ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/applications/dynamicProps/EnergyCorrFunc.cpp
Revision: 1313
Committed: Wed Oct 22 20:01:49 2008 UTC (16 years, 7 months ago) by gezelter
Original Path: trunk/src/applications/dynamicProps/EnergyCorrFunc.cpp
File size: 9264 byte(s)
Log Message:
General bug-fixes and other changes to make particle pots work with
the Helfand Energy correlation function

File Contents

# User Rev Content
1 chuckv 1246 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /* Uses the Helfand-moment method for calculating thermal
43     * conductivity using the relation kappa = (N,V)lim(t)->inf 1/(2*k_B*T^2*V*t) <[G_K(t)-G_K(0)]^2>
44     * where G_K is the Helfand moment for thermal conductivity definded as
45     * G_K(t) = sum_{a=1}{^N} x_a(E_a-<E_a>) and E_a is defined to be
46     * E_a = p_2^2/(2*m)+1/2 sum_{b.ne.a} u(r_ab) where p is momentum and u is pot energy for the
47     * particle pair a-b. This routine calculates E_a, <E_a> and does the correlation
48     * <[G_K(t)-G_K(0)]^2>.
49     * See Viscardy et al. JCP 126, 184513 (2007)
50     */
51    
52    
53    
54     #include "applications/dynamicProps/EnergyCorrFunc.hpp"
55     #include "utils/OOPSEConstant.hpp"
56     #include "brains/ForceManager.hpp"
57     #include "brains/Thermo.hpp"
58    
59     namespace oopse {
60    
61     // We need all of the positions, velocities, etc. so that we can
62     // recalculate pressures and actions on the fly:
63     EnergyCorrFunc::EnergyCorrFunc(SimInfo* info, const std::string& filename,
64     const std::string& sele1,
65     const std::string& sele2)
66     : FrameTimeCorrFunc(info, filename, sele1, sele2,
67     DataStorage::dslPosition |
68     DataStorage::dslVelocity |
69     DataStorage::dslForce |
70     DataStorage::dslTorque |
71     DataStorage::dslParticlePot ){
72    
73     setCorrFuncType("EnergyCorrFunc");
74     setOutputName(getPrefix(dumpFilename_) + ".moment");
75     histogram_.resize(nTimeBins_);
76     count_.resize(nTimeBins_);
77     }
78    
79     void EnergyCorrFunc::correlateFrames(int frame1, int frame2) {
80     Snapshot* snapshot1 = bsMan_->getSnapshot(frame1);
81     Snapshot* snapshot2 = bsMan_->getSnapshot(frame2);
82     assert(snapshot1 && snapshot2);
83    
84     RealType time1 = snapshot1->getTime();
85     RealType time2 = snapshot2->getTime();
86    
87     int timeBin = int ((time2 - time1) /deltaTime_ + 0.5);
88    
89 gezelter 1313 Vector3d G_t_frame1 = G_t_[frame1];
90     Vector3d G_t_frame2 = G_t_[frame2];
91    
92    
93     RealType diff_x = G_t_frame1.x()-G_t_frame2.x();
94     RealType diff_x_sq = diff_x * diff_x;
95    
96     RealType diff_y = G_t_frame1.y()-G_t_frame2.y();
97     RealType diff_y_sq = diff_y * diff_y;
98    
99     RealType diff_z = G_t_frame1.z()-G_t_frame2.z();
100     RealType diff_z_sq = diff_z*diff_z;
101    
102     histogram_[timeBin][0] += diff_x_sq;
103     histogram_[timeBin][1] += diff_y_sq;
104     histogram_[timeBin][2] += diff_z_sq;
105    
106     count_[timeBin]++;
107    
108 chuckv 1246 }
109    
110     void EnergyCorrFunc::postCorrelate() {
111     for (int i =0 ; i < nTimeBins_; ++i) {
112     if (count_[i] > 0) {
113     histogram_[i] /= count_[i];
114     }
115     }
116     }
117    
118     void EnergyCorrFunc::preCorrelate() {
119     // Fill the histogram with empty 3x3 matrices:
120     std::fill(histogram_.begin(), histogram_.end(), 0.0);
121     // count array set to zero
122     std::fill(count_.begin(), count_.end(), 0);
123    
124     SimInfo::MoleculeIterator mi;
125     Molecule::IntegrableObjectIterator mj;
126     Molecule* mol;
127     Molecule::AtomIterator ai;
128     Atom* atom;
129     std::vector<RealType > particleEnergies;
130    
131     // We'll need the force manager to compute forces for the average pressure
132     ForceManager* forceMan = new ForceManager(info_);
133    
134     forceMan->init();
135 gezelter 1313
136 chuckv 1246 // We'll need thermo to compute the pressures from the virial
137     Thermo* thermo = new Thermo(info_);
138    
139     // prepare the averages
140     RealType pSum = 0.0;
141     RealType vSum = 0.0;
142     int nsamp = 0;
143    
144     // dump files can be enormous, so read them in block-by-block:
145     int nblocks = bsMan_->getNBlocks();
146     bool firsttime = true;
147 chuckv 1247 int junkframe = 0;
148 chuckv 1246 for (int i = 0; i < nblocks; ++i) {
149     bsMan_->loadBlock(i);
150     assert(bsMan_->isBlockActive(i));
151     SnapshotBlock block1 = bsMan_->getSnapshotBlock(i);
152     for (int j = block1.first; j < block1.second; ++j) {
153    
154     // go snapshot-by-snapshot through this block:
155     Snapshot* snap = bsMan_->getSnapshot(j);
156 gezelter 1249
157 chuckv 1246 // update the positions and velocities of the atoms belonging
158     // to rigid bodies:
159 gezelter 1249
160 chuckv 1246 updateFrame(j);
161 gezelter 1249
162 chuckv 1246 // do the forces:
163 gezelter 1249
164     forceMan->calcForces(true, true);
165    
166 chuckv 1246 int index = 0;
167 gezelter 1249
168 chuckv 1246 for (mol = info_->beginMolecule(mi); mol != NULL;
169 gezelter 1249 mol = info_->nextMolecule(mi)) {
170 chuckv 1246 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
171     RealType mass = atom->getMass();
172     Vector3d vel = atom->getVel();
173 gezelter 1249 RealType kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
174     vel[2]*vel[2]);
175 gezelter 1313 RealType potential = atom->getParticlePot();
176     RealType eatom = (kinetic + potential)/2.0;
177 chuckv 1246 particleEnergies.push_back(eatom);
178     if(firsttime)
179 gezelter 1249 {
180     AvgE_a_.push_back(eatom);
181     } else {
182 chuckv 1246 /* We assume the the number of atoms does not change.*/
183     AvgE_a_[index] += eatom;
184     }
185     index++;
186     }
187     }
188     firsttime = false;
189     E_a_.push_back(particleEnergies);
190     }
191 chuckv 1247
192 chuckv 1246 bsMan_->unloadBlock(i);
193     }
194    
195 gezelter 1249 int nframes = bsMan_->getNFrames();
196     for (int i = 0; i < AvgE_a_.size(); i++){
197     AvgE_a_[i] /= nframes;
198     }
199 chuckv 1246
200 gezelter 1249 int frame = 0;
201 chuckv 1246
202 gezelter 1249 // Do it again to compute G^(kappa)(t) for x,y,z
203     for (int i = 0; i < nblocks; ++i) {
204     bsMan_->loadBlock(i);
205     assert(bsMan_->isBlockActive(i));
206     SnapshotBlock block1 = bsMan_->getSnapshotBlock(i);
207     for (int j = block1.first; j < block1.second; ++j) {
208 chuckv 1246
209 gezelter 1249 // go snapshot-by-snapshot through this block:
210     Snapshot* snap = bsMan_->getSnapshot(j);
211    
212     // update the positions and velocities of the atoms belonging
213     // to rigid bodies:
214    
215     updateFrame(j);
216    
217     // this needs to be updated to the frame value:
218     particleEnergies = E_a_[j];
219    
220     int thisAtom = 0;
221     Vector3d G_t;
222    
223     for (mol = info_->beginMolecule(mi); mol != NULL;
224     mol = info_->nextMolecule(mi)) {
225     for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
226    
227     Vector3d pos = atom->getPos();
228    
229     G_t[0] += pos.x()*(particleEnergies[thisAtom]-AvgE_a_[thisAtom]);
230     G_t[1] += pos.y()*(particleEnergies[thisAtom]-AvgE_a_[thisAtom]);
231     G_t[2] += pos.z()*(particleEnergies[thisAtom]-AvgE_a_[thisAtom]);
232    
233     thisAtom++;
234     }
235     }
236    
237     G_t_.push_back(G_t);
238 gezelter 1313 //std::cerr <<"Frame: " << j <<"\t" << G_t << std::endl;
239 gezelter 1249 }
240     bsMan_->unloadBlock(i);
241     }
242 chuckv 1246 }
243    
244    
245     void EnergyCorrFunc::writeCorrelate() {
246     std::ofstream ofs(getOutputFileName().c_str());
247    
248     if (ofs.is_open()) {
249    
250     ofs << "#" << getCorrFuncType() << "\n";
251     ofs << "#time\tK_x\tK_y\tK_z\n";
252    
253     for (int i = 0; i < nTimeBins_; ++i) {
254     ofs << time_[i] << "\t" <<
255     histogram_[i].x() << "\t" <<
256     histogram_[i].y() << "\t" <<
257     histogram_[i].z() << "\t" << "\n";
258     }
259    
260     } else {
261     sprintf(painCave.errMsg,
262     "EnergyCorrFunc::writeCorrelate Error: fail to open %s\n", getOutputFileName().c_str());
263     painCave.isFatal = 1;
264     simError();
265     }
266    
267     ofs.close();
268    
269     }
270    
271     }