OpenMD 3.1
Molecular Dynamics in the Open
Loading...
Searching...
No Matches
ChebyshevU.hpp
Go to the documentation of this file.
1/*
2 * Copyright (c) 2004-present, The University of Notre Dame. All rights
3 * reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright notice,
12 * this list of conditions and the following disclaimer in the documentation
13 * and/or other materials provided with the distribution.
14 *
15 * 3. Neither the name of the copyright holder nor the names of its
16 * contributors may be used to endorse or promote products derived from
17 * this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
32 * research, please cite the appropriate papers when you publish your
33 * work. Good starting points are:
34 *
35 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
36 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
37 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
38 * [4] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
39 * [5] Kuang & Gezelter, Mol. Phys., 110, 691-701 (2012).
40 * [6] Lamichhane, Gezelter & Newman, J. Chem. Phys. 141, 134109 (2014).
41 * [7] Lamichhane, Newman & Gezelter, J. Chem. Phys. 141, 134110 (2014).
42 * [8] Bhattarai, Newman & Gezelter, Phys. Rev. B 99, 094106 (2019).
43 */
44
45/**
46 * @file ChebyshevU.hpp
47 * @author teng lin
48 * @date 11/16/2004
49 * @version 1.0
50 */
51
52#ifndef MATH_CHEBYSHEVU_HPP
53#define MATH_CHEBYSHEVU_HPP
54
55#include <cassert>
56#include <vector>
57
58#include "math/Polynomial.hpp"
59
60namespace OpenMD {
61
62 /**
63 * @class ChebyshevU
64 * A collection of Chebyshev Polynomials.
65 * @todo document
66 */
67 class ChebyshevU {
68 public:
69 ChebyshevU(int maxPower);
70 virtual ~ChebyshevU() {}
71 /**
72 * Calculates the value of the nth Chebyshev Polynomial evaluated at the
73 * given x value.
74 * @return The value of the nth Chebyshev Polynomial evaluates at the given
75 * x value
76 * @param n
77 * @param x the value of the independent variable for the nth Chebyshev
78 * Polynomial function
79 */
80
81 RealType evaluate(int n, RealType x) {
82 assert(n <= maxPower_ && n >= 0);
83 return polyList_[n].evaluate(x);
84 }
85
86 /**
87 * Returns the first derivative of the nth Chebyshev Polynomial.
88 * @return the first derivative of the nth Chebyshev Polynomial
89 * @param n
90 * @param x the value of the independent variable for the nth Chebyshev
91 * Polynomial function
92 */
93 RealType evaluateDerivative(int n, RealType x) {
94 assert(n <= maxPower_ && n >= 0);
95 return polyList_[n].evaluateDerivative(x);
96 }
97
98 /**
99 * Returns the nth Chebyshev Polynomial
100 * @return the nth Chebyshev Polynomial
101 * @param n
102 */
104 assert(n <= maxPower_ && n >= 0);
105 return polyList_[n];
106 }
107
108 protected:
109 std::vector<DoublePolynomial> polyList_;
110 void GeneratePolynomials(int maxPower);
111
112 private:
113 void GenerateFirstTwoTerms();
114
115 int maxPower_;
116 };
117} // namespace OpenMD
118
119#endif // MATH_CHEBYSHEVU_HPP
A collection of Chebyshev Polynomials.
RealType evaluateDerivative(int n, RealType x)
Returns the first derivative of the nth Chebyshev Polynomial.
const DoublePolynomial & getChebyshevPolynomial(int n) const
Returns the nth Chebyshev Polynomial.
RealType evaluate(int n, RealType x)
Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value.
This basic Periodic Table class was originally taken from the data.cpp file in OpenBabel.