1 |
gezelter |
1629 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Redistributions of source code must retain the above copyright |
10 |
|
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
|
|
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
gezelter |
1665 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
gezelter |
1629 |
*/ |
42 |
|
|
|
43 |
|
|
/* Uses the Helfand-moment method for calculating thermal |
44 |
|
|
* conductivity using the relation kappa = (N,V)lim(t)->inf 1/(2*k_B*T^2*V*t) <[G_K(t)-G_K(0)]^2> |
45 |
|
|
* where G_K is the Helfand moment for thermal conductivity definded as |
46 |
|
|
* G_K(t) = sum_{a=1}{^N} x_a(E_a-<E_a>) and E_a is defined to be |
47 |
|
|
* E_a = p_2^2/(2*m)+1/2 sum_{b.ne.a} u(r_ab) where p is momentum and u is pot energy for the |
48 |
|
|
* particle pair a-b. This routine calculates E_a, <E_a> and does the correlation |
49 |
|
|
* <[G_K(t)-G_K(0)]^2>. |
50 |
|
|
* See Viscardy et al. JCP 126, 184513 (2007) |
51 |
|
|
*/ |
52 |
|
|
|
53 |
|
|
#include "applications/dynamicProps/MomentumCorrFunc.hpp" |
54 |
|
|
#include "utils/PhysicalConstants.hpp" |
55 |
|
|
#include "primitives/Molecule.hpp" |
56 |
|
|
|
57 |
|
|
namespace OpenMD { |
58 |
|
|
|
59 |
|
|
// We need all of the positions, velocities, etc. so that we can |
60 |
|
|
// recalculate pressures and actions on the fly: |
61 |
|
|
MomentumCorrFunc::MomentumCorrFunc(SimInfo* info, const std::string& filename, |
62 |
|
|
const std::string& sele1, |
63 |
|
|
const std::string& sele2, |
64 |
|
|
long long int memSize) |
65 |
|
|
: FrameTimeCorrFunc(info, filename, sele1, sele2, |
66 |
|
|
DataStorage::dslPosition | |
67 |
|
|
DataStorage::dslVelocity, |
68 |
|
|
memSize){ |
69 |
|
|
|
70 |
|
|
setCorrFuncType("MomentumCorrFunc"); |
71 |
|
|
setOutputName(getPrefix(dumpFilename_) + ".momcorr"); |
72 |
|
|
histogram_.resize(nTimeBins_); |
73 |
|
|
count_.resize(nTimeBins_); |
74 |
|
|
} |
75 |
|
|
|
76 |
|
|
void MomentumCorrFunc::correlateFrames(int frame1, int frame2) { |
77 |
|
|
SimInfo::MoleculeIterator mi1; |
78 |
|
|
SimInfo::MoleculeIterator mi2; |
79 |
|
|
Molecule* mol1; |
80 |
|
|
Molecule* mol2; |
81 |
|
|
Molecule::AtomIterator ai1; |
82 |
|
|
Molecule::AtomIterator ai2; |
83 |
|
|
Atom* atom1; |
84 |
|
|
Atom* atom2; |
85 |
|
|
|
86 |
|
|
std::vector<Vector3d> atomPositions1; |
87 |
|
|
std::vector<Vector3d> atomPositions2; |
88 |
|
|
std::vector<Vector3d> atomVelocity1; |
89 |
|
|
std::vector<Vector3d> atomVelocity2; |
90 |
|
|
int thisAtom1, thisAtom2; |
91 |
|
|
|
92 |
|
|
Snapshot* snapshot1 = bsMan_->getSnapshot(frame1); |
93 |
|
|
Snapshot* snapshot2 = bsMan_->getSnapshot(frame2); |
94 |
|
|
|
95 |
|
|
assert(snapshot1 && snapshot2); |
96 |
|
|
|
97 |
|
|
RealType time1 = snapshot1->getTime(); |
98 |
|
|
RealType time2 = snapshot2->getTime(); |
99 |
|
|
|
100 |
|
|
int timeBin = int ((time2 - time1) /deltaTime_ + 0.5); |
101 |
|
|
|
102 |
|
|
updateFrame(frame1); |
103 |
|
|
atomPositions1.clear(); |
104 |
|
|
for (mol1 = info_->beginMolecule(mi1); mol1 != NULL; |
105 |
|
|
mol1 = info_->nextMolecule(mi1)) { |
106 |
|
|
for(atom1 = mol1->beginAtom(ai1); atom1 != NULL; |
107 |
|
|
atom1 = mol1->nextAtom(ai1)) { |
108 |
|
|
atomPositions1.push_back(atom1->getPos(frame1)); |
109 |
|
|
atomVelocity1.push_back(atom1->getVel(frame1)); |
110 |
|
|
} |
111 |
|
|
} |
112 |
|
|
updateFrame(frame2); |
113 |
|
|
atomPositions2.clear(); |
114 |
|
|
for (mol2 = info_->beginMolecule(mi2); mol2 != NULL; |
115 |
|
|
mol2 = info_->nextMolecule(mi2)) { |
116 |
|
|
for(atom2 = mol2->beginAtom(ai2); atom2 != NULL; |
117 |
|
|
atom2 = mol2->nextAtom(ai2)) { |
118 |
|
|
atomPositions2.push_back(atom2->getPos(frame2)); |
119 |
|
|
atomVelocity2.push_back(atom2->getVel(frame2)); |
120 |
|
|
} |
121 |
|
|
} |
122 |
|
|
|
123 |
|
|
thisAtom1 = 0; |
124 |
|
|
|
125 |
|
|
for (mol1 = info_->beginMolecule(mi1); mol1 != NULL; |
126 |
|
|
mol1 = info_->nextMolecule(mi1)) { |
127 |
|
|
for(atom1 = mol1->beginAtom(ai1); atom1 != NULL; |
128 |
|
|
atom1 = mol1->nextAtom(ai1)) { |
129 |
|
|
|
130 |
|
|
Vector3d r1 = atomPositions1[thisAtom1]; |
131 |
|
|
Vector3d p1 = atom1->getMass() * atomVelocity1[thisAtom1]; |
132 |
|
|
|
133 |
|
|
thisAtom2 = 0; |
134 |
|
|
|
135 |
|
|
for (mol2 = info_->beginMolecule(mi2); mol2 != NULL; |
136 |
|
|
mol2 = info_->nextMolecule(mi2)) { |
137 |
|
|
for(atom2 = mol2->beginAtom(ai2); atom2 != NULL; |
138 |
|
|
atom2 = mol2->nextAtom(ai2)) { |
139 |
|
|
|
140 |
|
|
Vector3d r2 = atomPositions2[thisAtom2]; |
141 |
|
|
Vector3d p2 = atom2->getMass() * atomVelocity1[thisAtom1]; |
142 |
|
|
|
143 |
|
|
Vector3d deltaPos = (r2-r1); |
144 |
|
|
Vector3d dp2( deltaPos.x() * deltaPos.x(), |
145 |
|
|
deltaPos.y() * deltaPos.y(), |
146 |
|
|
deltaPos.z() * deltaPos.z()); |
147 |
|
|
Vector3d pprod( p1.x() * p2.x(), |
148 |
|
|
p1.y() * p2.y(), |
149 |
|
|
p1.z() * p2.z()); |
150 |
|
|
|
151 |
|
|
histogram_[timeBin] += outProduct(dp2, pprod); |
152 |
|
|
|
153 |
|
|
thisAtom2++; |
154 |
|
|
} |
155 |
|
|
} |
156 |
|
|
|
157 |
|
|
thisAtom1++; |
158 |
|
|
} |
159 |
|
|
} |
160 |
|
|
|
161 |
|
|
count_[timeBin]++; |
162 |
|
|
|
163 |
|
|
} |
164 |
|
|
|
165 |
|
|
void MomentumCorrFunc::postCorrelate() { |
166 |
|
|
for (int i =0 ; i < nTimeBins_; ++i) { |
167 |
|
|
if (count_[i] > 0) { |
168 |
|
|
histogram_[i] /= count_[i]; |
169 |
|
|
} |
170 |
|
|
} |
171 |
|
|
} |
172 |
|
|
|
173 |
|
|
void MomentumCorrFunc::preCorrelate() { |
174 |
|
|
// Fill the histogram with empty 3x3 matrices: |
175 |
|
|
std::fill(histogram_.begin(), histogram_.end(), Mat3x3d(0.0)); |
176 |
|
|
// count array set to zero |
177 |
|
|
std::fill(count_.begin(), count_.end(), 0); |
178 |
|
|
} |
179 |
|
|
|
180 |
|
|
|
181 |
|
|
|
182 |
|
|
void MomentumCorrFunc::writeCorrelate() { |
183 |
|
|
std::ofstream ofs(getOutputFileName().c_str()); |
184 |
|
|
|
185 |
|
|
if (ofs.is_open()) { |
186 |
|
|
|
187 |
|
|
ofs << "#" << getCorrFuncType() << "\n"; |
188 |
|
|
ofs << "#time\tcorrTensor\txx\txy\txz\tyx\tyy\tyz\tzx\tzy\tzz\n"; |
189 |
|
|
|
190 |
|
|
for (int i = 0; i < nTimeBins_; ++i) { |
191 |
|
|
ofs << time_[i] << "\t" << |
192 |
|
|
histogram_[i](0,0) << "\t" << |
193 |
|
|
histogram_[i](0,1) << "\t" << |
194 |
|
|
histogram_[i](0,2) << "\t" << |
195 |
|
|
histogram_[i](1,0) << "\t" << |
196 |
|
|
histogram_[i](1,1) << "\t" << |
197 |
|
|
histogram_[i](1,2) << "\t" << |
198 |
|
|
histogram_[i](2,0) << "\t" << |
199 |
|
|
histogram_[i](2,1) << "\t" << |
200 |
|
|
histogram_[i](2,2) << "\t" << "\n"; |
201 |
|
|
} |
202 |
|
|
|
203 |
|
|
} else { |
204 |
|
|
sprintf(painCave.errMsg, |
205 |
|
|
"MomentumCorrFunc::writeCorrelate Error: fail to open %s\n", getOutputFileName().c_str()); |
206 |
|
|
painCave.isFatal = 1; |
207 |
|
|
simError(); |
208 |
|
|
} |
209 |
|
|
|
210 |
|
|
ofs.close(); |
211 |
|
|
|
212 |
|
|
} |
213 |
|
|
|
214 |
|
|
} |
215 |
|
|
|