| OpenMD 3.1
    Molecular Dynamics in the Open | 
Constrained optimization problem. More...
#include <Problem.hpp>
| Public Member Functions | |
| Problem (ObjectiveFunction &objectiveFunction, Constraint &constraint, OpenMD::StatusFunction &statFunc, const DynamicVector< RealType > &initialValue=DynamicVector< RealType >()) | |
| default constructor | |
| void | reset () | 
| RealType | value (const DynamicVector< RealType > &x) | 
| call objective function computation and increment evaluation counter | |
| void | gradient (DynamicVector< RealType > &grad_f, const DynamicVector< RealType > &x) | 
| call objective function gradient computation and increment | |
| RealType | valueAndGradient (DynamicVector< RealType > &grad_f, const DynamicVector< RealType > &x) | 
| call objective function computation and it gradient | |
| Constraint & | constraint () const | 
| Constraint. | |
| ObjectiveFunction & | objectiveFunction () const | 
| Objective function. | |
| void | setCurrentValue (const DynamicVector< RealType > ¤tValue) | 
| const DynamicVector< RealType > & | currentValue () const | 
| current value of the local minimum | |
| void | setFunctionValue (RealType functionValue) | 
| RealType | functionValue () const | 
| value of objective function | |
| void | setGradientNormValue (RealType squaredNorm) | 
| RealType | gradientNormValue () const | 
| value of objective function gradient norm | |
| int | functionEvaluation () const | 
| number of evaluation of objective function | |
| int | gradientEvaluation () const | 
| number of evaluation of objective function gradient | |
| RealType | DotProduct (DynamicVector< RealType > &v1, DynamicVector< RealType > &v2) | 
| RealType | computeGradientNormValue (DynamicVector< RealType > &grad_f) | 
| Protected Attributes | |
| ObjectiveFunction & | objectiveFunction_ | 
| Unconstrained objective function. | |
| Constraint & | constraint_ | 
| Constraint. | |
| DynamicVector< RealType > | currentValue_ | 
| current value of the local minimum | |
| RealType | functionValue_ | 
| function and gradient norm values at the curentValue_ (i.e. the last step) | |
| RealType | squaredNorm_ | 
| int | functionEvaluation_ | 
| number of evaluation of objective function and its gradient | |
| int | gradientEvaluation_ | 
| StatusFunction & | statusFunction_ | 
| status function | |
Constrained optimization problem.
Definition at line 37 of file Problem.hpp.
| 
 | inline | 
default constructor
Definition at line 40 of file Problem.hpp.
| RealType QuantLib::Problem::computeGradientNormValue | ( | DynamicVector< RealType > & | grad_f | ) | 
Definition at line 12 of file Problem.cpp.
| 
 | inline | 
Definition at line 65 of file Problem.hpp.
References constraint_.
Referenced by QuantLib::ArmijoLineSearch::operator()().
| 
 | inline | 
current value of the local minimum
Definition at line 77 of file Problem.hpp.
References currentValue_.
Referenced by QuantLib::LineSearchBasedMethod::minimize(), and QuantLib::ArmijoLineSearch::operator()().
| RealType QuantLib::Problem::DotProduct | ( | DynamicVector< RealType > & | v1, | 
| DynamicVector< RealType > & | v2 ) | 
Definition at line 6 of file Problem.cpp.
| 
 | inline | 
number of evaluation of objective function
Definition at line 95 of file Problem.hpp.
References functionEvaluation_.
| 
 | inline | 
value of objective function
Definition at line 86 of file Problem.hpp.
References functionValue_.
Referenced by QuantLib::LineSearchBasedMethod::minimize(), and QuantLib::ArmijoLineSearch::operator()().
| 
 | inline | 
call objective function gradient computation and increment
Definition at line 130 of file Problem.hpp.
References QuantLib::ObjectiveFunction::gradient(), and objectiveFunction_.
Referenced by QuantLib::ArmijoLineSearch::operator()().
| 
 | inline | 
number of evaluation of objective function gradient
Definition at line 98 of file Problem.hpp.
| 
 | inline | 
value of objective function gradient norm
Definition at line 92 of file Problem.hpp.
Referenced by QuantLib::LineSearchBasedMethod::minimize(), and QuantLib::ArmijoLineSearch::operator()().
| 
 | inline | 
| 
 | inline | 
Definition at line 146 of file Problem.hpp.
References functionEvaluation_, and functionValue_.
Referenced by QuantLib::LineSearchBasedMethod::minimize().
| 
 | inline | 
Definition at line 70 of file Problem.hpp.
| 
 | inline | 
Definition at line 81 of file Problem.hpp.
| 
 | inline | 
Definition at line 88 of file Problem.hpp.
| 
 | inline | 
call objective function computation and increment evaluation counter
Definition at line 121 of file Problem.hpp.
References currentValue_, functionEvaluation_, functionValue_, objectiveFunction_, statusFunction_, and QuantLib::ObjectiveFunction::value().
Referenced by QuantLib::ArmijoLineSearch::operator()().
| 
 | inline | 
call objective function computation and it gradient
Definition at line 136 of file Problem.hpp.
References currentValue_, functionEvaluation_, functionValue_, objectiveFunction_, statusFunction_, and QuantLib::ObjectiveFunction::valueAndGradient().
Referenced by QuantLib::LineSearchBasedMethod::minimize().
| 
 | protected | 
| 
 | protected | 
current value of the local minimum
Definition at line 110 of file Problem.hpp.
Referenced by currentValue(), value(), and valueAndGradient().
| 
 | protected | 
number of evaluation of objective function and its gradient
Definition at line 115 of file Problem.hpp.
Referenced by functionEvaluation(), reset(), value(), and valueAndGradient().
| 
 | protected | 
function and gradient norm values at the curentValue_ (i.e. the last step)
Definition at line 113 of file Problem.hpp.
Referenced by functionValue(), reset(), value(), and valueAndGradient().
| 
 | protected | 
Definition at line 115 of file Problem.hpp.
| 
 | protected | 
Unconstrained objective function.
Definition at line 106 of file Problem.hpp.
Referenced by gradient(), objectiveFunction(), value(), and valueAndGradient().
| 
 | protected | 
Definition at line 113 of file Problem.hpp.
| 
 | protected | 
status function
Definition at line 117 of file Problem.hpp.
Referenced by value(), and valueAndGradient().