total force on a rigid body,
the external forces and torques must first be calculated for all the internal particles. The total force on the rigid body is
simply the sum of these external forces. Accumulation of the total torque on the rigid body is more complex than the

force because the torque is applied to the center of mass of the rigid body. The space-fixed torque on rigid body ¢ is

Ti=) [(rm —1;) X fig + Tia|, 2.2)
a
where 7; and r; are the torque on and position of the center of mass respectively, while f;,, r;,, and 7, are the force
on, position of, and torque on the component particles of the rigid body.
The summation of the total torque is done in the body fixed axis of each rigid body. In order to move between
the space fixed and body fixed coordinate axes, parameters describing the orientation must be maintained for each
rigid body. At a minimum, the rotation matrix (A) can be described by the three Euler angles (¢, 6, and 1)), where

6

<OpenMD>
<MetaData>
#include "argon.md"

component {
type = "Ar";
nMol = 3;

forceField = "LJ";
ensemble = "NVE";
dt = 1.0;
runTime = 1le3;
sampleTime = 100;
statusTime = 50;
</MetaData>
</MetaData>
<Snapshot>
<FrameData>
Time: O
Hmat: {{ 28.569, 0, 0 }, { 0, 28.569, 0 }, { O, O,
Thermostat: 0 , O
Barostat: {{ O, O, O}, { O, O, O}, { 0O, O, O }}

</FrameData>

<StuntDoubles>
0 pVv 17.5 13.3 12.8 1.181e-03 -1.630e-03
1 pv -12.8 -14.9 -8.4 -4.440e-04 -2.048e-03
2 pv -10.0 -15.2 -6.5 2.239e-03 -6.310e-03

</StuntDoubles>

</Snapshot>
</OpenMD>

28

=

.569 }}

.369e-03
.130e-03
.810e-03

Scheme 2.4: Revised OpenMD input file example.

molecule(

name = "TIP3P";
atom[0] {
type = "O_TIP3P";

position(0.0, 0.0, -0.06556);
}
atom[1]{
type = "H_TIP3P";
position(0.0, 0.75695, 0.52032);
}
atom[2]{
type = "H_TIP3P";
position(0.0, -0.75695, 0.52032);

rigidBody [0] {
members (0, 1, 2);
}

cutoffGroup({
members (0, 1, 2);

}

Scheme 2.5: A sample definition of a molecule containing a rigid body and a cutoff group

the elements of A are composed of trigonometric operations involving ¢, 6, and 1.[11] In order to avoid numerical
instabilities inherent in using the Euler angles, the four parameter “quaternion” scheme is often used. The elements of
A can be expressed as arithmetic operations involving the four quaternions (q., ¢x, ¢y, and g.).[12] Use of quaternions
also leads to performance enhancements, particularly for very small systems.[13]

Rather than use one of the previously stated methods, OPENMD utilizes a relatively new scheme that propagates
the entire nine parameter rotation matrix. Further discussion on this choice can be found in Sec. 4.1. An example
definition of a rigid body can be seen in Scheme 2.5.

2.3 Creating a <MetaData> block

The actual creation of a <MetaData> block requires several key components. The first part of the file needs to
be the declaration of all of the molecule prototypes used in the simulation. This is typically done through included
prototype files. Only the molecules actually present in the simulation need to be declared; however, OPENMD allows
for the declaration of more molecules than are needed. This gives the user the ability to build up a library of commonly
used molecules into a single include file.

Once all prototypes are declared, the ordering of the rest of the block is less stringent. The molecular composition
of the simulation is specified with component statements. Each different type of molecule present in the simulation
is considered a separate component (an example is shown in Sch. 2.4). The component blocks tell OPENMD the
number of molecules that will be in the simulation, and the order in which the components blocks are declared sets the
ordering of the real atoms in the <Snapshot> block as well as in the output files. The remainder of the script then

8

sets the various simulation parameters for the system of interest.

The required set of parameters that must be present in all simulations is given in Table 2.1. Since the user can use
OPENMD to perform energy minimizations as well as molecular dynamics simulations, one of the minimizer or
ensemble keywords must be present. The ensemble keyword is responsible for selecting the integration method
used for the calculation of the equations of motion. An in depth discussion of the various methods available in
OPENMD can be found in Sec. 4. The minimizer keyword selects which minimization method to use, and more
details on the choices of minimizer parameters can be found in Sec. 7. The forceField statement is important for
the selection of which forces will be used in the course of the simulation. OPENMD supports several force fields, as
outlined in Sec. 3. The force fields are interchangeable between simulations, with the only requirement being that all
atoms needed by the simulation are defined within the selected force field.

For molecular dynamics simulations, the time step between force evaluations is set with the dt parameter, and
runTime will set the time length of the simulation. Note, that runTime is an absolute time, meaning if the simula-
tion is started at t = 10.0 ns with a runTime of 25.0 ns, the simulation will only run for an additional 15.0 ns.

For energy minimizations, it is not necessary to specify dt or runTime.

To set the initial positions and velocities of all the integrable objects in the simulation, OPENMD will use the last
good <Snapshot> block that was found in the startup file that it was called with. If the useInitalTime flag
is set to t rue, the time stamp from this snapshot will also set the initial time stamp for the simulation. Additional
parameters are summarized in Table 2.2.

It is important to note the fundamental units in all files which are read and written by OPENMD. Energies are
in kcal mol_l, distances are in A, times are in fs, translational velocities are in A fsfl, and masses are in amu.
Orientational degrees of freedom are described using quaternions (unitless, but ¢2, + ¢2 + qz +¢2 = 1), body-fixed

angular momenta (amu A’radians fs~1), and body-fixed moments of inertia (amu A2).

Table 2.1: Meta-data Keywords: Required Parameters

keyword units use remarks

forceField string Sets the force field. Possible force fields are DUFF, WA-
TER, LJ, EAM, SC, and CLAY.

component Defines the molecular Every <MetaData> block must

components of the system have a component statement.

minimizer string Chooses a minimizer Possible minimizers are SD and CG.
Either ensemble or minimizer
must be specified.

ensemble string Sets the ensemble. Possible ensembles are NVE, NVT,
NPTi, NPAT, NPTf, NPTxyz,
and LD. Either ensemble or
minimizer must be specified.

dt fs Sets the time step. Selection of dt should be small
enough to sample the fastest mo-
tion of the simulation. (dt is re-
quired for molecular dynamics sim-

ulations)

Table 2.1: Meta-data Keywords: Required Parameters

keyword units

use

remarks

runTime fs

Sets the time at which the

simulation should end.

This is an absolute time, and will
end the simulation when the cur-
rent time meets or exceeds the
runTime. (runTime is required
for molecular dynamics simula-

tions)

Table 2.2: Meta-data Keywords: Optional Parameters

keyword units

use

remarks

forceFieldVariant string

forceFieldFileName string

usePeriodicBoundaryConditions

logical
orthoBoxTolerance double
cutoffRadius A
cutoffPolicy string
skinThickness A
switchingRadius A

switchingFunctionType

string

useInitialTime logical

uselnitialExtendedSystemState

Sets the name of the variant
of the force field.
Overrides the default force
field file name

Turns periodic boundary
conditions on/off.

Manually sets the cutoff ra-
dius
one of mix, max, or tradi-

tional

thickness of the skin for the
Verlet neighbor lists
Manually sets the inner ra-
dius for the switching func-
tion.

cubic or
fifth_order_polynomial
Sets whether the initial
time is taken from the last
<Snapshot> in the startup
file.

EAM has three variants: u3, u6, and
VC.

Each force field has a default file
name, and this parameter can over-
ride the default file name for the
chosen force field.

Default is true.

decides how orthogonal the peri-
odic box must be before we can use
cheaper box calculations

the default value is set by the
cutoffPolicy

the traditional cutoff policy is to set
the cutoff radius for all atoms in the
system to the same value (governed
by the largest atom). mix and max
are pair-dependent cutoff methods.
defaults to 1 A

Defaults to 85 % of the
cutoffRadius.

Default is cubic.

Useful when recovering a simula-

tion from a crashed processor. De-
fault is false.

10

Table 2.2: Meta-data Keywords: Optional Parameters

use

remarks

keyword units
logical
sampleTime fs
resetTime fs
statusTime fs
finalConfig string
compressDumpFile logical
statFileFormat string

printPressureTensor logical

electrostaticSummationMethod

string

electrostaticScreeningMethod

string

keep the extended system
variables?

Sets the frequency at which
the . dump file is written.
Sets the frequency at which
the extended system vari-
ables are reset to zero

Sets the frequency at which
the . stat file is written.
Sets the name of the final
output file.

columns to print in the
.stat file where each
column is separated by a
pipe (|) symbol.

Allowed column names
POTENTIAL_ENERGY,
TURE, PRESSURE,

BOND_POTENTIAL,
DRAL_POTENTIAL,
VHARM,
PRESSURE_TENSOR_Z

OPENMD
will print out the pressure

sets whether

tensor

shifted_force,
shifted_potential,
shifted_force, or
tion_field

reac-

undamped or damped

KINETIC_ENERGY,
VOLUME,
TRANSLATIONAL_KINETIC,
LONG_RANGE_POTENTIAL,
VANDERWAALS_POTENTIAL,
BEND_POTENTIAL,
IMPROPER_POTENTIAL,
PRESSURE_TENSOR_X,

Should the extended variables (the
thermostat and barostat) be kept
from the <Snapshot > block?

The default is

runTime.

equal to the

The default is to never reset these

variables.

The default is

sampleTime.

equal to the

Useful when stringing simulations
together. Defaults to the root name
of the initial meta-data file but with
an .eor extension.

should the
pressed on the fly?

(The default is the first eight of these
columns in order.)

.dump file be com-

are: TIME, TOTAL_ENERGY,
TEMPERA-
CONSERVED_QUANTITY,
ROTATIONAL _KINETIC,
SHORT_RANGE_POTENTIAL,
ELECTROSTATIC_POTENTIAL,
DIHE-
VRAW,

PRESSURE_TENSOR_Y,
can be useful for calculations of the

bulk modulus

default is shifted_force.

default is damped

11

Table 2.2: Meta-data Keywords: Optional Parameters

keyword units use remarks
dielectric unitless Sets the dielectric constant IfelectrostaticSummationMethod
for reaction field. is set to reaction_field, then
dielectric must be set.
dampingAlpha A! governs strength of electro- defaults to 0.2 A~ "
static damping
tempSet logical resample velocities from default is false.
a Maxwell-Boltzmann
distribution set to
targetTemp
thermalTime fs how often to perform a defaultis never
tempSet
targetTemp K sets the target temperature no default value
tauThermostat fs time constant for Nosé- times from 1000-10,000 fs are rea-
Hoover thermostat sonable
targetPressure atm sets the target pressure no default value
surfaceTension sets the target surface ten- no default value

sion in the x-y plane
tauBarostat fs time constant for the Nosé- times from 10,000 to 100,000 fs are
Hoover-Andersen barostat ~ reasonable
seed integer Sets the seed value for the The seed needs to be at least 9 digits
random number generator. long. The default is to take the seed
from the CPU clock.

2.4 <Snapshot> Blocks

The standard format for storage of a system’s coordinates is the <Snapshot> block , the exact details of which
can be seen in Scheme 2.6. As all bonding and molecular information is stored in the <MetaData> blocks, the
<Snapshot> blocks contain only the coordinates of the objects which move independently during the simulation.
It is important to note that not all atoms are capable of independent motion. Atoms which are part of rigid bodies are
not “integrable objects” in the equations of motion; the rigid bodies themselves are the integrable objects. Therefore,
the coordinate file contains coordinates of all the integrableObjects in the system. For systems without rigid
bodies, this is simply the coordinates of all the atoms.

It is important to note that although the simulation propagates the complete rotation matrix, directional entities are
written out using quaternions to save space in the output files.

There are three OPENMD files that are written using the combined format. They are: the initial startup file (. md),
the simulation trajectory file (. dump), and the final coordinates or “end-of-run” for the simulation (.eor). The
initial startup file is necessary for OPENMD to start the simulation with the proper coordinates, and this file must
be generated by the user before the simulation run. The trajectory (or “dump”) file is updated during simulation
and is used to store snapshots of the coordinates at regular intervals. The first frame is a duplication of the initial
configuration (the last good <Snapshot> in the startup file), and each subsequent frame is appended to the dump

12

<Snapshot>
<FrameData>
Time: O
Hmat: {{ Hxx, Hyx, Hzx }, { Hxy, Hyy, Hzy }, { Hxz, Hyz, Hzz }}
Thermostat: 0 , O
Barostat: {{ O, O, O}, { 0O, O, O}, { O, O, O }}

</FrameData>
<StuntDoubles>
0 pv X YV zZ VX Vy VZ
1 pv Xy Z VX Vy VzZ
2 pvaj X'y zZ VXK Vy VZ dgw dX gy dz JX Jy Jz
3 pvaj XYy z VR VY vz 4w gx gy dz Jx Jy Jz
</StuntDoubles>
</Snapshot>

Scheme 2.6: An example of the format of the <Snapshot> block. There is an initial sub-block called
<FrameData> which contains the time stamp, the three column vectors of H, and optional extra information for the
extended sytem ensembles. The lines in the <StuntDoubles> sub-block provide information about the instanta-
neous configuration of each integrable object. For each integrable object, the global index is followed by a short string
describing what additional information is present on the line. Atoms with only position and velocity information use
the “pv” string which must then be followed by the position and velocity vectors for that atom. Directional atoms and
Rigid Bodies typically use the “pvqj” string which is followed by position, velocity, quaternions, and lastly, body fixed
angular momentum for that integrable object.

file at an interval specified in the meta-data file with the sampleTime flag. The final coordinate file is the “end-
of-run” file. The . eor file stores the final configuration of the system for a given simulation. The file is updated at
the same time as the . dump file, but it only contains the most recent frame. In this way, an . eor file may be used
to initialize a second simulation should it be necessary to recover from a crash or power outage. The coordinate files
generated by OPENMD (both . dump and . eor) all contain the same <MetaData> block as the startup file, so they
may be used to start up a new simulation if desired.

2.5 Generation of Initial Coordinates

As was stated in Sec. 2.4, a meaningful <Snapshot> block is necessary for specifying for the starting coordinates
for a simulation. Since each simulation is different, system creation is left to the end user; however, we have included
a few sample programs which make some specialized structures. The <Snapshot > block must index the integrable
objects in the correct order. The ordering of the integrable objects relies on the ordering of molecules within the
<MetaData> block. OPENMD expects the order to comply with the following guidelines:

1. All of the molecules of the first declared component are given before proceeding to the molecules of the second
component, and so on for all subsequently declared components.

2. The ordering of the atoms for each molecule follows the order declared in the molecule’s declaration within the
model file.

3. Only atoms which are not members of a rigidBody are included.

13

4. Rigid Body coordinates for a molecule are listed immediately after the the other atoms in a molecule. Some
molecules may be entirely rigid, in which case, only the rigid body coordinates are given.

An example is given in the OPENMD file in Scheme 2.7.

2.6 The Statistics File

The last output file generated by OPENMD is the statistics file. This file records such statistical quantities as the
instantaneous temperature (in K'), volume (in AB), pressure (in atm), etc. It is written out with the frequency specified
in the meta-data file with the statusTime keyword. The file allows the user to observe the system variables as
a function of simulation time while the simulation is in progress. One useful function the statistics file serves is
to monitor the conserved quantity of a given simulation ensemble, allowing the user to gauge the stability of the
integrator. The statistics file is denoted with the . stat file extension.

14

<OpenMD>

<MetaData>
molecule({
name = "I2";
atom[0] {
type = "1I";
}
atom[1]{
type = "I";
}
bond{
members(0, 1);
}
}
molecule({
name = "HC1"
atom[O0] {
type = "H";
}
atom[1]{
type = "C1";
}
bond{
members(0, 1);
}
}
component {
type = "HC1";
nMol = 4;
}
component {
type = "I2";
nMol = 1;
}
</MetaData>
<Snapshot>
<FrameData>
Time: O
Hmat: {{ 10.0, 0.0,
</FrameData>
<StuntDoubles>
0 pv
1 pVv
2 pVv
3 pv
4 pv
5 pv
6 pVv
7 pVv
8 pv
9 pv
</StuntDoubles>
</Snapshot>
</OpenMD>

KoM X X X X X X X X

KKK KKK KKNKK
N N N N N N N N N N

s

{

0.

vy
vy
vy
vy
vy
vy
vy
vy
vy
vy

0,

vz
vz
vz
vz
vz
vz
vz
vz
vz
vz

10.

/S
/S
/S
/7
/7
/7
/S
/7
/S
/7

0, 0.0 y, { 0.0, 0.0, 10.0 }}

H from first HCI1 molecule
Cl from first HCI molecule
H from second HC1 molecule
Cl from second HCI1 molecule
H from third HCI1 molecule
Cl from third HCI molecule
H from fourth HCIl molecule
Cl from fourth HCI1 molecule
First I from I2 molecule
Second I from I2 molecule

5
Scheme 2.7: Example declaration of the I molecule and t]he HCI molecule in <MetaData> and <Snapshot> blocks.
Note that even though I is declared before HCI, the <Snapshot> block follows the order in which the components

were included.

16

Chapter 3
The Empirical Energy Functions

Like many simulation packages, OPENMD splits the potential energy into the short-ranged (bonded) portion and a
long-range (non-bonded) potential,
V= ‘/short—range + ‘/long—range- (31)

The short-ranged portion includes the explicit bonds, bends, and torsions which have been defined in the meta-data
file for the molecules which are present in the simulation. The functional forms and parameters for these interactions
are defined by the force field which is chosen.

Calculating the long-range (non-bonded) potential involves a sum over all pairs of atoms (except for those atoms
which are involved in a bond, bend, or torsion with each other). If done poorly, calculating the the long-range inter-
actions for IV atoms would involve N(N — 1)/2 evaluations of atomic distances. To reduce the number of distance
evaluations between pairs of atoms, OPENMD uses a switched cutoff with Verlet neighbor lists.[12] It is well known
that neutral groups which contain charges will exhibit pathological forces unless the cutoff is applied to the neutral
groups evenly instead of to the individual atoms.[14] OPENMD allows users to specify cutoff groups which may
contain an arbitrary number of atoms in the molecule. Atoms in a cutoff group are treated as a single unit for the
evaluation of the switching function:

Viongfrangc = Z Z S(rab) Z Z Vvij (rij)a (3.2)

a b>a i€a jEb

where 7y, is the distance between the centers of mass of the two cutoff groups (a and b).

The sums over a and b are over the cutoff groups that are present in the simulation. Atoms which are not explicitly
defined as members of a cut of £Group are treated as a group consisting of only one atom. The switching function,
s(r) is the standard cubic switching function,

1 if r < rew,
S(r) = q Lact2e=drlGaon)’ ifr <y < r, (3-3)
0 if r > rey.

Here, rqy is the switchingRadius, or the distance beyond which interactions are reduced, and ., is the cutof fRadius,
or the distance at which interactions are truncated.
Users of OPENMD do not need to specify the cutoffRadius or switchingRadius. In simulations contain-
ing only Lennard-Jones atoms, the cutoff radius has a default value of 2.50;;, where o;; is the largest Lennard-Jones
length parameter present in the simulation. In simulations containing charged or dipolar atoms, the default cutoff

17

<OpenMD>
<MetaData>
#include "argon.md"

component {
type = "Ar";
nMol = 108;

forceField = "LJ";
</MetaData>
<Snapshot> // not shown in this scheme
</Snapshot>

</OpenMD>

Scheme 3.1: A sample startup file for a small Lennard-Jones simulation.

radius is 15A.

The switchingRadius is set to a default value of 95% of the cutoffRadius. In the special case of a
simulation containing only Lennard-Jones atoms, the default switching radius takes the same value as the cutoff radius,
and OPENMD will use a shifted potential to remove discontinuities in the potential at the cutoff. Both radii may be

specified in the meta-data file.

Force fields can be added to OPENMD, although it comes with a few simple examples (Lennard-Jones, DUFF,
WATER, and EAM) which are explained in the following sections.

3.1 The Lennard Jones Force Field

The most basic force field implemented in OPENMD is the Lennard-Jones force field, which mimics the van der Waals
interaction at long distances and uses an empirical repulsion at short distances. The Lennard-Jones potential is given

by:
Y oo\ 12 o\ 6
i) = de || 22 — , 3.4
o) =t (52) - (22)] =

where r;; is the distance between particles 7 and j, o;; scales the length of the interaction, and ¢;; scales the well depth
of the potential. Scheme 3.1 gives an example meta-data file that sets up a system of 108 Ar particles to be simulated

using the Lennard-Jones force field.

Interactions between dissimilar particles requires the generation of cross term parameters for o and €. These
parameters are determined using the Lorentz-Berthelot mixing rules:[12]

1
0ij = 5[(7”'4*(7]‘]'], (35)

and
€ij = +/€ii€jj- (36)

18

Figure 3.1: A representation of the lipid model. ¢ is the torsion angle, 6 is the bend angle, and 1 is the dipole moment
of the head group.

3.2 Dipolar Unified-Atom Force Field

The dipolar unified-atom force field (DUFF) was developed to simulate lipid bilayers. These types of simulations
require a model capable of forming bilayers, while still being sufficiently computationally efficient to allow large
systems (~100’s of phospholipids, ~1000’s of waters) to be simulated for long times (~10’s of nanoseconds). With
this goal in mind, DUFF has no point charges. Charge-neutral distributions are replaced with dipoles, while most atoms
and groups of atoms are reduced to Lennard-Jones interaction sites. This simplification reduces the length scale of
long range interactions from % to T%, removing the need for the computationally expensive Ewald sum. Instead, Verlet
neighbor-lists and cutoff radii are used for the dipolar interactions, and, if desired, a reaction field may be added to

mimic longer range interactions.

As an example, lipid head-groups in DUFF are represented as point dipole interaction sites. Placing a dipole at
the head group’s center of mass mimics the charge separation found in common phospholipid head groups such as
phosphatidylcholine.[15] Additionally, a large Lennard-Jones site is located at the pseudoatom’s center of mass. The
model is illustrated by the red atom in Fig. 3.1. The water model we use to complement the dipoles of the lipids is a
reparameterization[16] of the soft sticky dipole (SSD) model of Ichiye et al.[17]

A set of scalable parameters has been used to model the alkyl groups with Lennard-Jones sites. For this, parameters
from the TraPPE force field of Siepmann et al.[18] have been utilized. TraPPE is a unified-atom representation of n-
alkanes which is parametrized against phase equilibria using Gibbs ensemble Monte Carlo simulation techniques.[18]
One of the advantages of TraPPE is that it generalizes the types of atoms in an alkyl chain to keep the number of
pseudoatoms to a minimum; thus, the parameters for a unified atom such as CHs do not change depending on what
species are bonded to it.

As is required by TraPPE, DUFF also constrains all bonds to be of fixed length. Typically, bond vibrations are
the fastest motions in a molecular dynamic simulation. With these vibrations present, small time steps between force
evaluations must be used to ensure adequate energy conservation in the bond degrees of freedom. By constraining the
bond lengths, larger time steps may be used when integrating the equations of motion. A simulation using DUFF is
illustrated in Scheme 3.2.

19

<OpenMD>

<MetaData>
#include "water.md"
#include "lipid.md"

component {
type = "simpleLipid_16";
nMol = 60;

component {
type = "SSD_water";
nMol = 1936;

forceField = "DUFF";
</MetaData>
<Snapshot> // not shown in this scheme
</Snapshot>

</OpenMD>

Scheme 3.2: A portion of a startup file showing a simulation utilizing DUFF

3.2.1 DUFF Energy Functions
The total potential energy function in DUFF is
N N—-1
V= Z Virllternal + Z Z VCIrgsw (3.7
I=1 I=1 J>I
where V. . is the internal potential of molecule I:
Vlgtemal = Z Vbend(oijk) + Z Morsion(@bijkl) + Z Z |:VLJ(Tij) + Vdipole(riﬁ Qi» Q]) . (38)
Oijr€l i €1 i€l (j>i+4)el

Here Vieng is the bend potential for all 1, 3 bonded pairs within the molecule I, and Viion iS the torsion potential
for all 1, 4 bonded pairs. The pairwise portions of the non-bonded interactions are excluded for atom pairs that are
involved in the smae bond, bend, or torsion. All other atom pairs within a molecule are subject to the LJ pair potential.

The bend potential of a molecule is represented by the following function:
Voend (0ij5) = ko (0ik — 00), (3.9

where 0, is the angle defined by atoms ¢, j, and k (see Fig. 3.1), g is the equilibrium bond angle, and £y is the force
constant which determines the strength of the harmonic bend. The parameters for kg and 6, are borrowed from those
in TraPPE.[18]

The torsion potential and parameters are also borrowed from TraPPE. It is of the form:

Viorsion(¢) = c1[1 4 cos @] + ca[1 + cos(2¢)] + c3[1 + cos(3)], (3.10)

20

where:

COS(b = (f'ij X f'jk) . (f'Jk X f'kl) (311)

Here, 1,3 are the set of unit bond vectors between atoms %, j, k, and /. For computational efficiency, the torsion
potential has been recast after the method of CHARMM,[1] in which the angle series is converted to a power series of
the form:

Vlorsion(gb) = ks cos® ¢+ ko cos® ¢ + k1 cos ¢ + ko, (3.12)

where:

ko = c1 + c3,
k1 =c1 — 3cs,
ko = 2c¢a,

k3 = 4cs.

By recasting the potential as a power series, repeated trigonometric evaluations are avoided during the calculation of
the potential energy.

The cross potential between molecules I and J, VCI;({SS, is as follows:

Vs = Z Z |:VLJ(7"ij) + Viaipote (Tij, €245 ;) + Viicky (Tij, €24, QJ)} , (3.13)
icl jeJ

where V1 is the Lennard Jones potential, Vipole is the dipole dipole potential, and Vi;ciy is the sticky potential defined
by the SSD model (Sec. 3.2.2). Note that not all atom types include all interactions.
The dipole-dipole potential has the following form:
Viipole (T, 24, Q) = il | ;- Uy — 3(0; - t5) (4 - T45) |- (3.14)
p J J Areg TiSj J A IR

Here r;; is the vector starting at atom ¢ pointing towards j, and £2; and £2; are the orientational degrees of freedom for
atoms ¢ and j respectively. The magnitude of the dipole moment of atom 4 is |u;|, @; is the standard unit orientation
vector of §2;, and 7;; is the unit vector pointing along r;; (¥;; = r;;/|r;;).

3.2.2 The DUFF Water Models: SSD/E and SSD/RF

In the interest of computational efficiency, the default solvent used by OPENMD is the extended Soft Sticky Dipole
(SSD/E) water model.[16] The original SSD was developed by Ichiye ef al.[17] as a modified form of the hard-sphere
water model proposed by Bratko, Blum, and Luzar.[19, 20] It consists of a single point dipole with a Lennard-Jones
core and a sticky potential that directs the particles to assume the proper hydrogen bond orientation in the first solvation
shell. Thus, the interaction between two SSD water molecules i and j is given by the potential

Vij = ViE (rig) + VP (rij, Q0) + VP (rig, Q4.), (3.15)

where the r;; is the position vector between molecules i and j with magnitude equal to the distance r;;, and €2; and €2;
represent the orientations of the respective molecules. The Lennard-Jones and dipole parts of the potential are given
by equations 3.4 and 3.14 respectively. The sticky part is described by the following,

Vo

uiy (Fig i, Q) = - [s(rig)wlris, Qi Q) + ' (rig)w' (v, i, Q)] (3.16)

21

Figure 3.2: Coordinates for the interaction between two SSD/E water molecules. ¢;; is the angle that r;; makes with
the 2 vector in the body-fixed frame for molecule 7. The 2 vector bisects the HOH angle in each water molecule.

where v is a strength parameter for the sticky potential, and s and s’ are cubic switching functions which turn off
the sticky interaction beyond the first solvation shell. The w function can be thought of as an attractive potential with
tetrahedral geometry:

w(ri;, 4, Q) = sin b, sin 26, cos 2¢;, (3.17)

while the w’ function counters the normal aligned and anti-aligned structures favored by point dipoles:
w'(rij, Q:, Q) = (cos b — 0.6)%(cos 05 + 0.8)% — w?, (3.18)

It should be noted that w is proportional to the sum of the Y> and Y3_2 spherical harmonics (a linear combination
which enhances the tetrahedral geometry for hydrogen bonded structures), while w’ is a purely empirical function.
A more detailed description of the functional parts and variables in this potential can be found in the original SSD
articles.[17, 21, 22, 23]

Since SSD/E is a single-point dipolar model, the force calculations are simplified significantly relative to the stan-
dard charged multi-point models. In the original Monte Carlo simulations using this model, Ichiye et al. reported that
using SSD decreased computer time by a factor of 6-7 compared to other models.[17] What is most impressive is that
these savings did not come at the expense of accurate depiction of the liquid state properties. Indeed, SSD/E main-
tains reasonable agreement with the Head-Gordon diffraction data for the structural features of liquid water.[24, 17]
Additionally, the dynamical properties exhibited by SSD/E agree with experiment better than those of more computa-
tionally expensive models (like TIP3P and SPC/E).[22] The combination of speed and accurate depiction of solvent
properties makes SSD/E a very attractive model for the simulation of large scale biochemical simulations.

22

Recent constant pressure simulations revealed issues in the original SSD model that led to lower than expected
densities at all target pressures.[23, 16] The default model in OPENMD is therefore SSD/E, a density corrected deriva-
tive of SSD that exhibits improved liquid structure and transport behavior. If the use of a reaction field long-range
interaction correction is desired, it is recommended that the parameters be modified to those of the SSD/RF model (an
SSD variant parameterized for reaction field). These solvent parameters are listed and can be easily modified in the
DUFF force field file (DUFF . frc). A table of the parameter values and the drawbacks and benefits of the different
density corrected SSD models can be found in reference [16].

3.3 The WATER Force Field

In addition to the DUFF force field’s solvent description, a separate WATER force field has been included for simulating
most of the common rigid-body water models. This force field includes the simple and point-dipolar models (SSD,
SSD1, SSD/E, SSD/RF, and DPD water), as well as the common charge-based models (SPC, SPC/E, TIP3P, TIP4P,
and TIP5P).[17, 23, 16, 25, 26, 27, 28, 29] In order to handle these models, charge-charge interactions were included
in the force-loop:

2
iq;€
‘/charge(rij) = g %7 (3.19)
ij Y

where g represents the charge on particle ¢ or j, and e is the charge of an electron in Coulombs. The charge-charge
interaction support is rudimentary in the current version of OPENMD. As with the other pair interactions, charges can
be simulated with a pure cutoff or a reaction field. The various methods for performing the Ewald summation have
not yet been included. The WATER force field can be easily expanded through modification of the WATER force field
file (WATER. frc). By adding atom types and inserting the appropriate parameters, it is possible to extend the force
field to handle rigid molecules other than water.

3.4 Embedded Atom Method

OPENMD implements a potential that describes bonding in transition metal systems. [30, 31, 32, 33, 34] This potential
has an attractive interaction which models “Embedding” a positively charged pseudo-atom core in the electron density
due to the free valance “sea” of electrons created by the surrounding atoms in the system. A pairwise part of the
potential (which is primarily repulsive) describes the interaction of the positively charged metal core ions with one
another. The Embedded Atom Method (EAM) [35, 36, 37, 38] has been widely adopted in the materials science
community and has been included in OPENMD. A good review of EAM and other formulations of metallic potentials
was given by Voter.[39]
The EAM potential has the form:

V= Z F; [ps] + Z Z @i (riz) (3.20)
i i i

where F; is an embedding functional that approximates the energy required to embed a positively-charged core ion

into a linear superposition of spherically averaged atomic electron densities given by p;,

pi = ij(rij)v (3.21)
J#i

Since the density at site 7 (p;) must be computed before the embedding functional can be evaluated, EAM and the
related transition metal potentials require two loops through the atom pairs to compute the inter-atomic forces.

23

The pairwise portion of the potential, ¢;;, is a primarily repulsive interaction between atoms ¢ and j. In the
original formulation of EAM[35], ¢;; was an entirely repulsive term; however later refinements to EAM allowed for
more general forms for ¢.[40] The effective cutoff distance, 7., is the distance at which the values of f(r) and ¢(r)
drop to zero for all atoms present in the simulation. In practice, this distance is fairly small, limiting the summations

in the EAM equation to the few dozen atoms surrounding atom i for both the density p and pairwise ¢ interactions.

In computing forces for alloys, mixing rules as outlined by Johnson [37] are used to compute the heterogenous
pair potential,

_ 1 fb(r) r fa(r) ”
Par(r) = 3 (fa(r)%“()+ e Db ()) . (3.22)

No mixing rule is needed for the densities, since the density at site ¢ is simply the linear sum of density contributions
of all the other atoms.

The EAM force field illustrates an additional feature of OPENMD. Foiles, Baskes and Daw fit EAM potentials for
Cu, Ag, Au, Ni, Pd, Pt and alloys of these metals.[36] These fits are included in OPENMD as the u3 variant of the
EAM force field. Voter and Chen reparamaterized a set of EAM functions which do a better job of predicting melting
points.[41] These functions are included in OPENMD as the VC variant of the EAM force field. An additional set of
functions (the “Universal 6” functions) are included in OPENMD as the u6 variant of EAM. For example, to specify
the Voter-Chen variant of the EAM force field, the user would add the forceFieldvVariant = "VC"; line to the
meta-data file.

The potential files used by the EAM force field are in the standard funcfl format, which is the format utilized by
a number of other codes (e.g. ParaDyn [8], DYNAMO 86). It should be noted that the energy units in these files are in
eV, not kcal mol ! as in the rest of the OPENMD force field files.

3.5 The Sutton-Chen Force Field

The Sutton-Chen (SC) [32] potential has been used to study a wide range of phenomena in metals. Although it is
similar in form to the EAM potential, the Sutton-Chen model takes on a simpler form,

Usot = ZDWV;’;“” rij) = ciDiin/pi | » (3.23)
i j;ﬁz

where Vf;a" and p; are given by

e =(5) =2 () a2

T — \ T4
J J#i J

Vi’;‘m is a repulsive pairwise potential that accounts for interactions of the pseudo-atom cores. The ,/p; term in Eq.
(3.23) is an attractive many-body potential that models the interactions between the valence electrons and the cores of

the pseudo-atoms. D;;, D;;, ¢; and «;; are parameters used to tune the potential for different transition metals.

The ScC potential form has also been parameterized by Qi et al.[33] These parameters were obtained via empirical
and ab initio calculations to match structural features of the FCC crystal. To specify the original Sutton-Chen variant of
the sc force field, the user would add the forceFieldvVariant = "SC"; line to the meta-data file, while speci-
fication of the Qi et al. quantum-adapted variant of the SC potential, the user would add the forceFieldvVariant
= "QSC"; line to the meta-data file.

24

3.6 The CLAY force field

The CLAY force field is based on an ionic (nonbonded) description of the metal-oxygen interactions associated with
hydrated phases. All atoms are represented as point charges and are allowed complete translational freedom. Metal-
oxygen interactions are based on a simple Lennard-Jones potential combined with electrostatics. The empirical pa-
rameters were optimized by Cygan et al.[42] on the basis of known mineral structures, and partial atomic charges
were derived from periodic DFT quantum chemical calculations of simple oxide, hydroxide, and oxyhydroxide model
compounds with well-defined structures.

3.7 Electrostatics

To aid in performing simulations in more traditional force fields, we have added routines to carry out electrostatic in-
teractions using a number of different electrostatic summation methods. These methods are extended from the damped
and cutoff-neutralized Coulombic sum originally proposed by Wolf, et al.[43] One of these, the damped shifted force
method, shows a remarkable ability to reproduce the energetic and dynamic characteristics exhibited by simulations
employing lattice summation techniques. The basic idea is to construct well-behaved real-space summation methods

using two tricks:
1. shifting through the use of image charges, and
2. damping the electrostatic interaction.

Starting with the original observation that the effective range of the electrostatic interaction in condensed phases
is considerably less than »~!, either the cutoff sphere neutralization or the distance-dependent damping technique
could be used as a foundation for a new pairwise summation method. Wolf et al. made the observation that charge
neutralization within the cutoff sphere plays a significant role in energy convergence; therefore we will begin our
analysis with the various shifted forms that maintain this charge neutralization. We can evaluate the methods of Wolf

et al. and Zahn et al. by considering the standard shifted potential,

v(r) — ve r < R,
Vsp(r) = , (3.25)
0 r> R

and shifted force,

dv(r)
v(r) — v, — r— R r< R,
Ve = { (5)T:RC (: , (3.26)
0 r> R

functions where v(r) is the unshifted form of the potential, and v, is v(R.). The Shifted Force (SF) form ensures that
both the potential and the forces goes to zero at the cutoff radius, while the Shifted Potential (SP) form only ensures

the potential is smooth at the cutoff radius (R.).[12]

The forces associated with the shifted potential are simply the forces of the unshifted potential itself (when inside

Fsp = — (T)) (3.27)

the cutoff sphere),

and are zero outside. Inside the cutoff sphere, the forces associated with the shifted force form can be written,

e (5 (59)

25

If the potential, v(r), is taken to be the normal Coulomb potential,

o(r) = q% (3.29)

then the Shifted Potential (SP) forms will give Wolf er al.’s undamped prescription:

1 1
Vsp(r) = qig; <r - R) r < Re, (3.30)
C
with associated forces,
1
Fsp(r) = qiq; (742) r< R (3.31)

These forces are identical to the forces of the standard Coulomb interaction, and cutting these off at R, was addressed
by Wolf et al. as undesirable. They pointed out that the effect of the image charges is neglected in the forces when
this form is used,[43] thereby eliminating any benefit from the method in molecular dynamics. Additionally, there is a

discontinuity in the forces at the cutoff radius which results in energy drift during MD simulations.

The shifted force (SF) form using the normal Coulomb potential will give,

1 1 1
Vse(r) = qiq; [r TR + <R2> (r— Rc)] T < Re. (3.32)
with associated forces,
1 1
Fsr(r) = qig; (TQ - R2> r < Re. (3.33)

This formulation has the benefits that there are no discontinuities at the cutoff radius, while the neutralizing image
charges are present in both the energy and force expressions. It would be simple to add the self-neutralizing term back
when computing the total energy of the system, thereby maintaining the agreement with the Madelung energies. A side
effect of this treatment is the alteration in the shape of the potential that comes from the derivative term. Thus, a degree

of clarity about agreement with the empirical potential is lost in order to gain functionality in dynamics simulations.

Wolf et al. originally discussed the energetics of the shifted Coulomb potential (Eq. 3.30) and found that it
was insufficient for accurate determination of the energy with reasonable cutoff distances. The calculated Madelung
energies fluctuated around the expected value as the cutoff radius was increased, but the oscillations converged toward
the correct value.[43] A damping function was incorporated to accelerate the convergence; and though alternative
forms for the damping function could be used,[44, 45] the complimentary error function was chosen to mirror the

effective screening used in the Ewald summation. Incorporating this error function damping into the simple Coulomb

potential,
f
o(r) = 2 (m), (3.34)
r
the shifted potential (eq. (3.30)) becomes
erfc (ar)
Vosp(r) = ¢ig; — fracerfc (aR.) R, r < R, (3.35)

with associated forces,

T2 7'('1/2 r g Rc- (336)

erfc (ar 2a exp (—a?r?
Fosp(1) = ¢iq; ((ar) ()> r

26

Again, this damped shifted potential suffers from a force-discontinuity at the cutoff radius, and the image charges play
no role in the forces. To remedy these concerns, one may derive a SF variant by including the derivative term in eq.
(3.26),

erfc (ar) erfe (aR.)
R

(erfc (aRe) | 20 exp (_a2R§)> (r - Re)

Vosr(r) = ¢iq; [
(3.37)

R A2 R

The derivative of the above potential will lead to the following forces,

r2 wl/2 T

Fpsr(r) = qiqj [(
B <erfc (aR.) n 2a0 exp (—a2R3)>

erfc (ar) 2 exp (—a?r?) >

(3.38)

Rg 71’1/2 RC T S Rc.

If the damping parameter («) is set to zero, the undamped case, egs. (3.30 through 3.33) are correctly recovered from
egs. (3.35 through 3.38).

It has been shown that the Damped Shifted Force method obtains nearly identical behavior to the smooth particle
mesh Ewald (SPME) method on a number of commonly simulated systems.[46] For this reason, the default elec-
trostatic summation method utilized by OPENMD is the DSF (Eq. 3.37) with a damping parameter («) that is set
algorithmically from the cutoff radius.

3.8 Periodic Boundary Conditions

Periodic boundary conditions are widely used to simulate bulk properties with a relatively small number of particles.
In this method the simulation box is replicated throughout space to form an infinite lattice. During the simulation,
when a particle moves in the primary cell, its image in other cells move in exactly the same direction with exactly the
same orientation. Thus, as a particle leaves the primary cell, one of its images will enter through the opposite face.
If the simulation box is large enough to avoid “feeling” the symmetries of the periodic lattice, surface effects can be
ignored. The available periodic cells in OPENMD are cubic, orthorhombic and parallelepiped. OPENMD use a 3 x 3

matrix, H, to describe the shape and size of the simulation box. H is defined:
H = (h;,hy,h,), (3.39)

where h,, is the column vector of the « axis of the box. During the course of the simulation both the size and shape of
the box can be changed to allow volume fluctuations when constraining the pressure.

A real space vector, r can be transformed in to a box space vector, s, and back through the following transforma-
tions:

s=Hr, (3.40)
r = Hs. (341

The vector s is now a vector expressed as the number of box lengths in the h,, h,, and h, directions. To find the
minimum image of a vector r, OPENMD first converts it to its corresponding vector in box space, and then casts each

27

element to lie in the range [—0.5, 0.5]:
s, = s; — round(s;), (3.42)
where s; is the ith element of s, and round(s;) is given by
|z +0.5] ifz>0,

round(z) = (3.43)
[x —0.5] ifz<O.

Here |x] is the floor operator, and gives the largest integer value that is not greater than x, and [z] is the ceiling
operator, and gives the smallest integer that is not less than z.
Finally, the minimum image coordinates r’ are obtained by transforming back to real space,

¥ = Hlg', (3.44)

In this way, particles are allowed to diffuse freely in r, but their minimum images, or r’, are used to compute the
inter-atomic forces.

28

Chapter 4

Mechanics

4.1 Integrating the Equations of Motion: the DLM method

The default method for integrating the equations of motion in OPENMD is a velocity-Verlet version of the symplectic
splitting method proposed by Dullweber, Leimkuhler and McLachlan (DLM).[47] When there are no directional atoms
or rigid bodies present in the simulation, this integrator becomes the standard velocity-Verlet integrator which is known
to sample the microcanonical (NVE) ensemble.[48]

Previous integration methods for orientational motion have problems that are avoided in the DLM method. Direct
propagation of the Euler angles has a known 1/ sin # divergence in the equations of motion for ¢ and v,[12] leading
to numerical instabilities any time one of the directional atoms or rigid bodies has an orientation near # = 0 or = .
Quaternion-based integration methods work well for propagating orientational motion; however, energy conservation
concerns arise when using the microcanonical (NVE) ensemble. An earlier implementation of OPENMD utilized
quaternions for propagation of rotational motion; however, a detailed investigation showed that they resulted in a

steady drift in the total energy, something that has been observed by Laird et al.[49]

The key difference in the integration method proposed by Dullweber et al. is that the entire 3 x 3 rotation matrix
is propagated from one time step to the next. In the past, this would not have been feasible, since the rotation matrix
for a single body has nine elements compared with the more memory-efficient methods (using three Euler angles
or 4 quaternions). Computer memory has become much less costly in recent years, and this can be translated into
substantial benefits in energy conservation.

The basic equations of motion being integrated are derived from the Hamiltonian for conservative systems con-
taining rigid bodies,

H=Y" (;miviT v+ %j? T J> +V ({r},{A}), “.1
i

where r; and v; are the cartesian position vector and velocity of the center of mass of particle ¢, and jj;, T)i are the

body-fixed angular momentum and moment of inertia tensor respectively, and the superscript 7" denotes the transpose

of the vector. A, is the 3 x 3 rotation matrix describing the instantaneous orientation of the particle. V' is the potential

energy function which may depend on both the positions {r} and orientations {A} of all particles. The equations of

motion for the particle centers of mass are derived from Hamilton’s equations and are quite simple,

v, 4.2)
f
m

) 4.3)

where f is the instantaneous force on the center of mass of the particle,

f=— V() (A, (44

The equations of motion for the orientational degrees of freedom are

A

A skew (‘T—l : j) , 4.5)

H . & . ov
j = Jx(l 1-J)—rot(AT-aA). (4.6)

In these equations of motion, the skew matrix of a vector v = (v, v9, v3) is defined:

0 U3 —V2
skew (v):=| —w3 0 V1 . 4.7
vy —1 0

The rot notation refers to the mapping of the 3 x 3 rotation matrix to a vector of orientations by first computing the
skew-symmetric part (A — AT) and then associating this with a length 3 vector by inverting the skew function above:

rot (A) := skew ' (A —AT). (4.8)

Written this way, the rot operation creates a set of conjugate angle coordinates to the body-fixed angular momenta
represented by j. This equation of motion for angular momenta is equivalent to the more familiar body-fixed forms,

B b Araditl AradC R N
Jz = Tz(t) - (I yy I zz)]y]27 4.9)
gy o= Tyt - (T;} - T);;)jzjm (4.10)
B b —_q —_1\ . .
j. = T(t) - (I e — | yy)my, (4.11)

which utilize the body-fixed torques, 7°. Torques are most easily derived in the space-fixed frame,
(1) = At) - T°(8), (4.12)

where the torques are either derived from the forces on the constituent atoms of the rigid body, or for directional atoms,

directly from derivatives of the potential energy,

() = —ae) x (eV () (D)) @13

Here 11 is a unit vector pointing along the principal axis of the particle in the space-fixed frame.

The DLM method uses a Trotter factorization of the orientational propagator. This has three effects:

1. the integrator is area-preserving in phase space (i.e. it is symplectic),

2. the integrator is time-reversible, making it suitable for Hybrid Monte Carlo applications, and

3. the error for a single time step is of order O (h4) for timesteps of length h.

The integration of the equations of motion is carried out in a velocity-Verlet style 2-part algorithm, where h = 6t:

30

moveA:

v(t+h/2) —v(t)+ g (£(t)/m),
r(t+h) —r(t)+hv(t+h/2),
jt+n/2) <—j(t)+g7'b(t)7

q-1
A(t + h) — rotate (hj(t Y h/2)- T) :
In this context, the rotate function is the reversible product of the three body-fixed rotations,
rotate(a) = Gz (ax/2) - Gy(ay/2) - Gz(a) - Gy(ay/2) - Gz(az/2), 4.14)

where each rotational propagator, G, (6), rotates both the rotation matrix (A) and the body-fixed angular momentum
(j) by an angle 6 around body-fixed axis «,

(4.15)

[A < A®0)-Ra(0)T,
Ga(9)—{j(t) — Ra(0)-j0).

R4 is a quadratic approximation to the single-axis rotation matrix. For example, in the small-angle limit, the rotation
matrix around the body-fixed x-axis can be approximated as

1 0 0

1—62%/4
Re()~ | 0 15gei —1rers |- (4.16)
0 1—6%/4
1+62/4 1162/

All other rotations follow in a straightforward manner.

After the first part of the propagation, the forces and body-fixed torques are calculated at the new positions and

orientations
doForces:
or r(t+h)
)%
Ts(t+ h) — u(t+ h) X %,

TPt +h) — A(t + h) - 7°(t + h).

OPENMD automatically updates u when the rotation matrix A is calculated in moveA. Once the forces and torques

have been obtained at the new time step, the velocities can be advanced to the same time value.

moveB:

>

v(t+h)<—V(t+h/2)—|—§(f(t—|—h)/m),

jt+h)—jt+h/2)+ gTb(H—h).

The matrix rotations used in the DLM method end up being more costly computationally than the simpler arithmetic
quaternion propagation. With the same time step, a 1024-molecule water simulation incurs an average 12% increase
in computation time using the DLM method in place of quaternions. This cost is more than justified when comparing

31

the energy conservation achieved by the two methods. Figure 4.1 provides a comparative analysis of the DLM method
versus the traditional quaternion scheme.

In Fig. 4.1, 0E; is a measure of the linear energy drift in units of kcal mol ™" per particle over a nanosecond of
simulation time, and dEy, is the standard deviation of the energy fluctuations in units of kcal mol " per particle. In the
top plot, it is apparent that the energy drift is reduced by a significant amount (2 to 3 orders of magnitude improvement
at all tested time steps) by chosing the DLM method over the simple non-symplectic quaternion integration method. In
addition to this improvement in energy drift, the fluctuations in the total energy are also dampened by 1 to 2 orders of
magnitude by utilizing the DLM method.

Although the DLM method is more computationally expensive than the traditional quaternion scheme for prop-
agating a single time step, consideration of the computational cost for a long simulation with a particular level of
energy conservation is in order. A plot of energy drift versus computational cost was generated (Fig. 4.2). This figure
provides an estimate of the CPU time required under the two integration schemes for 1 nanosecond of simulation time
for the model 1024-molecule system. By chosing a desired energy drift value it is possible to determine the CPU time
required for both methods. If a 6E; of 1 x 10~3kcal mol ™" per particle is desired, a nanosecond of simulation time
will require 19 hours of CPU time with the DLM integrator, while the quaternion scheme will require 154 hours of
CPU time. This demonstrates the computational advantage of the integration scheme utilized in OPENMD.

There is only one specific keyword relevant to the default integrator, and that is the time step for integrating the
equations of motion.

variable Meta-data keyword units default value
h dt = 2.0; fs none

4.2 Extended Systems for other Ensembles

OPENMD implements a number of extended system integrators for sampling from other ensembles relevant to chem-
ical physics. The integrator can be selected with the ensemble keyword in the meta-data file:

Integrator Ensemble Meta-data instruction
NVE microcanonical ensemble = NVE;
NVT canonical ensemble = NVT;
NPTi isobaric-isothermal ensemble = NPTi;

(with isotropic volume changes)

NPTf isobaric-isothermal ensemble = NPTf;
(with changes to box shape)

NPTxyz approximate isobaric-isothermal ensemble = NPTxyz;
(with separate barostats on each box dimension)

LD Langevin Dynamics ensemble = LD;

(approximates the effects of an implicit solvent)

The relatively well-known Nosé-Hoover thermostat[5S0] is implemented in OPENMD’s NVT integrator. This
method couples an extra degree of freedom (the thermostat) to the kinetic energy of the system and it has been shown
to sample the canonical distribution in the system degrees of freedom while conserving a quantity that is, to within a
constant, the Helmholtz free energy.[51]

NPT algorithms attempt to maintain constant pressure in the system by coupling the volume of the system to a
barostat. OPENMD contains three different constant pressure algorithms. The first two, NPTi and NPTf have been
shown to conserve a quantity that is, to within a constant, the Gibbs free energy.[51] The Melchionna modification
to the Hoover barostat is implemented in both NPTi and NPTf. NPTi allows only isotropic changes in the simulation

32

log,,[I0E]

O—CO DLM
1 - - -0 Quaternion

log,,[0E,]

0 2 4 6 8
time step (fs)

Figure 4.1: Analysis of the energy conservation of the DLM and quaternion integration methods. §E; is the linear
drift in energy over time and 6Ej is the standard deviation of energy fluctuations around this drift. All simulations
were of a 1024-molecule simulation of SSD water at 298 K starting from the same initial configuration. Note that
the DLM method provides more than an order of magnitude improvement in both the energy drift and the size of the
energy fluctuations when compared with the quaternion method at any given time step. At time steps larger than 4 fs,
the quaternion scheme resulted in rapidly rising energies which eventually lead to simulation failure. Using the DLM
method, time steps up to 8 fs can be taken before this behavior is evident.

33

O DLM
O Quaternion -

log,,[I0E]

0 50 100 150 200 250

run time (CPU hours/ns of simulation)

Figure 4.2: Energy drift as a function of required simulation run time. 6E; is the linear drift in energy over time.
Simulations were performed on a single 2.5 GHz Pentium 4 processor. Simulation time comparisons can be made by
tracing horizontally from one curve to the other. For example, a simulation that takes 24 hours using the DLM method
will take roughly 210 hours using the simple quaternion method if the same degree of energy conservation is desired.

34

box, while box shape variations are allowed in NPTf. The NPTxyz integrator has not been shown to sample from the
isobaric-isothermal ensemble. It is useful, however, in that it maintains orthogonality for the axes of the simulation
box while attempting to equalize pressure along the three perpendicular directions in the box.

Each of the extended system integrators requires additional keywords to set target values for the thermodynamic
state variables that are being held constant. Keywords are also required to set the characteristic decay times for the
dynamics of the extended variables.

variable Meta-data instruction units default value

Tiarget targetTemperature = 300; K none

Piarget targetPressure = 1; atm none

T tauThermostat = le3; fs none

B tauBarostat = 5e3; fs none
resetTime = 200; fs none

useInitialExtendedSystemState = true; logical true

Two additional keywords can be used to either clear the extended system variables periodically (resetTime), or
to maintain the state of the extended system variables between simulations (useInitialExtendedSystemState).

More details on these variables and their use in the integrators follows below.

4.3 Nosé-Hoover Thermostatting

The Nosé-Hoover equations of motion are given by[50]

F o= v, 4.17)

v = i — XV, (4.18)
m

A = A- skew (T’*l -j) , (4.19)

H . TT1 . ov .

j = JX(| 1-‘])—rot<AT~aA>—xJ. (4.20)

X is an “extra” variable included in the extended system, and it is propagated using the first order equation of

>‘<1< T 1>. 4.21)

2
Tr T; arget

motion

The instantaneous temperature 7 is proportional to the total kinetic energy (both translational and orientational)

and is given by
2K
T=— (4.22)
fkB

Here, f is the total number of degrees of freedom in the system,

f =3N + 2Nlinear + 3Nnon—linear - NconstraintSa (423)
and K is the total kinetic energy,
N 1 Niinear+Nnon—1linear 1 -
K=Y -mv] -v; P FAR Bt P 4.24
Z 2m Vi sV + Z 2‘]Z i) ()

=1 1=1

35

Niinear 18 the number of linear rotors (i.e. with two non-zero moments of inertia), and Nyon_linear 18 the number of
non-linear rotors (i.e. with three non-zero moments of inertia).

In eq.(4.21), 7 is the time constant for relaxation of the temperature to the target value. To set values for 71 or
Tiarget in a simulation, one would use the tauThermostat and target Temperature keywords in the meta-
data file. The units for tauThermostat are fs, and the units for the target Temperature are degrees K. The
integration of the equations of motion is carried out in a velocity-Verlet style 2 part algorithm:

moveA:

T(t) — {v(0)}, (1)

v(t+h/2) = v+ (fé? v(t)x(t)) ,
r(t +h) — r(t) + hv (t + h/2)

RS TONO

A(t + h) « rotate (h *j(t+ h/2)(T>*1) :

J(E+h/2) <)+

X(t+h/2)<—x(t)+h2<) —1).

2TT T; arget

Here rotate(h x jT}_l) is the same symplectic Trotter factorization of the three rotation operations that was
discussed in the section on the DLM integrator. Note that this operation modifies both the rotation matrix A and the
angular momentum j. moveA propagates velocities by a half time step, and positional degrees of freedom by a full
time step. The new positions (and orientations) are then used to calculate a new set of forces and torques in exactly
the same way they are calculated in the doForces portion of the DLM integrator.

Once the forces and torques have been obtained at the new time step, the temperature, velocities, and the extended
system variable can be advanced to the same time value.

moveB:

T(t+h) —A{v(t+h)} {it+h)},

X+ h) — x (t+h/2) + ;% (TT(EZ}:)
V(E+h) — v (t+h/2) +h(f(t7:h v(t+ h)x (th)>7

j(t+h)<—j(t+h/2)+g((t+h) —j(t+h)x(t+h)).

Since v(t + h) and j(t + h) are required to calculate T'(¢t + h) as well as x(t + k), they indirectly depend on their
own values at time ¢ + h. moveB is therefore done in an iterative fashion until x (¢ 4+ h) becomes self-consistent. The
relative tolerance for the self-consistency check defaults to a value of 1076, but OPENMD will terminate the iteration
after 4 loops even if the consistency check has not been satisfied.

The Nosé-Hoover algorithm is known to conserve a Hamiltonian for the extended system that is, to within a
constant, identical to the Helmholtz free energy,[51]

(W) [T
HNVT =V + K + fk'BTtarget (2 + / X(t)dt) . (425)
0

Poor choices of h or 71 can result in non-conservation of Hyvy, so the conserved quantity is maintained in the last
column of the . stat file to allow checks on the quality of the integration.

36

Bond constraints are applied at the end of both the moveA and moveB portions of the algorithm. Details on the

constraint algorithms are given in section 4.8.1.

4.4 Constant-pressure integration with isotropic box deformations (NPTi)

To carry out isobaric-isothermal ensemble calculations, OPENMD implements the Melchionna modifications to the
Nosé-Hoover-Andersen equations of motion.[51] The equations of motion are the same as NVT with the following

exceptions:

r = v+n(r—Ry), (4.26)
f
Vo= — (v, 427)
m
1
) = V(P — Pareet), 4.2
77 T]%’kaTtarget V (ta get) (8)
vV = 3. (4.29)

x and n are the “extra” degrees of freedom in the extended system. x is a thermostat, and it has the same function
as it does in the Nosé-Hoover NVT integrator. 7 is a barostat which controls changes to the volume of the simulation
box. Ry is the location of the center of mass for the entire system, and V is the volume of the simulation box. At any
time, the volume can be calculated from the determinant of the matrix which describes the box shape:

V = det(H). (4.30)

The NPTi integrator requires an instantaneous pressure. This quantity is calculated via the pressure tensor,

P <val) @ vyl)>+W(t). (4.31)

The kinetic contribution to the pressure tensor utilizes the outer product of the velocities, denoted by the ® symbol.
The stress tensor is calculated from another outer product of the inter-atomic separation vectors (r;; = r; — r;) with

the forces between the same two atoms,

=3 > ri(t) @ £5(1) (4.32)

i g>1

In systems containing cutoff groups, the stress tensor is computed between the centers-of-mass of the cutoff groups:

Z Z Tap(t) ® fap(t (4.33)

where r; is the distance between the centers of mass, and

fup = 5(ran) 3> £ + 8 (ran) 22 33 Vi) (4.34)

i€a jEb | Tab | i€a jEb

The instantaneous pressure is then simply obtained from the trace of the pressure tensor,

P(t) = %Tr (?’(t)) . (4.35)

37

In eq.(4.29), 75 is the time constant for relaxation of the pressure to the target value. To set values for 75 or
Piarget in a simulation, one would use the tauBarostat and targetPressure keywords in the meta-data file.
The units for tauBarostat are fs, and the units for the targetPressure are atmospheres. Like in the NVT
integrator, the integration of the equations of motion is carried out in a velocity-Verlet style two part algorithm with

only the following differences:

moveA:

P(t) —{r()}, {v(®)},

vl n2) < v+ (B2 - v (vl + o).
77(t + h/2) — n(t) + 2]\]]{2)1{2)7% (P(t) - Ptarget))

r(t+h) —r(@t)+h{v({E+h/2)+nt+h/2)[r(t+h)—Rol},
H(t + h) « e MUFR2 (),

The propagation of positions to time ¢ + h depends on the positions at the same time. OPENMD carries out this
step iteratively (with a limit of 5 passes through the iterative loop). Also, the simulation box H is scaled uniformly for
one full time step by an exponential factor that depends on the value of 7) at time ¢ + /2. Reshaping the box uniformly
also scales the volume of the box by

V(t + h) — e 3mMER/2) sy (), (4.36)

The doForces step for the NPTi integrator is exactly the same as in both the DLM and NVT integrators. Once
the forces and torques have been obtained at the new time step, the velocities can be advanced to the same time value.

moveB:

Pt+h)—{r@t+h)},{vit+h)},

e+ R) = e+ h2) + g (P) = P
v (t+h) Hv(t+h/2)+g (f(tm”)—v(t+h)(x(t+h)+n(t+h))) ,

j(t+h)Hj(t+h/2)+g(Tb(t+h)—j(t+h)x(t+h)).

Once again, since v(t + h) and j(¢ 4 h) are required to calculate T'(t + h), P(t + h), x(t + h), and n(t + h), they
indirectly depend on their own values at time ¢ 4+ h. moveB is therefore done in an iterative fashion until x (¢ 4+ i) and
n(t 4+ h) become self-consistent. The relative tolerance for the self-consistency check defaults to a value of 10~°, but

OPENMD will terminate the iteration after 4 loops even if the consistency check has not been satisfied.

The Melchionna modification of the Nosé-Hoover-Andersen algorithm is known to conserve a Hamiltonian for the
extended system that is, to within a constant, identical to the Gibbs free energy,

X2 [T
HNPTi =V + K + fk'BTtarget (2 + / X(t)dt) + Ptargetv(t)- (437)
0

Poor choices of dt, 7, or 75 can result in non-conservation of Hypri, so the conserved quantity is maintained in the
last column of the . stat file to allow checks on the quality of the integration. It is also known that this algorithm

38

samples the equilibrium distribution for the enthalpy (including contributions for the thermostat and barostat),

ka Ttarget 2

Hypri=V + K + 5 (T3 +1°78) + Prarget V(2). (4.38)

Bond constraints are applied at the end of both the moveA and moveB portions of the algorithm. Details on the
constraint algorithms are given in section 4.8.1.

4.5 Constant-pressure integration with a flexible box (NPTY)

There is a relatively simple generalization of the Nosé-Hoover-Andersen method to include changes in the simulation
box shape as well as in the volume of the box. This method utilizes the full 3 x 3 pressure tensor and introduces a
tensor of extended variables (77") to control changes to the box shape. The equations of motion for this method differ
from those of NPTi as follows:

P = v+ 7 -(r—Ry), (4.39)
f
v = —— (W +x-1v, (4.40)
m
N 1 oY
= V P - Par (&) 1 9 441
! T%kaTtarget (tarset) ()
H = 9 -H. (4.42)

>
Here, 1 is the unit matrix and P is the pressure tensor. Again, the volume, }V = det H.
The propagation of the equations of motion is nearly identical to the NPTi integration:

moveA:

Pt) — {x(®)}. {v(D)}
v (t+ h/2) <—v(t)+g (fr(nt)

- O+ T)0
V(1) —
2NkpT(t)73 ((t) - F targetl) ’
r(t+h) —r@t)+h{v(t+h/2)+ 7 (t+h/2) [r(t+h)—Rol},
H(t + h) < H(t) - e h T (t+h/2)

D(t+h/2) = 7 (t)+

OPENMD uses a power series expansion truncated at second order for the exponential operation which scales the
simulation box.
The moveB portion of the algorithm is largely unchanged from the NPTi integrator:

moveB:

Pl+n) = {r(t+m)) AvE+R)} {EE+ 1)},
i

. hV(t + h) -
(t+h) «— n (t+h/2)+ QNICBT(t—f—h)T% (P(t+h) Ptargctl)a

v(t+h)<—v(t+h/2)+;l(W—(X(t+h)1+‘7(t+h))> -v(t+h),

The iterative schemes for both moveA and moveB are identical to those described for the NPTi integrator.

39

The NPTT integrator is known to conserve the following Hamiltonian:

ka Ttarget

2.2
TTXQ *) T[T O 3. (443)

t

HNPTf =V + K + kaTtargct < +/ X(t/)dt/> + Ptargctv(t) +
0

This integrator must be used with care, particularly in liquid simulations. Liquids have very small restoring forces

in the off-diagonal directions, and the simulation box can very quickly form elongated and sheared geometries which

become smaller than the cutoff radius. The NPT integrator finds most use in simulating crystals or liquid crystals

which assume non-orthorhombic geometries.

4.6 Constant pressure in 3 axes (NPTxyz)

There is one additional extended system integrator which is somewhat simpler than the NPTf method described above.
In this case, the three axes have independent barostats which each attempt to preserve the target pressure along the box
walls perpendicular to that particular axis. The lengths of the box axes are allowed to fluctuate independently, but the
angle between the box axes does not change. The equations of motion are identical to those described above, but only
the diagonal elements of 7" are computed. The off-diagonal elements are set to zero (even when the pressure tensor

has non-zero off-diagonal elements).

It should be noted that the NPTxyz integrator is not known to preserve any Hamiltonian of interest to the chemical
physics community. The integrator is extremely useful, however, in generating initial conditions for other integration
methods. It is suitable for use with liquid simulations, or in cases where there is orientational anisotropy in the system

(i.e. in lipid bilayer simulations).

4.7 Langevin Dynamics (LD)

OPENMD implements a Langevin integrator in order to perform molecular dynamics simulations in implicit solvent
environments. This can result in substantial performance gains when the detailed dynamics of the solvent is not
important. Since OPENMD also handles rigid bodies of arbitrary composition and shape, the Langevin integrator is

by necessity somewhat more complex than in other simulation packages.

Consider the Langevin equations of motion in generalized coordinates
MV (t) = F(t) + F(t) + F..(t) (4.44)

where M is a 6 x 6 diagonal mass matrix (which includes the mass of the rigid body as well as the moments of
inertia in the body-fixed frame) and V is a generalized velocity, V = {v,w}. The right side of Eq. 4.44 consists of
three generalized forces: a system force (F',), a frictional or dissipative force (F) and a stochastic force (F,). While
the evolution of the system in Newtonian mechanics is typically done in the lab frame, it is convenient to handle the
dynamics of rigid bodies in body-fixed frames. Thus the friction and random forces on each substructure are calculated
in a body-fixed frame and may converted back to the lab frame using that substructure’s rotation matrix (Q):

£, Tgb
Fro=| 77 | = QT fr (4.45)
Tfﬂ” Q Tf,v‘

The body-fixed friction force, F Jﬁ’ , is proportional to the (body-fixed) velocity at the center of resistance v Rb and the

40

angular velocity w

f b t Ett Ert b t
phy = O o Ee Zk) [ve®) (4.46)
Ty (t) = E¥ w(t)
while the random force, F',., is a Gaussian stochastic variable with zero mean and variance,

(B () (F(¢)T) = (B () (F)T) = 2kpTER(t — 1), (447)
=g is the 6 x 6 resistance tensor at the center of resistance.

For atoms and ellipsoids, there are good approximations for this tensor that are based on Stokes’ law. For arbitrary
rigid bodies, the resistance tensor must be pre-computed before Langevin dynamics can be used. The OPENMD
distribution contains a utitilty program called Hydro that performs this computation.

Once this tensor is known for a given integrableObject, obtaining a stochastic vector that has the properties
in Eq. (4.47) can be done efficiently by carrying out a one-time Cholesky decomposition to obtain the square root
matrix of the resistance tensor,

[1]

r=SS7, (4.48)

where S is a lower triangular matrix.[?] A vector with the statistics required for the random force can then be obtained

by multiplying S onto a random 6-vector Z which has elements chosen from a Gaussian distribution, such that:

o%kpT

(Z:) =0, (2 2,) = =2~

dijs (4.49)

where dt is the timestep in use during the simulation. The random force, Frb = SZ, can be shown to have the correct
properties required by Eq. (4.47).
The equation of motion for the translational velocity of the center of mass (v) can be written as

mi(t) = £,(t) + £, (t) + £,(t) (4.50)

Since the frictional and random forces are applied at the center of resistance, which generally does not coincide with
the center of mass, extra torques are exerted at the center of mass. Thus, the net body-fixed torque at the center of

mass, 7 °(t), is given by

rbe—rb4 be + 7.0 +ryp x (ffb + frb) (.51

where r /R is the vector from the center of mass to the center of resistance. Instead of integrating the angular velocity

in lab-fixed frame, we consider the equation of motion for the angular momentum (j) in the body-fixed frame

d
5 i) =710 (4.52)

By embedding the friction and random forces into the the total force and torque, OPENMD integrates the Langevin
equations of motion for a rigid body of arbitrary shape in a velocity-Verlet style 2-part algorithm, where h = t:

move A:
v (4 h/2) o v(t) + 5 (£(E)/m),
r(t+h) —r(t)+hv(t+h/2),
J(+h/2) (1) + or),

Q(t + h) « rotate (hj(t + h/2) - T_l))

41

—>
In this context, | is the diagonal moment of inertia tensor, and the rotate function is the reversible product of the
three body-fixed rotations,

rotate(a) = Gy (ax/2) - Gy(ay/2) - Gz(a) - Gy(ay/2) - Gz(az/2), (4.53)
where each rotational propagator, G, (), rotates both the rotation matrix (Q) and the body-fixed angular momentum

(j) by an angle 6 around body-fixed axis «,

6u(0) { Q(t) — Q(0)-R.(0)7, “.54)

i) — Ra(6)-j(0).

R4 is a quadratic approximation to the single-axis rotation matrix. For example, in the small-angle limit, the rotation
matrix around the body-fixed x-axis can be approximated as

10 0
1-0%/4
Re(@)~ | 0 17gehi —1rers |- (4.55)
0 0 1—6%/4
1+02/4 1+02/4

All other rotations follow in a straightforward manner. After the first part of the propagation, the forces and body-fixed
torques are calculated at the new positions and orientations. The system forces and torques are derivatives of the total
potential energy function (U) with respect to the rigid body positions (r) and the columns of the transposed rotation

matrix Q7 = (u,,uy, u.):

Forces:
or r(t+h)
oUu
vh(t+h) — Q(t+h) (v(t+h)+w(t+h)xryg)
£ ;(t+h) — —E%-vR(t+h) — EF - w(t +h)
Th(t+h) — =B -vh(t+h) —EF - w(t+h)
Z « GaussianNormal(2kpT/h,6)
Fh, (t+h)—S Z
f(t+h) —f(t+h)+ QT (t+h)- (2, +£2,)
T(t+h) — 7t +h)+ QT (t+h)- (TR +Th,) +rur x (Fp(t+ h) + £.(t + h))
T (t+h)— Q(t+h) T(t+h)

Frictional (and random) forces and torques must be computed at the center of resistance, so there are additional steps
required to find the body-fixed velocity (v Rb) at this location. Mapping the frictional and random forces at the center
of resistance back to the center of mass also introduces an additional term in the torque one obtains at the center of

mass.

Once the forces and torques have been obtained at the new time step, the velocities can be advanced to the same
time value.

42

move B:

>

v(t+h) —v(t+h/2)+ 5 (EE+h)/m),

j(t-l—h)<—j(t+h/2)+§7’b(t+h).

The viscosity of the implicit solvent must be specified using the viscosity keyword in the meta-data file if
the Langevin integrator is selected. For simple particles (spheres and ellipsoids), no further parameters are necessary.
Since there are no analytic solutions for the resistance tensors for composite rigid bodies, the approximate tensors for
these objects must also be specified in order to use Langevin dynamics. The meta-data file must therefore point to
another file which contains the information about the hydrodynamic properties of all complex rigid bodies being used
during the simulation. The HydroPropF1i le keyword is used to specify the name of this file. A HydroPropFile
should be precalculated using the Hydro program that is included in the OPENMD distribution.

Table 4.1: Meta-data Keywords: Required parameters for the Langevin

integrator

keyword units use

viscosity centipoise Sets the value of viscosity of the implicit solvent

targetTemp K Sets the target temperature of the system. This param-
eter must be specified to use Langevin dynamics.

HydroPropFile string Specifies the name of the resistance tensor (usually a
.diff file) which is precalculated by Hydro. This
keyworkd is not necessary if the simulation contains
only simple bodies (spheres and ellipsoids).

beadSize A Sets the diameter of the beads to use when the

RoughShell model is used to approximate the re-
sistance tensor.

4.8 Constraint Methods

4.8.1 The RATTLE Method for Bond Constraints

In order to satisfy the constraints of fixed bond lengths within OPENMD, we have implemented the RATTLE al-
gorithm of Andersen.[52] RATTLE is a velocity-Verlet formulation of the SHAKE method[53] for iteratively solv-
ing the Lagrange multipliers which maintain the holonomic constraints. Both methods are covered in depth in the
literature,[14, 12] and a detailed description of this method would be redundant.

4.8.2 The Z-Constraint Method

A force auto-correlation method based on the fluctuation-dissipation theorem was developed by Roux and Karplus
to investigate the dynamics of ions inside ion channels.[54] The time-dependent friction coefficient can be calculated

from the deviation of the instantaneous force from its mean value:
£(2,1) = (8F(2,1)0F (2,0)) /ks T, (4.56)

43

where
OF(z,t) = F(z,t) — (F(z,1)). 4.57)

If the time-dependent friction decays rapidly, the static friction coefficient can be approximated by

gstatic(z) = /OOO <(5F(Z, t)(SF(Z, 0)>dt (4.58)

This allows the diffusion constant to then be calculated through the Einstein relation:[55]

_ kT (ksT)?
Diz) = Estatic (2) B fooo<5F(Z,t)5F(Z,0)>dt

(4.59)

The Z-Constraint method, which fixes the z coordinates of a few “tagged” molecules with respect to the center of
the mass of the system is a technique that was proposed to obtain the forces required for the force auto-correlation
calculation.[55] However, simply resetting the coordinate will move the center of the mass of the whole system. To
avoid this problem, we have developed a new method that is utilized in OPENMD. Instead of resetting the coordinates,
we reset the forces of z-constrained molecules and subtract the total constraint forces from the rest of the system after
the force calculation at each time step.

After the force calculation, the total force on molecule « is:

G, = Z F., (4.60)
i
where F,; is the force in the z direction on atom ¢ in z-constrained molecule «. The forces on the atoms in the
z-constrained molecule are then adjusted to remove the total force on molecule a:

maiGa

> Mai

Here, m,,; is the mass of atom ¢ in the z-constrained molecule. After the forces have been adjusted, the velocities must

Fai:Fai_

4.61)

also be modified to subtract out molecule o’s center-of-mass velocity in the z direction.

Zi MaiVai

Zi Mai ’

where v, is the velocity of atom ¢ in the z direction. Lastly, all of the accumulated constraint forces must be subtracted

(4.62)

Vai = Vai —

from the rest of the unconstrained system to keep the system center of mass of the entire system from drifting.

7 Ga
Fyi = Py — 120G (4.63)

)
> 8 2o mgi
where (3 denotes all unconstrained molecules in the system. Similarly, the velocities of the unconstrained molecules
must also be scaled:

g = vgi + ZZ’”;”@ : (4.64)

This method will pin down the centers-of-mass of all of the z-constrained molecules, and will also keep the entire
system fixed at the original system center-of-mass location.

44

At the very beginning of the simulation, the molecules may not be at their desired positions. To steer a z-
constrained molecule to its specified position, a simple harmonic potential is used:

1
U(t) = ikHarmonic(Z(t) - Zcons)Qa (4.65)

where kparmonic 18 an harmonic force constant, z(t) is the current z coordinate of the center of mass of the constrained
molecule, and z.qys is the desired constraint position. The harmonic force operating on the z-constrained molecule at

time ¢ can be calculated by
oU(t
Fopmenss(t) = =5~ ((t)) = —Kttarmonic (2(t) — Zeons)- (4.66)

The user may also specify the use of a constant velocity method (steered molecular dynamics) to move the
molecules to their desired initial positions. Based on concepts from atomic force microscopy, SMD has been used
to study many processes which occur via rare events on the time scale of a few hundreds of picoseconds. For exam-
ple,SMD has been used to observe the dissociation of Streptavidin-biotin Complex.[56]

To use of the z-constraint method in an OPENMD simulation, the molecules must be specified using the nZconstraints
keyword in the meta-data file. The other parameters for modifying the behavior of the z-constraint method are listed
in table 4.2.

Table 4.2: Meta-data Keywords: Z-Constraint Parameters

keyword units use remarks

zconsTime fs Sets the frequency at which
the . £z file is written

zconsForcePolicy string The strategy for subtract- Possible strategies are BYMASS and
ing the z-constraint force BYNUMBER. The default strategy is
from the unconstrained BYMASS

molecules
zconsGap A Sets the distance between Used mainly to move molecules
two adjacent constraint po- through a simulation to estimate po-
sitions tentials of mean force.
zconsFixtime fs Sets the length of time zconsFixtime must be set if

the z-constraint molecule zconsGap is set
is held fixed
zconsUsingSMD logical Flag for wusing Steered Harmonic Forces are used by default
Molecular Dynamics to
move the molecules to
the correct constrained

positions

45

46

Chapter 5

Restraints

Restraints are external potentials that are added to a system to keep particular molecules or collections of particles

close to some reference structure. A restraint can be a collective

47

48

Chapter 6

Thermodynamic Integration

Thermodynamic integration is an established technique that has been used extensively in the calculation of free ener-
gies for condensed phases of materials.[57, 58, 59, 60, 61]. This method uses a sequence of simulations during which
the system of interest is converted into a reference system for which the free energy is known analytically (Ap). The
difference in potential energy between the reference system and the system of interest (AV) is then integrated in order
to determine the free energy difference between the two states:

1
A=A +/ (AV), dA. 6.1)
0

Here,) is the parameter that governs the transformation between the reference system and the system of interest.
For crystalline phases, an harmonically-restrained (Einstein) crystal is chosen as the reference state, while for liquid
phases, the ideal gas is taken as the reference state.

In an Einstein crystal, the molecules are restrained at their ideal lattice locations and orientations. Using harmonic
restraints, as applied by Baez and Clancy, the total potential for this reference crystal (Vgc) is the sum of all the

harmonic restraints,
K. Ky K,
Vec =D {;(n— =194 (0= 07)7 + P (wi = w])?] (6.2)
i
where K, Ky, and K, are the spring constants restraining translational motion and deflection of and rotation around
the principle axis of the molecule respectively. The values of € range from O to 7, while w ranges from — to 7.
The partition function for a molecular crystal restrained in this fashion can be evaluated analytically, and the

Helmholtz Free Energy (A) is given by

1 1 1
A B, ET\? y (ST2IART\ 2 [8m2IgkT\ 2 [8n2IckT) 2
kT ke N\ (55)?
— kTIn | — 2 exp(—— exp(t2)dt| , 6.3
K)h p(2K9)/0 p(t%) (6.3)

where 27v = (K, / m)l/ 2, and E,, is the minimum potential energy of the ideal crystal.[60]

OPENMD can perform the simulations that aid the user in constructing the thermodynamic path from the molecular
system to one of the reference systems. To do this, the user sets the value of A\ (between 0 & 1) in the meta-data file. If
the system of interest is crystalline, OPENMD must be able to find the reference configuration of the system in a file
called idealCrystal. in in the directory from which the simulation was run. This file is a standard . dump file,

49

but all information about velocities and angular momenta are discarded when the file is read.

The configuration found in the idealCrystal. in file is used for the reference positions and molecular ori-
entations of the Einstein crystal. To complete the specification of the Einstein crystal, a set of force constants must
also be specified; one for displacments of the molecular centers of mass, and two for displacements from the ideal
orientations of the molecules.

To construct a thermodynamic integration path, the user would run a sequence of N simulations, each with a
different value of lambda between 0 and 1. When useSolidThermInt is set to true in the meta-data file, two
additional energy columns are reported in the .stat file for the simulation. The first, vRaw, is the unperturbed
energy for the configuration, and the second, vHarm, is the energy of the harmonic (Einstein) system in an identical
configuration. The total potential energy of the configuration is a linear combination of vRaw and vHarm weighted
by the value of .

From a running average of the difference between vRaw and vHarm, the user can obtain the integrand in Eq. (6.1)
for fixed value of .

There are two additional files with the suffixes .zang0 and .zang generated by OPENMD during the first
run of a solid thermodynamic integration. These files contain the initial (. zang0) and final (. zang) values of the
angular displacement coordinates for each of the molecules. These are particularly useful when chaining a number of
simulations (with successive values of \) together.

For liquid thermodynamic integrations, the reference system is the ideal gas (with a potential exactly equal to 0),
so the .stat file contains only the standard columns. The potential energy column contains the potential of the
unperturbed system (and not the A\-weighted potential. This allows the user to use the potential energy directly as the
AV in the integrand of Eq. (6.1).

Meta-data parameters concerning thermodynamic integrations are given in Table 6.1

Table 6.1: Meta-data Keywords: Thermodynamic Integration Parameters

keyword units use remarks

useSolidThermInt logical perform thermodynamic default is “false”
integration to an Einstein
crystal?
uselLiquidThermInt logical perform thermodynamic default is “false”
integration to an ideal gas?
thermodynamicIntegrationLambda
double transformation parameter Sets how far along the thermody-
namic integration path the simula-
tion will be.
thermodynamicIntegrationK
double power of A governing shape of inte-
gration pathway
thermIntDistSpringConst
kcal mol~*A > spring constant for translations in
Einstein crystal
thermIntThetaSpringConst
kcal mol ~'rad 2 spring constant for deflection away
from z-axis in Einstein crystal

thermIntOmegaSpringConst

50

Table 6.1: Meta-data Keywords: Thermodynamic Integration Parameters

keyword units use remarks

kcal mol ™ 'rad —2 spring constant for rotation around

z-axis in Einstein crystal

51

52

Chapter 7
Energy Minimization

As one of the basic procedures of molecular modeling, energy minimization is used to identify local configurations
that are stable points on the potential energy surface. There is a vast literature on energy minimization algorithms
have been developed to search for the global energy minimum as well as to find local structures which are stable fixed
points on the surface. We have included two simple minimization algorithms: steepest descent, (SD) and conjugate
gradient (CG) to help users find reasonable local minima from their initial configurations. Since OPENMD handles
atoms and rigid bodies which have orientational coordinates as well as translational coordinates, there is some subtlety
to the choice of parameters for minimization algorithms.

Given a coordinate set z;, and a search direction dy, a line search algorithm is performed along dj to produce
Tk+1 = Tip+ Apdg. In the steepest descent (SD) algorithm,

The gradient and the direction of next step are always orthogonal. This may cause oscillatory behavior in narrow
valleys. To overcome this problem, the Fletcher-Reeves variant [62] of the conjugate gradient (CG) algorithm is used
to generate dj1 via simple recursion:
dpy1 = —VV(CEk+1) + Yrd (7.2)
where
_ VV(JJk+1)TVV(J?k+1)
TE = TNV () TV ()

The Polak-Ribiere variant [63] of the conjugate gradient (v;) is defined as

(7.3)

= [VV (2r41) = VV(2)]"VV (2341)
b YV (2)TVV (1)

(7.4)

It is widely agreed that the Polak-Ribiere variant gives better convergence than the Fletcher-Reeves variant, so the
conjugate gradient approach implemented in OPENMD is the Polak-Ribiere variant.

The conjugate gradient method assumes that the conformation is close enough to a local minimum that the potential
energy surface is very nearly quadratic. When the initial structure is far from the minimum, the steepest descent method
can be superior to the conjugate gradient method. Hence, the steepest descent method is often used for the first 10-
100 steps of minimization. Another useful feature of minimization methods in OPENMD is that a modified SHAKE
algorithm can be applied during the minimization to constraint the bond lengths if this is required by the force field.

Meta-data parameters concerning the minimizer are given in Table 7.1

53

Table 7.1: Meta-data Keywords: Energy Minimizer Parameters

keyword

units

use

remarks

minimizer

minimizerMaxIter

minimizerWriteFreq

minimizerStepSize

minimizerFTol

minimizerGTol

minimizerLSTol

minimizerLSMaxIter

string

steps

steps

A

kcal mol !

keal mol~1A™!

kcal mol ™!

steps

selects the minimization
method to be used

Sets the maximum number
of iterations for the energy
minimization

Sets the frequency with
which the
.stat files are writtern

.dump and

during energy minimiza-
tion

Sets the step size for the
line search

Sets the energy tolerance
for stopping the minimzia-
tion.

Sets the gradient tolerance
for stopping the minimiza-
tion.

Sets line search tolerance
for terminating each step of
the minimization.

Sets the maximum number
of iterations for each line
search

either CG (conjugate gradient) or SD
(steepest descent)
The default value is 200

The default value is 0.01

The default value is 108

The default value is 108

The default value is 108

The default value is 50

54

Chapter 8
Analysis of Physical Properties

OPENMD includes a few utility programs which compute properties from the dump files that are generated during a

molecular dynamics simulation. These programs are:

Dump2XYZ Converts an OPENMD dump file into a file suitable for viewing in a molecular dynamics viewer like

Jmol
StaticProps Computes static properties like the pair distribution function, g(r).

DynamicProps Computes time correlation functions like the velocity autocorrelation function, (v(¢) - v(0)), or the
mean square displacement {|r(t) — r(0)|?).

These programs often need to operate on a subset of the data contained within a dump file. For example, if you
want only the oxygen-oxygen pair distribution from a water simulation, or if you want to make a movie including only
the water molecules within a 6 angstrom radius of lipid head groups, you need a way to specify your selection to these
utility programs. OPENMD has a selection syntax which allows you to specify the selection in a compact form in
order to generate only the data you want. For example a common use of the StaticProps command would be:

StaticProps —-i tp4.dump —-—-gofr —--selel="select Ox" —--sele2="select Ox"

This command computes the oxygen-oxygen pair distribution function, goo (), from a file named tp4 . dump. In
order to understand this selection syntax and to make full use of the selection capabilities of the analysis programs, it
is necessary to understand a few of the core concepts that are used to perform simulations.

8.1 Concepts

OPENMD manipulates both traditional atoms as well as some objects that behave like atoms. These objects can
be rigid collections of atoms or atoms which have orientational degrees of freedom. Here is a diagram of the class

heirarchy:

e A StuntDouble is any object that can be manipulated by the integrators and minimizers.
e An Atom is a fundamental point-particle that can be moved around during a simulation.
e A DirectionalAtom is an atom which has orientational as well as translational degrees of freedom.

e A RigidBody is a collection of Atoms or DirectionalAtoms which behaves as a single unit.

55

StuntDouble

Atom RigidBody

DirectionalAtom

Figure 8.1:
The class heirarchy of StuntDoubles in OPENMD-4. The selection syntax allows the user to select any of the objects
that are descended from a StuntDouble.

Every Molecule, Atom and DirectionalAtom in OPENMD have their own names which are specified in the .md
file. In contrast, RigidBodies are denoted by their membership and index inside a particular molecule: [Molecule-
Name]_RB_[index] (the contents inside the brackets depend on the specifics of the simulation). The names of rigid
bodies are generated automatically. For example, the name of the first rigid body in a DMPC molecule is DMPC_RB_0.

8.2 Syntax of the Select Command

The most general form of the select command is: select expression

This expression represents an arbitrary set of StuntDoubles (Atoms or RigidBodies) in OPENMD. Expressions
are composed of either name expressions, index expressions, predefined sets, user-defined expressions, comparison
operators, within expressions, or logical combinations of the above expression types. Expressions can be combined
using parentheses and the Boolean operators.

8.2.1 Logical expressions

The logical operators allow complex queries to be constructed out of simpler ones using the standard boolean connec-

tives and, or, not. Parentheses can be used to alter the precedence of the operators.

logical operator equivalent operator
and “&”’ 66&&77

or W cf [cen

nOt 3 ’7?

56

8.2.2 Name expressions

type of expression examples translation of examples
expression without “” select DMPC select all StuntDoubles belonging to all DMPC
molecules
select C* select all atoms which have atom types beginning with
C
select DMPC_RB_* select all RigidBodies in DMPC molecules (but only
select the rigid bodies, and not the atoms belonging to
them).
expression has one “.” select TIP3P.O_TIP3P select the O_TIP3P atoms belonging to TIP3P
molecules
select DMPC_RB_0.PO4 select the PO4 atoms belonging to the first RigidBody
in each DMPC molecule
select DMPC.20 select the twentieth StuntDouble in each DMPC
molecule
expression has two “.’s select DMPC.DMPC_RB_?.* select all atoms belonging to all rigid bodies within all
DMPC molecules
8.2.3 Index expressions
examples translation of examples
select 20 select all of the StuntDoubles belonging to Molecule 20

select 20 to 30 select all of the StuntDoubles belonging to molecules which have global

indices between 20 (inclusive) and 30 (exclusive)

8.2.4 Predefined sets

keyword description
all select all StuntDoubles
none select none of the StuntDoubles

8.2.5 User-defined expressions

Users can define arbitrary terms to represent groups of StuntDoubles, and then use the define terms in select commands.
The general form for the define command is: define rerm expression

Once defined, the user can specify such terms in boolean expressions

define SSDWATER SSD or SSD1 or SSDRF

select SSDWATER

8.2.6 Comparison expressions

StuntDoubles can be selected by using comparision operators on their properties. The general form for the comparison
command is: a property name, followed by a comparision operator and then a number.

property mass, charge
comparison Operator £4>’7’ 64<’7’ 6‘:37’ 4‘>:’7’ 64<:9” Aé! :93

57

For example, the phrase select mass > 16.0 and charge < -2 wouldselect StuntDoubles which have
mass greater than 16.0 and charges less than -2.

8.2.7 Within expressions

The “within” keyword allows the user to select all StuntDoubles within the specified distance (in Angstroms) from a se-
lection, including the selected atom itself. The general form for within selection is: select within (distance,
expression)

For example, the phrase select within (2.5, P04 or NC4) would select all StuntDoubles which are
within 2.5 angstroms of PO4 or NC4 atoms.

8.3 Tools which use the selection command

8.3.1 Dump2XYZ

Dump2XYZ can transform an OPENMD dump file into a xyz file which can be opened by other molecular dynamics
viewers such as Jmol and VMD. The options available for Dump2XYZ are as follows:

Table 8.1: Dump2XYZ Command-line Options

option verbose option behavior
-h —-help Print help and exit
-V --version Print version and exit
-1 ——input=filename input dump file
-0 ——output=filename output file name
-n ——frame=INT print every n frame (default=‘1")
-W —--water skip the the waters (default=off)
-m —-periodicBox map to the periodic box (default=0ff)
-z ——zconstraint replace the atom types of zconstraint molecules (de-
fault=off)
T ——rigidbody add a pseudo COM atom to rigidbody (default=off)
-t --watertype replace the atom type of water model (default=on)
-b ——basetype using base atom type (default=off)
——repeatX=INT The number of images to repeat in the x direction (de-
fault="0")
——repeatY=INT The number of images to repeat in the y direction (de-
fault=0")
—-—repeatZ=INT The number of images to repeat in the z direction (de-
fault=0")
-S —-—selection=selection By specifying ——selection="selection command”
script with Dump2XYZ, the user can select an arbitrary set
of StuntDoubles to be converted.
-—originsele By specifying —-originsele="“selection com-
mand” with Dump2XYZ, the user can re-center the
origin of the system around a specific StuntDouble

58

Table 8.1: Dump2XYZ Command-line Options

option verbose option behavior

——refsele In order to rotate the system, ——originsele and
-—refsele must be given to define the new coor-
dinate set. A StuntDouble which contains a dipole
(the direction of the dipole is always (0, 0, 1) in body
frame) is specified by ——originsele. The new x-z
plane is defined by the direction of the dipole and the
StuntDouble is specified by ——refsele.

8.3.2 StaticProps

StaticProps can compute properties which are averaged over some or all of the configurations that are contained
within a dump file. The most common example of a static property that can be computed is the pair distribution
function between atoms of type A and other atoms of type B, gap(r). StaticProps can also be used to compute the
density distributions of other molecules in a reference frame fixed fo the body-fixed reference frame of a selected atom
or rigid body.

There are five seperate radial distribution functions availiable in OPENMD. Since every radial distrbution function
invlove the calculation between pairs of bodies, ——selel and ——sele2 must be specified to tell StaticProps which

bodies to include in the calculation.

——gofr Computes the pair distribution function,

-—r_theta Computes the angle-dependent pair distribution function. The angle is defined by the intermolecular
vector 7 and z-axis of Directional Atom A,

gap(r,cosf) = —— ZZ(ST—T” (cosb;; — cos b))
PB Na i€AjEB

-—r_omega Computes the angle-dependent pair distribution function. The angle is defined by the z-axes of the two
Directional Atoms A and B.

gap(r,cosw) N E E §(r — ri;)0(cosw;; — cosw))
pB A i€AjEB

——theta_omega Computes the pair distribution in the angular space 6, w defined by the two angles mentioned
above.

gap(cosf,cosw) = —— Z Z cos;; — cos8)d(cosw;j — cosw))
i€AjeB

——gxyz Calculates the density distribution of particles of type B in the body frame of particle A. Therefore, ——originsele
and ——-refsele must be given to define A’s internal coordinate set as the reference frame for the calculation.

The vectors (and angles) associated with these angular pair distribution functions are most easily seen in the figure
below:

59

__

Figure 8.2:
Any two directional objects (DirectionalAtoms and RigidBodies) have a set of two angles (6, and w) between the
z-axes of their body-fixed frames.

The options available for StaticProps are as follows:

Table 8.2: StaticProps Command-line Options

option verbose option behavior

-h --help Print help and exit

-V —--version Print version and exit

-1 ——input=filename input dump file

-0 ——output=filename output file name

-n —-—step=INT process every n frame (default=‘1")

-r ——nrbins=INT number of bins for distance (default=100")

-a —--nanglebins=INT number of bins for cos(angle) (default= ‘50’)

-1 -—length=DOUBLE maximum length (Defaults to 1/2 smallest length of

first frame)

-—-selel=selection script select the first StuntDouble set
—-sele2=selection script select the second StuntDouble set
—-sele3=selection script select the third StuntDouble set
--refsele=selection script select reference (can only be used with ——gxyz)
——molname=STRING molecule name
——begin=INT begin internal index
——end=INT end internal index

One option from the following group of options is required:

-—gofr g(r)

--r_theta g(r, cos(0))

--r_omega g(r,cos(w))

-—theta_omega g(cos(0), cos(w))

--gxyz 9(z,y,2)

--p2 P, order parameter (——selel and ——sele2 must be
specified)

-—scd Scp order parameter(either ——selel, —-sele?2,

——sele3 are specified or ——molname, ——begin,

——end are specified)

60

Table 8.2: StaticProps Command-line Options

option verbose option behavior
-—density density plot (——selel must be specified)
--slab_density slab density (-—selel must be specified)

8.3.3 DynamicProps

DynamicProps computes time correlation functions from the configurations stored in a dump file. Typical examples
of time correlation functions are the mean square displacement and the velocity autocorrelation functions. Once again,
the selection syntax can be used to specify the StuntDoubles that will be used for the calculation. A general time

correlation function can be thought of as:
Cap(t) = (@a(t) - v5(0)) 8.1)

where @4 (t) is a vector property associated with an atom of type A at time ¢, and U5 (') is a different vector property
associated with an atom of type B at a different time ¢’. In most autocorrelation functions, the vector properties (¥ and
1) and the types of atoms (A and B) are identical, and the three calculations built in to DynamicProps make these
assumptions. It is possible, however, to make simple modifications to the DynamicProps code to allow the use of
cross time correlation functions (i.e. with different vectors). The ability to use two selection scripts to select different
types of atoms is already present in the code.

The options available for DynamicProps are as follows:

Table 8.3: DynamicProps Command-line Options

option verbose option behavior
-h --help Print help and exit
-V -—version Print version and exit
-i ——input=filename input dump file
-0 -—output=filename output file name
—-selel=selection script select first StuntDouble set
-—-sele2=selection script select second StuntDouble set (if sele2 is not set, use

script from selel)

One option from the following group of options is required:

T —-—rcorr compute mean square displacement
-V —--vcorr compute velocity correlation function
-d -—dcorr compute dipole correlation function

61

62

Chapter 9
Preparing Input Configurations

OPENMD version 4 comes with a few utility programs to aid in setting up initial configuration and meta-data files.
Usually, a user is interested in either importing a structure from some other format (usually XYZ or PDB), or in
building an initial configuration in some perfect crystalline lattice. The programs bundled with OPENMD which
import coordinate files are atom2md, xyz2md, and pdb2md. The programs which generate perfect crystals are
called SimpleBuilder and RandomBuilder

9.1 atom2md, xyz2md, and pdb2md

atom2md, xyz2md, and pdb2md attempt to construct . md files from a single file containing only atomic coordinate
information. To do this task, they make reasonable guesses about bonding from the distance between atoms in the
coordinate, and attempt to identify other terms in the potential energy from the topology of the graph of discovered
bonds. This procedure is not perfect, and the user should check the discovered bonding topology that is contained in
the <MetaData> block in the file that is generated.

Typically, the user would run:

atomZ2md <input spec> [Options]

Here <input spec> can be used to specify the type of file being used for configuration input. lL.e. using
—-ipdb specifies that the input file contains coordinate information in the PDB format.

The options available for atom2md are as follows:

Table 9.1: atom2md Command-line Options

option behavior

-f# Start import at molecule # specified

-1# End import at molecule # specified

-t All input files describe a single molecule

-e Continue with next object after error, if possible
-z Compress the output with gzip

-H Outputs this help text

-Hxxx (xxx is file format ID e.g. -Hpdb) gives format info
-Hall Outputs details of all formats

-V Outputs version number

The following file formats are recognized:

63

Table 9.1: atom2md Command-line Options

option behavior

ent Protein Data Bank format

in OPENMD cartesian coordinates format

pdb Protein Data Bank format

prep Amber Prep format

XyZ XYZ cartesian coordinates format

More specific info and options are available using -H<format-type>, e.g. -Hpdb

The specific programs xyz2md and pdb2md are identical to at om2md, but they use a specific input format and
do not expect the the input specifier on the command line.

9.2 SimpleBuilder

SimpleBuilder creates simple lattice structures. It requires an initial, but skeletal OPENMD file to specify the
components that are to be placed on the lattice. The total number of placed molecules will be shown at the top of the
configuration file that is generated, and that number may not match the original meta-data file, so a new meta-data file
is also generated which matches the lattice structure.

The options available for SimpleBuilder are as follows:

Table 9.2: SimpleBuilder Command-line Options

option verbose option behavior

-h --help Print help and exit

-V —--version Print version and exit

-0 ——output=STRING Output file name
——density=DOUBLE density (g cm™3)
——nx=INT number of unit cells in x
--ny=INT number of unit cells in y
—-nz=INT number of unit cells in z

9.3 Hydro

Hydro generates resistance tensor (.diff) files which are required when using the Langevin integrator using com-
plex rigid bodies. Hydro supports two approximate models: the BeadModel and RoughShell. Additionally,
Hydro can generate resistance tensor files using analytic solutions for simple shapes. To generate a .diff file, a meta-
data file is needed as the input file. Since the resistance tensor depends on these quantities, the viscosity of the
solvent and the temperature (t arget Temp) of the system must be defined in meta-data file. If the approximate model
in use is the RoughShell model the beadSize (the diameter of the small beads used to approximate the surface
of the body) must also be specified.
The options available for Hydro are as follows:

64

Table 9.3: Hydro Command-line Options

option verbose option behavior

-h —-help Print help and exit

-V -—version Print version and exit

-i ——input=filename input MetaData (md) file
-0 ——output=STRING Output file name

——-model=STRING

-b ——beads

hydrodynamics model (supports both RoughShell
and BeadModel)

generate the beads only, hydrodynamic calculations
will not be performed (default=off)

65

66

Chapter 10
Parallel Simulation Implementation

Although processor power is continually improving, it is still unreasonable to simulate systems of more than 10,000
atoms on a single processor. To facilitate study of larger system sizes or smaller systems for longer time scales, parallel
methods were developed to allow multiple CPU’s to share the simulation workload. Three general categories of parallel
decomposition methods have been developed: these are the atomic,[64] spatial [65] and force [8] decomposition
methods.

Algorithmically simplest of the three methods is atomic decomposition, where N particles in a simulation are split
among P processors for the duration of the simulation. Computational cost scales as an optimal O(N/P) for atomic
decomposition. Unfortunately, all processors must communicate positions and forces with all other processors at
every force evaluation, leading the communication costs to scale as an unfavorable O(N), independent of the number
of processors. This communication bottleneck led to the development of spatial and force decomposition methods, in
which communication among processors scales much more favorably. Spatial or domain decomposition divides the
physical spatial domain into 3D boxes in which each processor is responsible for calculation of forces and positions of
particles located in its box. Particles are reassigned to different processors as they move through simulation space. To
calculate forces on a given particle, a processor must simply know the positions of particles within some cutoff radius
located on nearby processors rather than the positions of particles on all processors. Both communication between
processors and computation scale as O(N/P) in the spatial method. However, spatial decomposition adds algorithmic
complexity to the simulation code and is not very efficient for small IV, since the overall communication scales as the
surface to volume ratio O(N/P)?/3 in three dimensions.

The parallelization method used in OPENMD is the force decomposition method.[66] Force decomposition assigns
particles to processors based on a block decomposition of the force matrix. Processors are split into an optimally square
grid forming row and column processor groups. Forces are calculated on particles in a given row by particles located
in that processor’s column assignment. One deviation from the algorithm described by Hendrickson et al. is the use
of column ordering based on the row indexes preventing the need for a transpose operation necessitating a second
communication step when gathering the final force components. Force decomposition is less complex to implement
than the spatial method but still scales computationally as O(N/P) and scales as O(N/+/P) in communication cost.
Plimpton has also found that force decompositions scale more favorably than spatial decompositions for systems up
to 10,000 atoms and favorably compete with spatial methods up to 100,000 atoms.[65]

67

68

Chapter 11

Conclusion

We have presented a new parallel simulation program called OPENMD. This program offers some novel capabilities,
but mostly makes available a library of modern object-oriented code for the scientific community to use freely. Notably,
OPENMD can handle symplectic integration of objects (atoms and rigid bodies) which have orientational degrees of
freedom. It can also work with transition metal force fields and point-dipoles. It is capable of scaling across multiple
processors through the use of force based decomposition. It also implements several advanced integrators allowing the
end user control over temperature and pressure. In addition, it is capable of integrating constrained dynamics through
both the RATTLE algorithm and the z-constraint method.

We encourage other researchers to download and apply this program to their own research problems. By making
the code available, we hope to encourage other researchers to contribute their own code and make it a more powerful
package for everyone in the molecular dynamics community to use. All source code for OPENMD is available for

download at http://openmd.net.

69

70

Chapter 12

Acknowledgments

Development of OPENMD was funded by a New Faculty Award from the Camille and Henry Dreyfus Foundation and
by the National Science Foundation under grant CHE-0134881. Computation time was provided by the Notre Dame
Bunch-of-Boxes (B.0.B) computer cluster under NSF grant DMR-0079647.

71

72

Bibliography

[1] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comp. Chem.,
4, 187-217 (1983).

[2] A.D. MacKerell, Jr., B. Brooks, C. L. Brooks III, L. Nilsson, B. Roux, Y. Won, and M. Karplus In The Encyclo-
pedia of Computational Chemistry, P. v. R. Schleyer, et al., Ed., Vol. 1; John Wiley & Sons, New York, 1998;
pages 271-277.

[3] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham III, S. DeBolt, D. Ferguson, G. Seibel,
and P. Kollman, Comp. Phys. Comm., 91, 1-41 (1995).

[4] H.J. C. Berendsen, D. van der Spoel, and R. van Drunen, Comp. Phys. Comm., 91, 43-56 (1995).
[5] E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Modelling, 7, 306-317 (2001).

[6] W. Smith and T. Forester, J. Mol. Graphics, 14(3), 136—-141 (1996).

[7] J. W. Ponder and F. M. Richards, J. Comp. Chem., 8(7), 1016-1024 (1987).

[8] S.J. Plimpton and B. A. Hendrickson In J. Broughton, P. Bristowe, and J. Newsam, Eds., Materials Theory and
Modelling, Vol. 291 of MRS Proceedings, page 37, Pittsburgh, PA, 1993. Materials Research Society.

[9] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan,
and K. Schulten, J. Comp. Phys., 151, 283-312 (1999).

[10] F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson,
and W. C. Still, J. Comp. Chem., 11, 440 (1990).

[11] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, Addison Wesley, San Francisco, 3rd ed., 2001.
[12] M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids, Oxford University Press, New York, 1987.
[13] D.J. Evans, Mol. Phys., 34, 317-325 (1977).

[14] A. Leach, Molecular Modeling: Principles and Applications, Pearson Educated Limited, Harlow, England, 2nd
ed., 2001.

[15] G. Cevc and D. Marsh, Phospholipid Bilayers, John Wiley & Sons, New York, 1987.
[16] C.J. Fennell and J. D. Gezelter, J. Chem. Phys., 120(19), 9175-9184 (2004).
[17] Y. Liu and T. Ichiye, J. Phys. Chem., 100, 2723-2730 (1996).

[18] M. Martin and J. I. Siepmann, J. Phys. Chem. B, 102, 2569-2577 (1998).

73

[19] D. Bratko, L. Blum, and A. Luzar, J. Chem. Phys., 83(12), 6367-6370 (1985).

[20] L. Blum, F. Vericat, and D. Bratko, J. Chem. Phys., 102(3), 1461-1462 (1995).

[21] Y. Liu and T. Ichiye, Chem. Phys. Lett., 256, 334-340 (1996).

[22] A. Chandra and T. Ichiye, J. Chem. Phys., 111(6), 2701-2709 (1999).

[23] M.-L. Tan, J. T. Fischer, A. Chandra, B. R. Brooks, and T. Ichiye, Chem. Phys. Lett., 376, 646—652 (2003).
[24] G. Hura, J. M. Sorenson, R. M. Glaeser, and T. Head-Gordon, J. Chem. Phys., 113, 9140-9148 (2000).
[25] S.J. Marrink, E. Lindahl, O. Edholm, and A. E. Mark, J. Am. Chem. Soc., 123, 8638-8639 (2001).

[26] H.J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans In Intermolecular Forces, B. Pullman,
Ed.; Reidel, Dordrecht, 1981; page 331.

[27] H.J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem., 91, 6269-6271 (1987).

[28] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys., 79, 926-935
(1983).

[29] M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys., 112(20), 8910-8922 (2000).

[30] M. W. Finnis and J. E. Sinclair, Phil. Mag. A, 50, 45-55 (1984).

[31] F. Ercolessi, M. Parrinello, and E. Tosatti, Phil. Mag. A, 58, 213-226 (1988).

[32] A.P. Sutton and J. Chen, Phil. Mag. Lett., 61, 139-146 (1990).

[33] Y. Qi, T. Cagin, Y. Kimura, and W. A. Goddard III, Phys. Rev. B, 59(5), 3527-3533 (1999).
[34] U. Tartaglino, E. Tosatti, D. Passerone, and F. Ercolessi, Phys. Rev. B, 65, 241406 (2002).
[35] M. S. Daw and M. 1. Baskes, Phys. Rev. B, 29(12), 6443—-6453 (1984).

[36] S. M. Foiles, M. 1. Baskes, and M. S. Daw, Phys. Rev. B, 33(12), 7983 (1986).

[37] R. A. Johnson, Phys. Rev. B, 39(17), 12554 (1989).

[38] J. Lu and J. A. Szpunar, Phil. Mag. A, 75, 1057-1066 (1997).

[39] A. Voter, Intermetallic Compounds: Principles and Practice, 1, 77 (1995).

[40] M. S. Daw, Phys. Rev. B, 39, 7441-7452 (1989).

[41] A. Voter and S. Chen, Mat. Res. Soc. Symp. Proc., 82, 175 (1987).

[42] R.T. Cygan, J.-J. Liang, and A. G. Kalinichev, J. Phys. Chem. B, 108, 1255-1266 (2004).
[43] D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem. Phys., 110(17), 8254-8282 (1999).
[44] R. E. Jones and D. H. Templeton, J. Chem. Phys., 25(5), 1062—1063 (1956).

[45] D. M. Heyes, J. Chem. Phys., 74(3), 1924-1929 (1981).

[46] C.J. Fennell and J. D. Gezelter, J. Chem. Phys., 124(23), 234104(12) (2006).

74

[47] A.Dullweber, B. Leimkuhler, and R. McLachlan, J. Chem. Phys., 107(15), 5840-5851 (1997).

[48] D. Frenkel and B. Smit, Understanding Molecular Simulation : From Algorithms to Applications, Academic
Press, New York, 1996.

[49] A.Kol, B. B. Laird, and B. J. Leimkuhler, J. Chem. Phys., 107(7), 2580-2588 (1997).
[50] W. G. Hoover, Phys. Rev. A, 31, 1695 (1985).

[51] S. Melchionna, G. Ciccotti, and B. L. Holian, Mol. Phys., 78, 533-544 (1993).

[52] H. C. Andersen, J. Comp. Phys., 52, 24-34 (1983).

[53] J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comp. Phys., 23, 327-341 (1977).
[54] B. Roux and M. Karplus, J. Phys. Chem., 95(15), 4856-4868 (1991).

[55] S.J. Marrink and H. J. C. Berendsen, J. Phys. Chem., 98(15), 4155-4168 (1994).

[56] H. Grubmuller, B. Heymann, and P. Tavan, Science, 271, 997-999 (1996).

[57] D. Frenkel and A.J. C. Ladd, J. Chem. Phys., 81(7), 3188-3193 (1984).

[58] J. Hermans, A. Pathiaseril, and A. Anderson, J. Am. Chem. Soc., 110, 5982-5986 (1988).
[59] E.J. Meijer, D. Frenkel, R. A. LeSar, and A. J. C. Ladd, J. Chem. Phys., 92(12), 7570-7575 (1990).
[60] L. A. Baez and P. Clancy, Mol. Phys., 86(3), 385-396 (1995).

[61] M. J. Vlot, J. Huinink, and J. P. van der Eerden, J. Chem. Phys., 110(1), 55-61 (1999).
[62] R. Fletcher and C. M. Reeves, Comput. J., 7(2), 149-154 (1964).

[63] E. Polak and G. Ribiere, Rev. Fr. Inform. Rech. Oper., 16-R1, 35-43 (1969).

[64] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker, Solving Promblems on
Concurrent Processors, Vol. 1, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[65] S. Plimpton, J. Comp. Phys., 117, 1-19 (1995).

[66] B. Hendrickson and S. Plimpton, Journal of Parallel and Distributed Computing, 27, 15-25 (1995).

75

