| 1 |
chuckv |
1246 |
/* |
| 2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
* |
| 4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
|
* that the following conditions are met: |
| 8 |
|
|
* |
| 9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
chuckv |
1246 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
|
* |
| 12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
chuckv |
1246 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
|
* documentation and/or other materials provided with the |
| 15 |
|
|
* distribution. |
| 16 |
|
|
* |
| 17 |
|
|
* This software is provided "AS IS," without a warranty of any |
| 18 |
|
|
* kind. All express or implied conditions, representations and |
| 19 |
|
|
* warranties, including any implied warranty of merchantability, |
| 20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
|
|
* be liable for any damages suffered by licensee as a result of |
| 23 |
|
|
* using, modifying or distributing the software or its |
| 24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
|
|
* damages, however caused and regardless of the theory of liability, |
| 28 |
|
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
|
* such damages. |
| 31 |
gezelter |
1390 |
* |
| 32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
|
|
* research, please cite the appropriate papers when you publish your |
| 34 |
|
|
* work. Good starting points are: |
| 35 |
|
|
* |
| 36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
chuckv |
1246 |
*/ |
| 41 |
|
|
|
| 42 |
|
|
/* Uses the Helfand-moment method for calculating thermal |
| 43 |
|
|
* conductivity using the relation kappa = (N,V)lim(t)->inf 1/(2*k_B*T^2*V*t) <[G_K(t)-G_K(0)]^2> |
| 44 |
|
|
* where G_K is the Helfand moment for thermal conductivity definded as |
| 45 |
|
|
* G_K(t) = sum_{a=1}{^N} x_a(E_a-<E_a>) and E_a is defined to be |
| 46 |
|
|
* E_a = p_2^2/(2*m)+1/2 sum_{b.ne.a} u(r_ab) where p is momentum and u is pot energy for the |
| 47 |
|
|
* particle pair a-b. This routine calculates E_a, <E_a> and does the correlation |
| 48 |
|
|
* <[G_K(t)-G_K(0)]^2>. |
| 49 |
|
|
* See Viscardy et al. JCP 126, 184513 (2007) |
| 50 |
|
|
*/ |
| 51 |
|
|
|
| 52 |
|
|
|
| 53 |
|
|
|
| 54 |
|
|
#include "applications/dynamicProps/EnergyCorrFunc.hpp" |
| 55 |
gezelter |
1390 |
#include "utils/PhysicalConstants.hpp" |
| 56 |
chuckv |
1246 |
#include "brains/ForceManager.hpp" |
| 57 |
|
|
#include "brains/Thermo.hpp" |
| 58 |
|
|
|
| 59 |
gezelter |
1390 |
namespace OpenMD { |
| 60 |
chuckv |
1246 |
|
| 61 |
|
|
// We need all of the positions, velocities, etc. so that we can |
| 62 |
|
|
// recalculate pressures and actions on the fly: |
| 63 |
|
|
EnergyCorrFunc::EnergyCorrFunc(SimInfo* info, const std::string& filename, |
| 64 |
|
|
const std::string& sele1, |
| 65 |
|
|
const std::string& sele2) |
| 66 |
|
|
: FrameTimeCorrFunc(info, filename, sele1, sele2, |
| 67 |
|
|
DataStorage::dslPosition | |
| 68 |
|
|
DataStorage::dslVelocity | |
| 69 |
|
|
DataStorage::dslForce | |
| 70 |
|
|
DataStorage::dslTorque | |
| 71 |
|
|
DataStorage::dslParticlePot ){ |
| 72 |
|
|
|
| 73 |
|
|
setCorrFuncType("EnergyCorrFunc"); |
| 74 |
|
|
setOutputName(getPrefix(dumpFilename_) + ".moment"); |
| 75 |
|
|
histogram_.resize(nTimeBins_); |
| 76 |
|
|
count_.resize(nTimeBins_); |
| 77 |
|
|
} |
| 78 |
|
|
|
| 79 |
|
|
void EnergyCorrFunc::correlateFrames(int frame1, int frame2) { |
| 80 |
|
|
Snapshot* snapshot1 = bsMan_->getSnapshot(frame1); |
| 81 |
|
|
Snapshot* snapshot2 = bsMan_->getSnapshot(frame2); |
| 82 |
|
|
assert(snapshot1 && snapshot2); |
| 83 |
|
|
|
| 84 |
|
|
RealType time1 = snapshot1->getTime(); |
| 85 |
|
|
RealType time2 = snapshot2->getTime(); |
| 86 |
|
|
|
| 87 |
|
|
int timeBin = int ((time2 - time1) /deltaTime_ + 0.5); |
| 88 |
|
|
|
| 89 |
gezelter |
1313 |
Vector3d G_t_frame1 = G_t_[frame1]; |
| 90 |
|
|
Vector3d G_t_frame2 = G_t_[frame2]; |
| 91 |
|
|
|
| 92 |
|
|
|
| 93 |
|
|
RealType diff_x = G_t_frame1.x()-G_t_frame2.x(); |
| 94 |
|
|
RealType diff_x_sq = diff_x * diff_x; |
| 95 |
|
|
|
| 96 |
|
|
RealType diff_y = G_t_frame1.y()-G_t_frame2.y(); |
| 97 |
|
|
RealType diff_y_sq = diff_y * diff_y; |
| 98 |
|
|
|
| 99 |
|
|
RealType diff_z = G_t_frame1.z()-G_t_frame2.z(); |
| 100 |
|
|
RealType diff_z_sq = diff_z*diff_z; |
| 101 |
|
|
|
| 102 |
|
|
histogram_[timeBin][0] += diff_x_sq; |
| 103 |
|
|
histogram_[timeBin][1] += diff_y_sq; |
| 104 |
|
|
histogram_[timeBin][2] += diff_z_sq; |
| 105 |
|
|
|
| 106 |
|
|
count_[timeBin]++; |
| 107 |
|
|
|
| 108 |
chuckv |
1246 |
} |
| 109 |
|
|
|
| 110 |
|
|
void EnergyCorrFunc::postCorrelate() { |
| 111 |
|
|
for (int i =0 ; i < nTimeBins_; ++i) { |
| 112 |
|
|
if (count_[i] > 0) { |
| 113 |
|
|
histogram_[i] /= count_[i]; |
| 114 |
|
|
} |
| 115 |
|
|
} |
| 116 |
|
|
} |
| 117 |
|
|
|
| 118 |
|
|
void EnergyCorrFunc::preCorrelate() { |
| 119 |
|
|
// Fill the histogram with empty 3x3 matrices: |
| 120 |
|
|
std::fill(histogram_.begin(), histogram_.end(), 0.0); |
| 121 |
|
|
// count array set to zero |
| 122 |
|
|
std::fill(count_.begin(), count_.end(), 0); |
| 123 |
|
|
|
| 124 |
|
|
SimInfo::MoleculeIterator mi; |
| 125 |
|
|
Molecule::IntegrableObjectIterator mj; |
| 126 |
|
|
Molecule* mol; |
| 127 |
|
|
Molecule::AtomIterator ai; |
| 128 |
|
|
Atom* atom; |
| 129 |
|
|
std::vector<RealType > particleEnergies; |
| 130 |
|
|
|
| 131 |
|
|
// We'll need the force manager to compute forces for the average pressure |
| 132 |
|
|
ForceManager* forceMan = new ForceManager(info_); |
| 133 |
|
|
|
| 134 |
gezelter |
1576 |
forceMan->initialize(); |
| 135 |
gezelter |
1313 |
|
| 136 |
chuckv |
1246 |
// We'll need thermo to compute the pressures from the virial |
| 137 |
|
|
Thermo* thermo = new Thermo(info_); |
| 138 |
|
|
|
| 139 |
|
|
// prepare the averages |
| 140 |
|
|
RealType pSum = 0.0; |
| 141 |
|
|
RealType vSum = 0.0; |
| 142 |
|
|
int nsamp = 0; |
| 143 |
|
|
|
| 144 |
|
|
// dump files can be enormous, so read them in block-by-block: |
| 145 |
|
|
int nblocks = bsMan_->getNBlocks(); |
| 146 |
|
|
bool firsttime = true; |
| 147 |
chuckv |
1247 |
int junkframe = 0; |
| 148 |
chuckv |
1246 |
for (int i = 0; i < nblocks; ++i) { |
| 149 |
|
|
bsMan_->loadBlock(i); |
| 150 |
|
|
assert(bsMan_->isBlockActive(i)); |
| 151 |
|
|
SnapshotBlock block1 = bsMan_->getSnapshotBlock(i); |
| 152 |
|
|
for (int j = block1.first; j < block1.second; ++j) { |
| 153 |
|
|
|
| 154 |
|
|
// go snapshot-by-snapshot through this block: |
| 155 |
|
|
Snapshot* snap = bsMan_->getSnapshot(j); |
| 156 |
gezelter |
1249 |
|
| 157 |
chuckv |
1246 |
// update the positions and velocities of the atoms belonging |
| 158 |
|
|
// to rigid bodies: |
| 159 |
gezelter |
1249 |
|
| 160 |
chuckv |
1246 |
updateFrame(j); |
| 161 |
gezelter |
1249 |
|
| 162 |
chuckv |
1246 |
// do the forces: |
| 163 |
gezelter |
1249 |
|
| 164 |
gezelter |
1464 |
forceMan->calcForces(); |
| 165 |
gezelter |
1249 |
|
| 166 |
chuckv |
1246 |
int index = 0; |
| 167 |
gezelter |
1249 |
|
| 168 |
chuckv |
1246 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 169 |
gezelter |
1249 |
mol = info_->nextMolecule(mi)) { |
| 170 |
chuckv |
1246 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
| 171 |
|
|
RealType mass = atom->getMass(); |
| 172 |
|
|
Vector3d vel = atom->getVel(); |
| 173 |
gezelter |
1249 |
RealType kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + |
| 174 |
gezelter |
1390 |
vel[2]*vel[2]) / PhysicalConstants::energyConvert; |
| 175 |
gezelter |
1313 |
RealType potential = atom->getParticlePot(); |
| 176 |
|
|
RealType eatom = (kinetic + potential)/2.0; |
| 177 |
chuckv |
1246 |
particleEnergies.push_back(eatom); |
| 178 |
|
|
if(firsttime) |
| 179 |
gezelter |
1249 |
{ |
| 180 |
|
|
AvgE_a_.push_back(eatom); |
| 181 |
|
|
} else { |
| 182 |
chuckv |
1246 |
/* We assume the the number of atoms does not change.*/ |
| 183 |
|
|
AvgE_a_[index] += eatom; |
| 184 |
|
|
} |
| 185 |
|
|
index++; |
| 186 |
|
|
} |
| 187 |
|
|
} |
| 188 |
|
|
firsttime = false; |
| 189 |
|
|
E_a_.push_back(particleEnergies); |
| 190 |
|
|
} |
| 191 |
chuckv |
1247 |
|
| 192 |
chuckv |
1246 |
bsMan_->unloadBlock(i); |
| 193 |
|
|
} |
| 194 |
|
|
|
| 195 |
gezelter |
1249 |
int nframes = bsMan_->getNFrames(); |
| 196 |
|
|
for (int i = 0; i < AvgE_a_.size(); i++){ |
| 197 |
|
|
AvgE_a_[i] /= nframes; |
| 198 |
|
|
} |
| 199 |
chuckv |
1246 |
|
| 200 |
gezelter |
1249 |
int frame = 0; |
| 201 |
chuckv |
1246 |
|
| 202 |
gezelter |
1249 |
// Do it again to compute G^(kappa)(t) for x,y,z |
| 203 |
|
|
for (int i = 0; i < nblocks; ++i) { |
| 204 |
|
|
bsMan_->loadBlock(i); |
| 205 |
|
|
assert(bsMan_->isBlockActive(i)); |
| 206 |
|
|
SnapshotBlock block1 = bsMan_->getSnapshotBlock(i); |
| 207 |
|
|
for (int j = block1.first; j < block1.second; ++j) { |
| 208 |
chuckv |
1246 |
|
| 209 |
gezelter |
1249 |
// go snapshot-by-snapshot through this block: |
| 210 |
|
|
Snapshot* snap = bsMan_->getSnapshot(j); |
| 211 |
|
|
|
| 212 |
|
|
// update the positions and velocities of the atoms belonging |
| 213 |
|
|
// to rigid bodies: |
| 214 |
|
|
|
| 215 |
|
|
updateFrame(j); |
| 216 |
|
|
|
| 217 |
|
|
// this needs to be updated to the frame value: |
| 218 |
|
|
particleEnergies = E_a_[j]; |
| 219 |
|
|
|
| 220 |
|
|
int thisAtom = 0; |
| 221 |
|
|
Vector3d G_t; |
| 222 |
|
|
|
| 223 |
|
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 224 |
|
|
mol = info_->nextMolecule(mi)) { |
| 225 |
|
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
| 226 |
|
|
|
| 227 |
|
|
Vector3d pos = atom->getPos(); |
| 228 |
|
|
|
| 229 |
|
|
G_t[0] += pos.x()*(particleEnergies[thisAtom]-AvgE_a_[thisAtom]); |
| 230 |
|
|
G_t[1] += pos.y()*(particleEnergies[thisAtom]-AvgE_a_[thisAtom]); |
| 231 |
|
|
G_t[2] += pos.z()*(particleEnergies[thisAtom]-AvgE_a_[thisAtom]); |
| 232 |
|
|
|
| 233 |
|
|
thisAtom++; |
| 234 |
|
|
} |
| 235 |
|
|
} |
| 236 |
|
|
|
| 237 |
|
|
G_t_.push_back(G_t); |
| 238 |
gezelter |
1313 |
//std::cerr <<"Frame: " << j <<"\t" << G_t << std::endl; |
| 239 |
gezelter |
1249 |
} |
| 240 |
|
|
bsMan_->unloadBlock(i); |
| 241 |
|
|
} |
| 242 |
chuckv |
1246 |
} |
| 243 |
|
|
|
| 244 |
|
|
|
| 245 |
|
|
void EnergyCorrFunc::writeCorrelate() { |
| 246 |
|
|
std::ofstream ofs(getOutputFileName().c_str()); |
| 247 |
|
|
|
| 248 |
|
|
if (ofs.is_open()) { |
| 249 |
|
|
|
| 250 |
|
|
ofs << "#" << getCorrFuncType() << "\n"; |
| 251 |
|
|
ofs << "#time\tK_x\tK_y\tK_z\n"; |
| 252 |
|
|
|
| 253 |
|
|
for (int i = 0; i < nTimeBins_; ++i) { |
| 254 |
|
|
ofs << time_[i] << "\t" << |
| 255 |
|
|
histogram_[i].x() << "\t" << |
| 256 |
|
|
histogram_[i].y() << "\t" << |
| 257 |
|
|
histogram_[i].z() << "\t" << "\n"; |
| 258 |
|
|
} |
| 259 |
|
|
|
| 260 |
|
|
} else { |
| 261 |
|
|
sprintf(painCave.errMsg, |
| 262 |
|
|
"EnergyCorrFunc::writeCorrelate Error: fail to open %s\n", getOutputFileName().c_str()); |
| 263 |
|
|
painCave.isFatal = 1; |
| 264 |
|
|
simError(); |
| 265 |
|
|
} |
| 266 |
|
|
|
| 267 |
|
|
ofs.close(); |
| 268 |
|
|
|
| 269 |
|
|
} |
| 270 |
|
|
|
| 271 |
|
|
} |