OpenMD 3.1
Molecular Dynamics in the Open
Loading...
Searching...
No Matches
UniformGradient.hpp
Go to the documentation of this file.
1/*
2 * Copyright (c) 2004-present, The University of Notre Dame. All rights
3 * reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright notice,
12 * this list of conditions and the following disclaimer in the documentation
13 * and/or other materials provided with the distribution.
14 *
15 * 3. Neither the name of the copyright holder nor the names of its
16 * contributors may be used to endorse or promote products derived from
17 * this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
32 * research, please cite the appropriate papers when you publish your
33 * work. Good starting points are:
34 *
35 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
36 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
37 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
38 * [4] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
39 * [5] Kuang & Gezelter, Mol. Phys., 110, 691-701 (2012).
40 * [6] Lamichhane, Gezelter & Newman, J. Chem. Phys. 141, 134109 (2014).
41 * [7] Lamichhane, Newman & Gezelter, J. Chem. Phys. 141, 134110 (2014).
42 * [8] Bhattarai, Newman & Gezelter, Phys. Rev. B 99, 094106 (2019).
43 */
44
45/*! \file perturbations/UniformGradient.hpp
46 \brief Uniform Electric Field Gradient perturbation
47*/
48
49#ifndef PERTURBATIONS_UNIFORMGRADIENT_HPP
50#define PERTURBATIONS_UNIFORMGRADIENT_HPP
51
52#include "brains/ForceModifier.hpp"
53#include "brains/SimInfo.hpp"
54
55namespace OpenMD {
56
57 //! Applies a uniform electric field gradient to the system
58 /*! The gradient is applied as an external perturbation. The user specifies
59
60 \code{.unparsed}
61 uniformGradientStrength = c;
62 uniformGradientDirection1 = (a1, a2, a3)
63 uniformGradientDirection2 = (b1, b2, b3);
64 \endcode
65
66 in the .omd file where the two direction vectors, \f$ \mathbf{a} \f$
67 and \f$ \mathbf{b} \f$ are unit vectors, and the value of \f$ g \f$
68 is in units of \f$ V / \AA^2 \f$
69
70 The electrostatic potential corresponding to this uniform gradient is
71
72 \f$ \phi(\mathbf{r}) = - \frac{g}{2} \left[
73 \left(a_1 b_1 - \frac{\cos\psi}{3}\right) x^2
74 + (a_1 b_2 + a_2 b_1) x y + (a_1 b_3 + a_3 b_1) x z +
75 + (a_2 b_1 + a_1 b_2) y x
76 + \left(a_2 b_2 - \frac{\cos\psi}{3}\right) y^2
77 + (a_2 b_3 + a_3 b_2) y z + (a_3 b_1 + a_1 b_3) z x
78 + (a_3 b_2 + a_2 b_3) z y
79 + \left(a_3 b_3 - \frac{\cos\psi}{3}\right) z^2 \right] \f$
80
81 where \f$ \cos \psi = \mathbf{a} \cdot \mathbf{b} \f$. Note that
82 this potential grows unbounded and is not periodic. For these reasons,
83 care should be taken in using a Uniform Gradient with point charges.
84
85 The corresponding field is:
86
87 \f$ \mathbf{E} = \frac{g}{2} \left( \begin{array}{c}
88 2\left(a_1 b_1 - \frac{\cos\psi}{3}\right) x + (a_1 b_2 + a_2 b_1) y
89 + (a_1 b_3 + a_3 b_1) z \\
90 (a_2 b_1 + a_1 b_2) x + 2 \left(a_2 b_2 - \frac{\cos\psi}{3}\right) y
91 + (a_2 b_3 + a_3 b_2) z \\
92 (a_3 b_1 + a_1 b_3) x + (a_3 b_2 + a_2 b_3) y
93 + 2 \left(a_3 b_3 - \frac{\cos\psi}{3}\right) z \end{array} \right) \f$
94
95 The field also grows unbounded and is not periodic. For these reasons,
96 care should be taken in using a Uniform Gradient with point dipoles.
97
98 The corresponding field gradient is:
99
100 \f$ \nabla \mathbf{E} = \frac{g}{2} \left( \begin{array}{ccc}
101 2\left(a_1 b_1 - \frac{\cos\psi}{3}\right) &
102 (a_1 b_2 + a_2 b_1) & (a_1 b_3 + a_3 b_1) \\
103 (a_2 b_1 + a_1 b_2) & 2 \left(a_2 b_2 - \frac{\cos\psi}{3}\right) &
104 (a_2 b_3 + a_3 b_2) \\
105 (a_3 b_1 + a_1 b_3) & (a_3 b_2 + a_2 b_3) &
106 2 \left(a_3 b_3 - \frac{\cos\psi}{3}\right) \end{array} \right) \f$
107
108 which is uniform everywhere.
109
110 The uniform field gradient applies a force on charged atoms,
111 \f$ \mathbf{F} = C \mathbf{E}(\mathbf{r}) \f$.
112 For dipolar atoms, the gradient applies both a potential,
113 \f$ U = -\mathbf{D} \cdot \mathbf{E}(\mathbf{r}) \f$, a force,
114 \f$ \mathbf{F} = \mathbf{D} \cdot \nabla \mathbf{E} \f$, and a torque,
115 \f$ \mathbf{\tau} = \mathbf{D} \times \mathbf{E}(\mathbf{r}) \f$.
116
117 For quadrupolar atoms, the uniform field gradient exerts a potential,
118 \f$ U = - \mathsf{Q}:\nabla \mathbf{E} \f$, and a torque
119 \f$ \mathbf{F} = 2 \mathsf{Q} \times \nabla \mathbf{E} \f$
120
121 */
123 public:
125
126 private:
127 void modifyForces() override;
128 void initialize();
129
130 bool initialized;
131 bool doUniformGradient;
132 bool doParticlePot;
133
134 Globals* simParams;
135 Mat3x3d Grad_;
136 Vector3d a_, b_;
137 RealType g_, cpsi_;
138 };
139} // namespace OpenMD
140
141#endif
Abstract class for external ForceModifier classes.
One of the heavy-weight classes of OpenMD, SimInfo maintains objects and variables relating to the cu...
Definition SimInfo.hpp:93
Applies a uniform electric field gradient to the system.
This basic Periodic Table class was originally taken from the data.cpp file in OpenBabel.