OpenMD 3.1
Molecular Dynamics in the Open
Loading...
Searching...
No Matches
LegendrePolynomial.hpp
Go to the documentation of this file.
1/*
2 * Copyright (c) 2004-present, The University of Notre Dame. All rights
3 * reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright notice,
12 * this list of conditions and the following disclaimer in the documentation
13 * and/or other materials provided with the distribution.
14 *
15 * 3. Neither the name of the copyright holder nor the names of its
16 * contributors may be used to endorse or promote products derived from
17 * this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
32 * research, please cite the appropriate papers when you publish your
33 * work. Good starting points are:
34 *
35 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
36 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
37 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
38 * [4] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
39 * [5] Kuang & Gezelter, Mol. Phys., 110, 691-701 (2012).
40 * [6] Lamichhane, Gezelter & Newman, J. Chem. Phys. 141, 134109 (2014).
41 * [7] Lamichhane, Newman & Gezelter, J. Chem. Phys. 141, 134110 (2014).
42 * [8] Bhattarai, Newman & Gezelter, Phys. Rev. B 99, 094106 (2019).
43 */
44
45/**
46 * @file LegendrePolynomial.hpp
47 * @author teng lin
48 * @date 11/16/2004
49 * @version 1.0
50 */
51
52#ifndef MATH_LEGENDREPOLYNOMIALS_HPP
53#define MATH_LEGENDREPOLYNOMIALS_HPP
54
55#include <cassert>
56#include <vector>
57
58#include "math/Polynomial.hpp"
59
60namespace OpenMD {
61
62 /**
63 * @class LegendrePolynomial
64 * A collection of Legendre Polynomials.
65 * @todo document
66 */
68 public:
69 LegendrePolynomial(int maxPower);
70 virtual ~LegendrePolynomial() {}
71 /**
72 * Calculates the value of the nth Legendre Polynomial evaluated at the
73 * given x value.
74 * @return The value of the nth Legendre Polynomial evaluates at the given x
75 * value
76 * @param n
77 * @param x the value of the independent variable for the nth Legendre
78 * Polynomial function
79 */
80
81 RealType evaluate(int n, RealType x) {
82 assert(n <= maxPower_ && n >= 0);
83 return polyList_[n].evaluate(x);
84 }
85
86 /**
87 * Returns the first derivative of the nth Legendre Polynomial.
88 * @return the first derivative of the nth Legendre Polynomial
89 * @param n
90 * @param x the value of the independent variable for the nth Legendre
91 * Polynomial function
92 */
93 RealType evaluateDerivative(int n, RealType x) {
94 assert(n <= maxPower_ && n >= 0);
95 return polyList_[n].evaluateDerivative(x);
96 }
97
98 /**
99 * Returns the nth Legendre Polynomial
100 * @return the nth Legendre Polynomial
101 * @param n
102 */
104 assert(n <= maxPower_ && n >= 0);
105 return polyList_[n];
106 }
107
108 protected:
109 std::vector<DoublePolynomial> polyList_;
110
111 private:
112 void GeneratePolynomials(int maxPower);
113 virtual void GenerateFirstTwoTerms();
114
115 int maxPower_;
116 };
117} // namespace OpenMD
118
119#endif
A collection of Legendre Polynomials.
RealType evaluate(int n, RealType x)
Calculates the value of the nth Legendre Polynomial evaluated at the given x value.
const DoublePolynomial & getLegendrePolynomial(int n) const
Returns the nth Legendre Polynomial.
RealType evaluateDerivative(int n, RealType x)
Returns the first derivative of the nth Legendre Polynomial.
This basic Periodic Table class was originally taken from the data.cpp file in OpenBabel.