ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/applications/dynamicProps/EnergyCorrFunc.cpp
Revision: 1629
Committed: Wed Sep 14 21:15:17 2011 UTC (13 years, 8 months ago) by gezelter
File size: 9958 byte(s)
Log Message:
Merging changes from old branch into development branch

File Contents

# User Rev Content
1 chuckv 1246 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 chuckv 1246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 chuckv 1246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 chuckv 1246 */
41    
42     /* Uses the Helfand-moment method for calculating thermal
43     * conductivity using the relation kappa = (N,V)lim(t)->inf 1/(2*k_B*T^2*V*t) <[G_K(t)-G_K(0)]^2>
44     * where G_K is the Helfand moment for thermal conductivity definded as
45     * G_K(t) = sum_{a=1}{^N} x_a(E_a-<E_a>) and E_a is defined to be
46     * E_a = p_2^2/(2*m)+1/2 sum_{b.ne.a} u(r_ab) where p is momentum and u is pot energy for the
47     * particle pair a-b. This routine calculates E_a, <E_a> and does the correlation
48     * <[G_K(t)-G_K(0)]^2>.
49     * See Viscardy et al. JCP 126, 184513 (2007)
50     */
51    
52    
53    
54     #include "applications/dynamicProps/EnergyCorrFunc.hpp"
55 gezelter 1390 #include "utils/PhysicalConstants.hpp"
56 chuckv 1246 #include "brains/ForceManager.hpp"
57     #include "brains/Thermo.hpp"
58    
59 gezelter 1390 namespace OpenMD {
60 chuckv 1246
61     // We need all of the positions, velocities, etc. so that we can
62     // recalculate pressures and actions on the fly:
63     EnergyCorrFunc::EnergyCorrFunc(SimInfo* info, const std::string& filename,
64     const std::string& sele1,
65 gezelter 1629 const std::string& sele2,
66     long long int memSize)
67 chuckv 1246 : FrameTimeCorrFunc(info, filename, sele1, sele2,
68     DataStorage::dslPosition |
69     DataStorage::dslVelocity |
70     DataStorage::dslForce |
71     DataStorage::dslTorque |
72 gezelter 1629 DataStorage::dslParticlePot,
73     memSize){
74 chuckv 1246
75     setCorrFuncType("EnergyCorrFunc");
76     setOutputName(getPrefix(dumpFilename_) + ".moment");
77     histogram_.resize(nTimeBins_);
78     count_.resize(nTimeBins_);
79     }
80    
81     void EnergyCorrFunc::correlateFrames(int frame1, int frame2) {
82 gezelter 1629 SimInfo::MoleculeIterator mi1;
83     SimInfo::MoleculeIterator mi2;
84     Molecule::IntegrableObjectIterator mj1;
85     Molecule::IntegrableObjectIterator mj2;
86     Molecule* mol1;
87     Molecule* mol2;
88     Molecule::AtomIterator ai1;
89     Molecule::AtomIterator ai2;
90     Atom* atom1;
91     Atom* atom2;
92     std::vector<RealType> particleEnergies1;
93     std::vector<RealType> particleEnergies2;
94     std::vector<Vector3d> atomPositions1;
95     std::vector<Vector3d> atomPositions2;
96     int thisAtom1, thisAtom2;
97    
98 chuckv 1246 Snapshot* snapshot1 = bsMan_->getSnapshot(frame1);
99     Snapshot* snapshot2 = bsMan_->getSnapshot(frame2);
100     assert(snapshot1 && snapshot2);
101    
102     RealType time1 = snapshot1->getTime();
103     RealType time2 = snapshot2->getTime();
104    
105     int timeBin = int ((time2 - time1) /deltaTime_ + 0.5);
106    
107 gezelter 1629 // now do the correlation
108    
109     particleEnergies1 = E_a_[frame1];
110     particleEnergies2 = E_a_[frame2];
111    
112     updateFrame(frame1);
113     atomPositions1.clear();
114     for (mol1 = info_->beginMolecule(mi1); mol1 != NULL;
115     mol1 = info_->nextMolecule(mi1)) {
116     for(atom1 = mol1->beginAtom(ai1); atom1 != NULL;
117     atom1 = mol1->nextAtom(ai1)) {
118     atomPositions1.push_back(atom1->getPos(frame1));
119     }
120     }
121     updateFrame(frame2);
122     atomPositions2.clear();
123     for (mol2 = info_->beginMolecule(mi2); mol2 != NULL;
124     mol2 = info_->nextMolecule(mi2)) {
125     for(atom2 = mol2->beginAtom(ai2); atom2 != NULL;
126     atom2 = mol2->nextAtom(ai2)) {
127     atomPositions2.push_back(atom2->getPos(frame2));
128     }
129     }
130    
131     thisAtom1 = 0;
132    
133     for (mol1 = info_->beginMolecule(mi1); mol1 != NULL;
134     mol1 = info_->nextMolecule(mi1)) {
135     for(atom1 = mol1->beginAtom(ai1); atom1 != NULL;
136     atom1 = mol1->nextAtom(ai1)) {
137    
138     Vector3d r1 = atomPositions1[thisAtom1];
139     RealType energy1 = particleEnergies1[thisAtom1] - AvgE_a_[thisAtom1];
140    
141     thisAtom2 = 0;
142    
143     for (mol2 = info_->beginMolecule(mi2); mol2 != NULL;
144     mol2 = info_->nextMolecule(mi2)) {
145     for(atom2 = mol2->beginAtom(ai2); atom2 != NULL;
146     atom2 = mol2->nextAtom(ai2)) {
147    
148     Vector3d r2 = atomPositions2[thisAtom2];
149     RealType energy2 = particleEnergies2[thisAtom2] - AvgE_a_[thisAtom2];
150    
151     Vector3d deltaPos = (r2-r1);
152     RealType Eprod = energy2*energy1;
153    
154     histogram_[timeBin][0] += deltaPos.x()*deltaPos.x() * Eprod;
155     histogram_[timeBin][1] += deltaPos.y()*deltaPos.y() * Eprod;
156     histogram_[timeBin][2] += deltaPos.z()*deltaPos.z() * Eprod;
157    
158     thisAtom2++;
159     }
160     }
161    
162     thisAtom1++;
163     }
164     }
165 gezelter 1313
166     count_[timeBin]++;
167    
168 chuckv 1246 }
169    
170     void EnergyCorrFunc::postCorrelate() {
171     for (int i =0 ; i < nTimeBins_; ++i) {
172     if (count_[i] > 0) {
173     histogram_[i] /= count_[i];
174     }
175     }
176     }
177    
178     void EnergyCorrFunc::preCorrelate() {
179     // Fill the histogram with empty 3x3 matrices:
180     std::fill(histogram_.begin(), histogram_.end(), 0.0);
181     // count array set to zero
182     std::fill(count_.begin(), count_.end(), 0);
183    
184     SimInfo::MoleculeIterator mi;
185     Molecule::IntegrableObjectIterator mj;
186     Molecule* mol;
187     Molecule::AtomIterator ai;
188     Atom* atom;
189     std::vector<RealType > particleEnergies;
190    
191     // We'll need the force manager to compute forces for the average pressure
192     ForceManager* forceMan = new ForceManager(info_);
193    
194     // We'll need thermo to compute the pressures from the virial
195     Thermo* thermo = new Thermo(info_);
196    
197     // prepare the averages
198     RealType pSum = 0.0;
199     RealType vSum = 0.0;
200     int nsamp = 0;
201    
202     // dump files can be enormous, so read them in block-by-block:
203     int nblocks = bsMan_->getNBlocks();
204     bool firsttime = true;
205 chuckv 1247 int junkframe = 0;
206 chuckv 1246 for (int i = 0; i < nblocks; ++i) {
207     bsMan_->loadBlock(i);
208     assert(bsMan_->isBlockActive(i));
209     SnapshotBlock block1 = bsMan_->getSnapshotBlock(i);
210     for (int j = block1.first; j < block1.second; ++j) {
211    
212     // go snapshot-by-snapshot through this block:
213     Snapshot* snap = bsMan_->getSnapshot(j);
214 gezelter 1249
215 chuckv 1246 // update the positions and velocities of the atoms belonging
216     // to rigid bodies:
217 gezelter 1249
218 chuckv 1246 updateFrame(j);
219 gezelter 1249
220 chuckv 1246 // do the forces:
221 gezelter 1249
222 gezelter 1464 forceMan->calcForces();
223 gezelter 1249
224 chuckv 1246 int index = 0;
225 gezelter 1249
226 chuckv 1246 for (mol = info_->beginMolecule(mi); mol != NULL;
227 gezelter 1249 mol = info_->nextMolecule(mi)) {
228 chuckv 1246 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
229     RealType mass = atom->getMass();
230 gezelter 1629 Vector3d vel = atom->getVel(j);
231 gezelter 1249 RealType kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
232 gezelter 1390 vel[2]*vel[2]) / PhysicalConstants::energyConvert;
233 gezelter 1629 RealType potential = atom->getParticlePot(j);
234 gezelter 1313 RealType eatom = (kinetic + potential)/2.0;
235 chuckv 1246 particleEnergies.push_back(eatom);
236     if(firsttime)
237 gezelter 1249 {
238     AvgE_a_.push_back(eatom);
239     } else {
240 chuckv 1246 /* We assume the the number of atoms does not change.*/
241     AvgE_a_[index] += eatom;
242     }
243     index++;
244     }
245     }
246     firsttime = false;
247     E_a_.push_back(particleEnergies);
248     }
249 chuckv 1247
250 chuckv 1246 bsMan_->unloadBlock(i);
251     }
252    
253 gezelter 1249 int nframes = bsMan_->getNFrames();
254     for (int i = 0; i < AvgE_a_.size(); i++){
255     AvgE_a_[i] /= nframes;
256     }
257 chuckv 1246
258 gezelter 1629 }
259    
260 chuckv 1246
261 gezelter 1249
262 chuckv 1246 void EnergyCorrFunc::writeCorrelate() {
263     std::ofstream ofs(getOutputFileName().c_str());
264    
265     if (ofs.is_open()) {
266    
267     ofs << "#" << getCorrFuncType() << "\n";
268     ofs << "#time\tK_x\tK_y\tK_z\n";
269    
270     for (int i = 0; i < nTimeBins_; ++i) {
271     ofs << time_[i] << "\t" <<
272     histogram_[i].x() << "\t" <<
273     histogram_[i].y() << "\t" <<
274     histogram_[i].z() << "\t" << "\n";
275     }
276    
277     } else {
278     sprintf(painCave.errMsg,
279     "EnergyCorrFunc::writeCorrelate Error: fail to open %s\n", getOutputFileName().c_str());
280     painCave.isFatal = 1;
281     simError();
282     }
283    
284     ofs.close();
285    
286     }
287    
288     }

Properties

Name Value
svn:keywords Author Id Revision Date