OpenMD 3.1
Molecular Dynamics in the Open
|
Constrained optimization problem. More...
#include <Problem.hpp>
Public Member Functions | |
Problem (ObjectiveFunction &objectiveFunction, Constraint &constraint, OpenMD::StatusFunction &statFunc, const DynamicVector< RealType > &initialValue=DynamicVector< RealType >()) | |
default constructor | |
void | reset () |
RealType | value (const DynamicVector< RealType > &x) |
call objective function computation and increment evaluation counter | |
void | gradient (DynamicVector< RealType > &grad_f, const DynamicVector< RealType > &x) |
call objective function gradient computation and increment | |
RealType | valueAndGradient (DynamicVector< RealType > &grad_f, const DynamicVector< RealType > &x) |
call objective function computation and it gradient | |
Constraint & | constraint () const |
Constraint. | |
ObjectiveFunction & | objectiveFunction () const |
Objective function. | |
void | setCurrentValue (const DynamicVector< RealType > ¤tValue) |
const DynamicVector< RealType > & | currentValue () const |
current value of the local minimum | |
void | setFunctionValue (RealType functionValue) |
RealType | functionValue () const |
value of objective function | |
void | setGradientNormValue (RealType squaredNorm) |
RealType | gradientNormValue () const |
value of objective function gradient norm | |
int | functionEvaluation () const |
number of evaluation of objective function | |
int | gradientEvaluation () const |
number of evaluation of objective function gradient | |
RealType | DotProduct (DynamicVector< RealType > &v1, DynamicVector< RealType > &v2) |
RealType | computeGradientNormValue (DynamicVector< RealType > &grad_f) |
Protected Attributes | |
ObjectiveFunction & | objectiveFunction_ |
Unconstrained objective function. | |
Constraint & | constraint_ |
Constraint. | |
DynamicVector< RealType > | currentValue_ |
current value of the local minimum | |
RealType | functionValue_ |
function and gradient norm values at the curentValue_ (i.e. the last step) | |
RealType | squaredNorm_ |
int | functionEvaluation_ |
number of evaluation of objective function and its gradient | |
int | gradientEvaluation_ |
StatusFunction & | statusFunction_ |
status function | |
Constrained optimization problem.
Definition at line 37 of file Problem.hpp.
|
inline |
default constructor
Definition at line 40 of file Problem.hpp.
RealType QuantLib::Problem::computeGradientNormValue | ( | DynamicVector< RealType > & | grad_f | ) |
Definition at line 12 of file Problem.cpp.
|
inline |
Definition at line 65 of file Problem.hpp.
References constraint_.
Referenced by QuantLib::ArmijoLineSearch::operator()().
|
inline |
current value of the local minimum
Definition at line 77 of file Problem.hpp.
References currentValue_.
Referenced by QuantLib::LineSearchBasedMethod::minimize(), and QuantLib::ArmijoLineSearch::operator()().
RealType QuantLib::Problem::DotProduct | ( | DynamicVector< RealType > & | v1, |
DynamicVector< RealType > & | v2 ) |
Definition at line 6 of file Problem.cpp.
|
inline |
number of evaluation of objective function
Definition at line 95 of file Problem.hpp.
References functionEvaluation_.
|
inline |
value of objective function
Definition at line 86 of file Problem.hpp.
References functionValue_.
Referenced by QuantLib::LineSearchBasedMethod::minimize(), and QuantLib::ArmijoLineSearch::operator()().
|
inline |
call objective function gradient computation and increment
Definition at line 130 of file Problem.hpp.
References QuantLib::ObjectiveFunction::gradient(), and objectiveFunction_.
Referenced by QuantLib::ArmijoLineSearch::operator()().
|
inline |
number of evaluation of objective function gradient
Definition at line 98 of file Problem.hpp.
|
inline |
value of objective function gradient norm
Definition at line 92 of file Problem.hpp.
Referenced by QuantLib::LineSearchBasedMethod::minimize(), and QuantLib::ArmijoLineSearch::operator()().
|
inline |
|
inline |
Definition at line 146 of file Problem.hpp.
References functionEvaluation_, and functionValue_.
Referenced by QuantLib::LineSearchBasedMethod::minimize().
|
inline |
Definition at line 70 of file Problem.hpp.
|
inline |
Definition at line 81 of file Problem.hpp.
|
inline |
Definition at line 88 of file Problem.hpp.
|
inline |
call objective function computation and increment evaluation counter
Definition at line 121 of file Problem.hpp.
References currentValue_, functionEvaluation_, functionValue_, objectiveFunction_, statusFunction_, and QuantLib::ObjectiveFunction::value().
Referenced by QuantLib::ArmijoLineSearch::operator()().
|
inline |
call objective function computation and it gradient
Definition at line 136 of file Problem.hpp.
References currentValue_, functionEvaluation_, functionValue_, objectiveFunction_, statusFunction_, and QuantLib::ObjectiveFunction::valueAndGradient().
Referenced by QuantLib::LineSearchBasedMethod::minimize().
|
protected |
|
protected |
current value of the local minimum
Definition at line 110 of file Problem.hpp.
Referenced by currentValue(), value(), and valueAndGradient().
|
protected |
number of evaluation of objective function and its gradient
Definition at line 115 of file Problem.hpp.
Referenced by functionEvaluation(), reset(), value(), and valueAndGradient().
|
protected |
function and gradient norm values at the curentValue_ (i.e. the last step)
Definition at line 113 of file Problem.hpp.
Referenced by functionValue(), reset(), value(), and valueAndGradient().
|
protected |
Definition at line 115 of file Problem.hpp.
|
protected |
Unconstrained objective function.
Definition at line 106 of file Problem.hpp.
Referenced by gradient(), objectiveFunction(), value(), and valueAndGradient().
|
protected |
Definition at line 113 of file Problem.hpp.
|
protected |
status function
Definition at line 117 of file Problem.hpp.
Referenced by value(), and valueAndGradient().