OpenMD 3.1
Molecular Dynamics in the Open
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
OpenMD::UniformGradient Class Reference

Applies a uniform electric field gradient to the system. More...

#include <UniformGradient.hpp>

+ Inheritance diagram for OpenMD::UniformGradient:

Public Member Functions

 UniformGradient (SimInfo *info)
 

Additional Inherited Members

- Protected Member Functions inherited from OpenMD::ForceModifier
 ForceModifier (SimInfo *info)
 
- Protected Attributes inherited from OpenMD::ForceModifier
SimInfoinfo_ {nullptr}
 

Detailed Description

Applies a uniform electric field gradient to the system.

The gradient is applied as an external perturbation. The user specifies

uniformGradientStrength = c;
uniformGradientDirection1 = (a1, a2, a3)
uniformGradientDirection2 = (b1, b2, b3);

in the .omd file where the two direction vectors, a and b are unit vectors, and the value of g is in units of Undefined control sequence \AA

The electrostatic potential corresponding to this uniform gradient is

ϕ(r)=g2[(a1b1cosψ3)x2+(a1b2+a2b1)xy+(a1b3+a3b1)xz++(a2b1+a1b2)yx+(a2b2cosψ3)y2+(a2b3+a3b2)yz+(a3b1+a1b3)zx+(a3b2+a2b3)zy+(a3b3cosψ3)z2]

where cosψ=ab. Note that this potential grows unbounded and is not periodic. For these reasons, care should be taken in using a Uniform Gradient with point charges.

The corresponding field is:

E=g2(2(a1b1cosψ3)x+(a1b2+a2b1)y+(a1b3+a3b1)z(a2b1+a1b2)x+2(a2b2cosψ3)y+(a2b3+a3b2)z(a3b1+a1b3)x+(a3b2+a2b3)y+2(a3b3cosψ3)z)

The field also grows unbounded and is not periodic. For these reasons, care should be taken in using a Uniform Gradient with point dipoles.

The corresponding field gradient is:

E=g2(2(a1b1cosψ3)(a1b2+a2b1)(a1b3+a3b1)(a2b1+a1b2)2(a2b2cosψ3)(a2b3+a3b2)(a3b1+a1b3)(a3b2+a2b3)2(a3b3cosψ3))

which is uniform everywhere.

The uniform field gradient applies a force on charged atoms, F=CE(r). For dipolar atoms, the gradient applies both a potential, U=DE(r), a force, F=DE, and a torque, τ=D×E(r).

For quadrupolar atoms, the uniform field gradient exerts a potential, U=Q:E, and a torque F=2Q×E

Definition at line 122 of file UniformGradient.hpp.

Constructor & Destructor Documentation

◆ UniformGradient()

OpenMD::UniformGradient::UniformGradient ( SimInfo * info)

Definition at line 60 of file UniformGradient.cpp.


The documentation for this class was generated from the following files: