OpenMD 3.1
Molecular Dynamics in the Open
Loading...
Searching...
No Matches
RealSphericalHarmonic.cpp
1/*
2 * Copyright (c) 2004-present, The University of Notre Dame. All rights
3 * reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright notice,
12 * this list of conditions and the following disclaimer in the documentation
13 * and/or other materials provided with the distribution.
14 *
15 * 3. Neither the name of the copyright holder nor the names of its
16 * contributors may be used to endorse or promote products derived from
17 * this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
32 * research, please cite the appropriate papers when you publish your
33 * work. Good starting points are:
34 *
35 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
36 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
37 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
38 * [4] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
39 * [5] Kuang & Gezelter, Mol. Phys., 110, 691-701 (2012).
40 * [6] Lamichhane, Gezelter & Newman, J. Chem. Phys. 141, 134109 (2014).
41 * [7] Lamichhane, Newman & Gezelter, J. Chem. Phys. 141, 134110 (2014).
42 * [8] Bhattarai, Newman & Gezelter, Phys. Rev. B 99, 094106 (2019).
43 */
44
46
47#include <cmath>
48#include <cstdio>
49#include <limits>
50
51using namespace OpenMD;
52
53RealSphericalHarmonic::RealSphericalHarmonic() {}
54
55RealType RealSphericalHarmonic::getValueAt(RealType costheta, RealType phi) {
56 RealType p, phase;
57
58 // associated Legendre polynomial
59 p = LegendreP(L, M, costheta);
60
61 if (functionType == RSH_SIN) {
62 phase = sin((RealType)M * phi);
63 } else {
64 phase = cos((RealType)M * phi);
65 }
66
67 return coefficient * p * phase;
68}
69
70//---------------------------------------------------------------------------//
71//
72// RealType LegendreP (int l, int m, RealType x);
73//
74// Computes the value of the associated Legendre polynomial P_lm (x)
75// of order l at a given point.
76//
77// Input:
78// l = degree of the polynomial >= 0
79// m = parameter satisfying 0 <= m <= l,
80// x = point in which the computation is performed, range -1 <= x <= 1.
81// Returns:
82// value of the polynomial in x
83//
84//---------------------------------------------------------------------------//
85RealType RealSphericalHarmonic::LegendreP(int l, int m, RealType x) {
86 // check parameters
87 if (m < 0 || m > l || fabs(x) > 1.0) {
88 printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x);
89 // return NAN;
90 return std::numeric_limits<RealType>::quiet_NaN();
91 }
92
93 RealType pmm = 1.0;
94 if (m > 0) {
95 RealType h = sqrt((1.0 - x) * (1.0 + x)), f = 1.0;
96 for (int i = 1; i <= m; i++) {
97 pmm *= -f * h;
98 f += 2.0;
99 }
100 }
101 if (l == m)
102 return pmm;
103 else {
104 RealType pmmp1 = x * (2 * m + 1) * pmm;
105 if (l == (m + 1))
106 return pmmp1;
107 else {
108 RealType pll = 0.0;
109 for (int ll = m + 2; ll <= l; ll++) {
110 pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m);
111 pmm = pmmp1;
112 pmmp1 = pll;
113 }
114 return pll;
115 }
116 }
117}
This basic Periodic Table class was originally taken from the data.cpp file in OpenBabel.